Effects of Different Wearable Resistance Placements on Running Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment and Experimental Procedure
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macadam, P.; Cronin, J.B.; Simperingham, K.D. The Effects of Wearable Resistance Training on Metabolic, Kinematic and Kinetic Variables during Walking, Running, Sprint Running and Jumping: A Systematic Review. Sports Med. 2017, 47, 887–906. [Google Scholar] [CrossRef]
- Bustos, A.; Metral, G.; Cronin, J.; Uthoff, A.; Dolcetti, J. Effects of Warming Up with Lower-Body Wearable Resistance on Physical Performance Measures in Soccer Players over an 8-Week Training Cycle. J. Strength Cond. Res. 2020, 34, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Feser, E.H.; Bayne, H.; Loubser, I.; Bezodis, N.E.; Cronin, J.B. Wearable Resistance Sprint Running Is Superior to Training with No Load for Retaining Performance in Pre-Season Training for Rugby Athletes. Eur. J. Sport Sci. 2021, 21, 967–975. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.B.; Feser, E.H. Acute and Longitudinal Effects of Weighted Vest Training on Sprint-Running Performance: A Systematic Review. Sports Biomech. 2022, 21, 239–254. [Google Scholar] [CrossRef]
- Feser, E.H.; Macadam, P.; Cronin, J.B. The Effects of Lower Limb Wearable Resistance on Sprint Running Performance: A Systematic Review. Eur. J. Sport Sci. 2020, 20, 394–406. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.B.; Uthoff, A.M.; Feser, E.H. Effects of Different Wearable Resistance Placements on Sprint-Running Performance: A Review and Practical Applications. Strength Cond. J. 2019, 41, 79–96. [Google Scholar] [CrossRef]
- Clark, K.P.; Stearne, D.J.; Walts, C.T.; Miller, A.D. The Longitudinal Effects of Resisted Sprint Training Using Weighted Sleds vs. Weighted Vests. J. Strength Cond. Res. 2010, 24, 3287–3295. [Google Scholar] [CrossRef] [PubMed]
- Macadam, P.; Simperingham, K.D.; Cronin, J.B.; Couture, G.; Evison, C. Acute Kinematic and Kinetic Adaptations to Wearable Resistance during Vertical Jumping. J. Strength Cond. Res. 2017, 17, 1297–1304. [Google Scholar] [CrossRef]
- Hamacher, D.; Singh, N.B.; Van Dieën, J.H.; Heller, M.O.; Taylor, W.R. Kinematic Measures for Assessing Gait Stability in Elderly Individuals: A Systematic Review. J. R. Soc. Interface 2011, 8, 1682–1698. [Google Scholar] [CrossRef] [PubMed]
- Bruijn, S.M.; Meijer, O.G.; Beek, P.J.; Van Dieen, J.H.; van Dieën, J.H. Assessing the Stability of Human Locomotion: A Review of Current Measures. J. R. Soc. Interface 2013, 10, 20120999. [Google Scholar] [CrossRef]
- Roos, P.E.; Dingwell, J.B. Influence of Simulated Neuromuscular Noise on the Dynamic Stability and Fall Risk of a 3D Dynamic Walking Model. J. Biomech. 2011, 44, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Dingwell, J.B.; Cusumano, J.P. Nonlinear Time Series Analysis of Normal and Pathological Human Walking. Chaos Interdiscip. J. Nonlinear Sci. 2000, 10, 848. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, P.; VanSwearingen, J.; Godfrey, A.; Redfern, M.; Montero-Odasso, M.; Sejdic, E. Acceleration Gait Measures as Proxies for Motor Skill of Walking: A Narrative Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, S. The Largest Lyapunov Exponent of Gait in Young and Elderly Individuals: A Systematic Review. Gait Posture 2018, 60, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Dingwell, J.B.; Marin, L.C. Kinematic Variability and Local Dynamic Stability of Upper Body Motions When Walking at Different Speeds. J. Biomech. 2006, 39, 444–452. [Google Scholar] [CrossRef]
- Hoenig, T.; Hamacher, D.; Braumann, K.M.; Zech, A.; Hollander, K. Analysis of Running Stability during 5000 m Running. Eur. J. Sport Sci. 2019, 19, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Promsri, A. Assessing Walking Stability Based on Whole-Body Movement Derived from a Depth-Sensing Camera. Sensors 2022, 22, 7542. [Google Scholar] [CrossRef]
- Promsri, A. Sex Difference in Running Stability Analyzed Based on a Whole-Body Movement: A Pilot Study. Sports 2022, 10, 138. [Google Scholar] [CrossRef]
- Federolf, P.; Tecante, K.; Nigg, B. A Holistic Approach to Study the Temporal Variability in Gait. J. Biomech. 2012, 45, 1127–1132. [Google Scholar] [CrossRef]
- van Mechelen, W. Running Injuries. Sports Med. 1992, 14, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Promsri, A.; Mohr, M.; Federolf, P. Principal Postural Acceleration and Myoelectric Activity: Interrelationship and Relevance for Characterizing Neuromuscular Function in Postural Control. Hum. Mov. Sci. 2021, 77, 102792. [Google Scholar] [CrossRef]
- Promsri, A.; Haid, T.; Federolf, P. Complexity, Composition, and Control of Bipedal Balancing Movements as the Postural Control System Adapts to Unstable Support Surfaces or Altered Feet Positions. Neuroscience 2020, 430, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Hamner, S.R.; Seth, A.; Delp, S.L. Muscle Contributions to Propulsion and Support during Running. J. Biomech. 2010, 43, 2709–2716. [Google Scholar] [CrossRef] [PubMed]
- Silder, A.; Besier, T.; Delp, S.L. Running with a Load Increases Leg Stiffness. J. Biomech. 2015, 48, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Florenes, T.W.; Bere, T.; Nordsletten, L.; Heir, S.; Bahr, R. Injuries among Male and Female World Cup Alpine Skiers. Br. J. Sports Med. 2009, 43, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, S.; Sanjari, M.A. Effect of Noise and Filtering on Largest Lyapunov Exponent of Time Series Associated with Human Walking. J. Biomech. 2017, 64, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Giroux, C.; Lacome, M.; Leduc, C.; Hader, K.; Buchheit, M. Effects of Wearable Resistance Load Placement on Neuromuscular Activity and Stride Kinematics: A Preliminary Study. S. Afr. J. Sports Med. 2022, 34, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abou, L.; Wong, E.; Peters, J.; Dossou, M.S.; Sosnoff, J.J.; Rice, L.A. Smartphone Applications to Assess Gait and Postural Control in People with Multiple Sclerosis: A Systematic Review. Mult. Scler. Relat. Disord. 2021, 51, 102943. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Abou, L.; Wong, E.; Dossou, M.S.; Sosnoff, J.J.; Rice, L.A. Smartphone-Based Gait and Balance Assessment in Survivors of Stroke: A Systematic Review. Disabil. Rehabil. Assist. Technol. 2022, 19, 177–187. [Google Scholar] [CrossRef]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef]
- Pinho, A.S.; Salazar, A.P.; Hennig, E.M.; Spessato, B.C.; Domingo, A.; Pagnussat, A.S. Can We Rely on Mobile Devices and Other Gadgets to Assess the Postural Balance of Healthy Individuals? A Systematic Review. Sensors 2019, 19, 2972. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Sharma, T.; Batra, H.; Jain, A.; Pal, V. Human Action Recognition Using Smartphone Sensors. In Proceedings of the 2020 International Conference on Computational Performance Evaluation, ComPE 2020, Shillong, India, 2–4 July 2020; pp. 238–243. [Google Scholar]
- Promsri, A.; Bangkomdet, K.; Jindatham, I.; Jenchang, T. Leg Dominance—Surface Stability Interaction: Effects on Postural Control Assessed by Smartphone-Based Accelerometry. Sports 2023, 11, 75. [Google Scholar] [CrossRef]
- Pekmezian, N.; Schrager, M.; Cosgrove, J.; Smith, N.; Kagan, M.; Thomas, M. Effects of Maximalist vs. Minimalist Shoes on Kinematic and Kinetic Variables. FASEB J. 2021, 35. [Google Scholar] [CrossRef]
- Couture, G.A.; Simperingham, K.D.; Cronin, J.B.; Lorimer, A.V.; Kilding, A.E.; Macadam, P. Effects of Upper and Lower Body Wearable Resistance on Spatio-Temporal and Kinetic Parameters during Running. Sports Biomech. 2020, 19, 633–651. [Google Scholar] [CrossRef]
- Chen, M.J.; Fan, X.; Moe, S.T. Criterion-Related Validity of the Borg Ratings of Perceived Exertion Scale in Healthy Individuals: A Meta-Analysis. J. Sports Sci. 2002, 20, 873–899. [Google Scholar] [CrossRef] [PubMed]
- Dawes, H.N.; Barker, K.L.; Cockburn, J.; Roach, N.; Scott, O.; Wade, D. Borg’s Rating of Perceived Exertion Scales: Do the Verbal Anchors Mean the Same for Different Clinical Groups? Arch. Phys. Med. Rehabil. 2005, 86, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Kosse, N.M.; Caljouw, S.; Vervoort, D.; Vuillerme, N.; Lamoth, C.J.C.C. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-Axial Accelerometer of the IPod Touch. Ann. Biomed. Eng. 2015, 43, 1935–1946. [Google Scholar] [CrossRef]
- Promsri, A.; Cholamjiak, P.; Federolf, P. Walking Stability and Risk of Falls. Bioengineering 2023, 10, 471. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov Exponents from a Time Series. Phys. D 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Dingwell, J.B.; Cusumano, J.P.; Cavanagh, P.R.; Sternad, D. Local Dynamic Stability Versus Kinematic Variability of Continuous Overground and Treadmill Walking. J. Biomech. Eng. 2001, 123, 27–32. [Google Scholar] [CrossRef]
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. Biomed. Res. Int. 2015, 2015, 891390. [Google Scholar] [CrossRef]
- Mizrahi, J. Mechanical Impedance and Its Relations to Motor Control, Limb Dynamics, and Motion Biomechanics. J. Med. Biol. Eng. 2015, 35, 1–20. [Google Scholar] [CrossRef]
- ROYER, T.D.; MARTIN, P.E. Manipulations of Leg Mass and Moment of Inertia: Effects on Energy Cost of Walking. Med. Sci. Sports Exerc. 2005, 37, 649–656. [Google Scholar] [CrossRef]
- Martin, P.E.; Cavanagh, P.R. Segment Interactions within the Swing Leg during Unloaded and Loaded Running. J. Biomech. 1990, 23, 529–536. [Google Scholar] [CrossRef]
- Promsri, A. Modulation of Bilateral Lower-Limb Muscle Coordination When Performing Increasingly Challenging Balance Exercises. Neurosci. Lett. 2022, 767, 136299. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, G.; Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor Patterns in Human Walking and Running. J. Neurophysiol. 2006, 95, 3426–3437. [Google Scholar] [CrossRef]
- Legramandi, M.A.; Schepens, B.; Cavagna, G.A. Running Humans Attain Optimal Elastic Bounce in Their Teens. Sci. Rep. 2013, 3, 1310. [Google Scholar] [CrossRef]
- Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors Affecting Running Economy in Trained Distance Runners. Sports Med. 2004, 34, 465–485. [Google Scholar] [CrossRef]
- Wilder, R.P.; Sethi, S. Overuse Injuries: Tendinopathies, Stress Fractures, Compartment Syndrome, and Shin Splints. Clin. Sports Med. 2004, 23, 55–81. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Lam, W.-K.; Zhang, X.; Wang, J.; Fu, W. Systematic Review of the Role of Footwear Constructions in Running Biomechanics: Implications for Running-Related Injury and Performance. J. Sports Sci. Med. 2020, 19, 20–37. [Google Scholar] [PubMed]
- Van Hooren, B.; Fuller, J.T.; Buckley, J.D.; Miller, J.R.; Sewell, K.; Rao, G.; Barton, C.; Bishop, C.; Willy, R.W. Is Motorized Treadmill Running Biomechanically Comparable to Overground Running? A Systematic Review and Meta-Analysis of Cross-Over Studies. Sports Med. 2020, 50, 785–813. [Google Scholar] [CrossRef] [PubMed]
- Fascione, J.M.; Crews, R.T.; Wrobel, J.S. Association of Footprint Measurements and Running Training Level, Performance Success, and Training Specificity. Footwear Sci. 2009, 1, 145–152. [Google Scholar] [CrossRef]
- Hanon, C.; Thépaut-Mathieu, C.; Vandewalle, H. Determination of Muscular Fatigue in Elite Runners. Eur. J. Appl. Physiol. 2005, 94, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Naderi, A.; Baloochi, R.; Rostami, K.D.; Fourchet, F.; Degens, H. Obesity and Foot Muscle Strength Are Associated with High Dynamic Plantar Pressure during Running. Foot 2020, 44, 101683. [Google Scholar] [CrossRef]
- Thuany, M.; Gomes, T.N.; de Almeida, M.B. Is There Any Difference between “Amateur” and “Recreational ” Runners? A Latent Class Analysis. Mot. Rev. Educ. Física 2020, 26, 1–8. [Google Scholar] [CrossRef]
Max | Min | Mean | SD | |
---|---|---|---|---|
Age (years) | 22.0 | 19.0 | 20.3 | 1.0 |
Mass (kg) | 77.0 | 53.0 | 64.7 | 6.5 |
Height (cm) | 180.0 | 163.0 | 170.3 | 5.6 |
Body mass index (kg/m2) | 26.6 | 19.2 | 22.3 | 2.1 |
Weekly mileage (km) | 40.0 | 5.0 | 20.1 | 11.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promsri, A.; Deedphimai, S.; Promthep, P.; Champamuang, C. Effects of Different Wearable Resistance Placements on Running Stability. Sports 2024, 12, 45. https://doi.org/10.3390/sports12020045
Promsri A, Deedphimai S, Promthep P, Champamuang C. Effects of Different Wearable Resistance Placements on Running Stability. Sports. 2024; 12(2):45. https://doi.org/10.3390/sports12020045
Chicago/Turabian StylePromsri, Arunee, Siriyakorn Deedphimai, Petradda Promthep, and Chonthicha Champamuang. 2024. "Effects of Different Wearable Resistance Placements on Running Stability" Sports 12, no. 2: 45. https://doi.org/10.3390/sports12020045
APA StylePromsri, A., Deedphimai, S., Promthep, P., & Champamuang, C. (2024). Effects of Different Wearable Resistance Placements on Running Stability. Sports, 12(2), 45. https://doi.org/10.3390/sports12020045