Poor Motor Competence Affects Functional Capacities and Healthcare in Children and Adolescents with Obesity
Abstract
:1. Introduction
2. Materials and Methods
3. Childhood Obesity
4. Motor Competence in Children
5. Impaired Motor Performance and Therapeutical Approach in Children with Obesity
5.1. Impaired Motor Performance
5.2. Therapeutical Proposal
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calcaterra, V.; Zuccotti, G. Physical Exercise as a Non-Pharmacological Intervention for Attenuating Obesity-Related Complications in Children and Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 5046. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Vandoni, M.; Rossi, V.; Berardo, C.; Grazi, R.; Cordaro, E.; Tranfaglia, V.; Carnevale Pellino, V.; Cereda, C.; Zuccotti, G. Use of Physical Activity and Exercise to Reduce Inflammation in Children and Adolescents with Obesity. Int. J. Environ. Res. Public Health 2022, 19, 6908. [Google Scholar] [CrossRef] [PubMed]
- Zacks, B.; Confroy, K.; Frino, S.; Skelton, J.A. Delayed Motor Skills Associated with Pediatric Obesity. Obes. Res. Clin. Pract. 2021, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Marin, L.; Vandoni, M.; Rossi, V.; Pirazzi, A.; Grazi, R.; Patané, P.; Silvestro, G.S.; Carnevale Pellino, V.; Albanese, I.; et al. Childhood Obesity and Incorrect Body Posture: Impact on Physical Activity and the Therapeutic Role of Exercise. Int. J. Environ. Res. Public Health 2022, 19, 16728. [Google Scholar] [CrossRef] [PubMed]
- Haywood, K.M.; Getchell, N. Life Span Motor Development, 4th ed.; Human Kinetics: Champaign, IL, USA, 2005; 326p, ISBN 0-7360-5574-6. [Google Scholar]
- Metcalfe, J.; Clark, J. The Mountain of Motor Development: A Metaphor. In Motor Development: Research and Reviews; NASPE Publications: Reston, VA, USA, 2002; Volume 2, pp. 163–190. [Google Scholar]
- World Health Organization. Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2021.
- Vandoni, M.; Carnevale Pellino, V.; Gatti, A.; Lucini, D.; Mannarino, S.; Larizza, C.; Rossi, V.; Tranfaglia, V.; Pirazzi, A.; Biino, V.; et al. Effects of an Online Supervised Exercise Training in Children with Obesity during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 9421. [Google Scholar] [CrossRef]
- Vandoni, M.; Codella, R.; Pippi, R.; Carnevale Pellino, V.; Lovecchio, N.; Marin, L.; Silvestri, D.; Gatti, A.; Magenes, V.C.; Regalbuto, C.; et al. Combatting Sedentary Behaviors by Delivering Remote Physical Exercise in Children and Adolescents with Obesity in the COVID-19 Era: A Narrative Review. Nutrients 2021, 13, 4459. [Google Scholar] [CrossRef] [PubMed]
- Arpesella, M.; Campostrini, S.; Gerzeli, S.; Lottaroli, S.; Pane, A.; Traverso, M.; Vandoni, M.; Coppola, L. Obesity Nutritional Aspects and Life Style from a Survey on a Sample of Primary School Pupils in the Pavia Province (Northern Italy). Ital. J. Public Health 2008, 5, 12–17. [Google Scholar] [CrossRef]
- Calcaterra, V.; Vandoni, M.; Pellino, V.C.; Cena, H. Special Attention to Diet and Physical Activity in Children and Adolescents with Obesity During the Coronavirus Disease-2019 Pandemic. Front. Pediatr. 2020, 8, 407. [Google Scholar] [CrossRef]
- Gregory, A.T.; Denniss, A.R. An Introduction to Writing Narrative and Systematic Reviews—Tasks, Tips and Traps for Aspiring Authors. Heart Lung Circ. 2018, 27, 893–898. [Google Scholar] [CrossRef]
- Greydanus, D.E.; Agana, M.; Kamboj, M.K.; Shebrain, S.; Soares, N.; Eke, R.; Patel, D.R. Pediatric Obesity: Current Concepts. Disease-a-Month 2018, 64, 98–156. [Google Scholar] [CrossRef]
- Mameli, C.; Mazzantini, S.; Zuccotti, G.V. Nutrition in the First 1000 Days: The Origin of Childhood Obesity. Int. J. Environ. Res. Public Health 2016, 13, 838. [Google Scholar] [CrossRef]
- World Health Organization, Regional Office for Europe. Mapping the Health System Response to Childhood Obesity in the WHO European Region: An Overview and Country Perspectives; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2019.
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef]
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Dietz, W.H.; Robinson, T.N. Overweight Children and Adolescents. N. Engl. J. Med. 2005, 352, 2100–2109. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.D.; Sinaiko, A.R.; Kharbanda, E.O.; Margolis, K.L.; Daley, M.F.; Trower, N.K.; Sherwood, N.E.; Greenspan, L.C.; Lo, J.C.; Magid, D.J.; et al. Change in Weight Status and Development of Hypertension. Pediatrics 2016, 137, e20151662. [Google Scholar] [CrossRef] [PubMed]
- Juonala, M.; Magnussen, C.G.; Berenson, G.S.; Venn, A.; Burns, T.L.; Sabin, M.A.; Srinivasan, S.R.; Daniels, S.R.; Davis, P.H.; Chen, W.; et al. Childhood Adiposity, Adult Adiposity, and Cardiovascular Risk Factors. N. Engl. J. Med. 2011, 365, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Harel, Z.; Riggs, S.; Vaz, R.; Flanagan, P.; Harel, D. Isolated Low HDL Cholesterol Emerges as the Most Common Lipid Abnormality among Obese Adolescents. Clin. Pediatr. 2010, 49, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Cote, A.T.; Harris, K.C.; Panagiotopoulos, C.; Sandor, G.G.S.; Devlin, A.M. Childhood Obesity and Cardiovascular Dysfunction. J. Am. Coll. Cardiol. 2013, 62, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Hannon, T.S.; Rofey, D.L.; Ryan, C.M.; Clapper, D.A.; Chakravorty, S.; Arslanian, S.A. Relationships among Obstructive Sleep Apnea, Anthropometric Measures, and Neurocognitive Functioning in Adolescents with Severe Obesity. J. Pediatr. 2012, 160, 732–735. [Google Scholar] [CrossRef]
- Koebnick, C.; Smith, N.; Black, M.H.; Porter, A.H.; Richie, B.A.; Hudson, S.; Gililland, D.; Jacobsen, S.J.; Longstreth, G.F. Pediatric Obesity and Gallstone Disease. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 328–333. [Google Scholar] [CrossRef]
- Vos, M.B.; Abrams, S.H.; Barlow, S.E.; Caprio, S.; Daniels, S.R.; Kohli, R.; Mouzaki, M.; Sathya, P.; Schwimmer, J.B.; Sundaram, S.S.; et al. NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in Children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Brickman, W.J.; Binns, H.J.; Jovanovic, B.D.; Kolesky, S.; Mancini, A.J.; Metzger, B.E.; Pediatric Practice Research Group. Acanthosis Nigricans: A Common Finding in Overweight Youth. Pediatr. Dermatol. 2007, 24, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.B.; Black, M.H.; Smith, N.; Martinez, M.M.; Jacobsen, S.J.; Porter, A.H.; Koebnick, C. Prevalence of Polycystic Ovary Syndrome in Adolescents. Fertil. Steril. 2013, 100, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Brara, S.M.; Koebnick, C.; Porter, A.H.; Langer-Gould, A. Pediatric Idiopathic Intracranial Hypertension and Extreme Childhood Obesity. J. Pediatr. 2012, 161, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Liy-Wong, C.; Kim, M.; Kirkorian, A.Y.; Eichenfield, L.F.; Diaz, L.Z.; Horev, A.; Tollefson, M.; Oranges, T.; Philips, R.; Chiu, Y.E.; et al. Hidradenitis Suppurativa in the Pediatric Population: An International, Multicenter, Retrospective, Cross-Sectional Study of 481 Pediatric Patients. JAMA Dermatol. 2021, 157, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Perry, D.C.; Metcalfe, D.; Lane, S.; Turner, S. Childhood Obesity and Slipped Capital Femoral Epiphysis. Pediatrics 2018, 142, e20181067. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, S.; Zhao, C.; McClemens, E. Correlation of Body Mass Index and Radiographic Deformities in Children with Blount Disease. J. Bone Jt. Surg. Am. 2007, 89, 1275–1283. [Google Scholar] [CrossRef]
- Walker, J.L.; Hosseinzadeh, P.; White, H.; Murr, K.; Milbrandt, T.A.; Talwalkar, V.J.; Iwinski, H.; Muchow, R. Idiopathic Genu Valgum and Its Association with Obesity in Children and Adolescents. J. Pediatr. Orthop. 2019, 39, 347–352. [Google Scholar] [CrossRef]
- Kim, S.-J.; Ahn, J.; Kim, H.K.; Kim, J.H. Obese Children Experience More Extremity Fractures than Nonobese Children and Are Significantly More Likely to Die from Traumatic Injuries. Acta Paediatr. 2016, 105, 1152–1157. [Google Scholar] [CrossRef]
- Smotkin-Tangorra, M.; Purushothaman, R.; Gupta, A.; Nejati, G.; Anhalt, H.; Ten, S. Prevalence of Vitamin D Insufficiency in Obese Children and Adolescents. J. Pediatr. Endocrinol. Metab. 2007, 20, 817–823. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and Iron Deficiency: A Quantitative Meta-Analysis. Obes. Rev. 2015, 16, 1081–1093. [Google Scholar] [CrossRef]
- Weihrauch-Blüher, S.; Schwarz, P.; Klusmann, J.-H. Childhood Obesity: Increased Risk for Cardiometabolic Disease and Cancer in Adulthood. Metabolism 2019, 92, 147–152. [Google Scholar] [CrossRef]
- Weiss, M.R.; Kipp, L.E.; Riley, A. “A Piece of Sanity in the Midst of Insane Times”: Girls on the Run Programming to Promote Physical Activity and Psychosocial Well-Being During the COVID-19 Pandemic. Front. Public Health 2021, 9, 729291. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, J.; Daniels, S.R.; Eckel, R.H.; Hayman, L.; Lustig, R.H.; McCrindle, B.; Mietus-Snyder, M.L. Progress and Challenges in Metabolic Syndrome in Children and Adolescents. A Scientific Statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2009, 119, 628–647. [Google Scholar] [PubMed]
- Jääskeläinen, A.; Schwab, U.; Kolehmainen, M.; Pirkola, J.; Järvelin, M.-R.; Laitinen, J. Associations of Meal Frequency and Breakfast with Obesity and Metabolic Syndrome Traits in Adolescents of Northern Finland Birth Cohort 1986. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Schlundt, D.G.; Hill, J.O.; Sbrocco, T.; Pope-Cordle, J.; Sharp, T. The Role of Breakfast in the Treatment of Obesity: A Randomized Clinical Trial. Am. J. Clin. Nutr. 1992, 55, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Spear, B.A.; Barlow, S.E.; Ervin, C.; Ludwig, D.S.; Saelens, B.E.; Schetzina, K.E.; Taveras, E.M. Recommendations for Treatment of Child and Adolescent Overweight and Obesity. Pediatrics 2007, 120 (Suppl. S4), S254–S288. [Google Scholar] [CrossRef] [PubMed]
- James, J.; Thomas, P.; Cavan, D.; Kerr, D. Preventing Childhood Obesity by Reducing Consumption of Carbonated Drinks: Cluster Randomised Controlled Trial. BMJ 2004, 328, 1237. [Google Scholar] [CrossRef]
- Kovács, E.; Siani, A.; Konstabel, K.; Hadjigeorgiou, C.; de Bourdeaudhuij, I.; Eiben, G.; Lissner, L.; Gwozdz, W.; Reisch, L.; Pala, V.; et al. Adherence to the Obesity-Related Lifestyle Intervention Targets in the IDEFICS Study. Int. J. Obes. 2014, 38 (Suppl. S2), S144–S151. [Google Scholar] [CrossRef]
- Atlantis, E.; Barnes, E.H.; Singh, M.A.F. Efficacy of Exercise for Treating Overweight in Children and Adolescents: A Systematic Review. Int. J. Obes. 2006, 30, 1027–1040. [Google Scholar] [CrossRef]
- Strong, W.B.; Malina, R.M.; Blimkie, C.J.; Daniels, S.R.; Dishman, R.K.; Gutin, B.; Hergenroeder, A.C.; Must, A.; Nixon, P.A.; Pivarnik, J.M. Evidence Based Physical Activity for School-Age Youth. J. Pediatr. 2005, 146, 732–737. [Google Scholar] [CrossRef]
- Ntoumanis, N.; Pensgaard, A.-M.; Martin, C.; Pipe, K. An Idiographic Analysis of Amotivation in Compulsory School Physical Education. J. Sport Exerc. Psychol. 2004, 26, 197–214. [Google Scholar] [CrossRef]
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in Children and Adolescents: Epidemiology, Causes, Assessment, and Management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef]
- Steinbeck, K.S.; Lister, N.B.; Gow, M.L.; Baur, L.A. Treatment of Adolescent Obesity. Nat. Rev. Endocrinol. 2018, 14, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.S.; Ryder, J.R.; Marlatt, K.L.; Rudser, K.D.; Jenkins, T.; Inge, T.H. Changes in Inflammation, Oxidative Stress and Adipokines Following Bariatric Surgery among Adolescents with Severe Obesity. Int. J. Obes. 2016, 40, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Norgren, S.; Danielsson, P.; Jurold, R.; Lötborn, M.; Marcus, C. Orlistat Treatment in Obese Prepubertal Children: A Pilot Study. Acta Paediatr. 2003, 92, 666–670. [Google Scholar] [CrossRef] [PubMed]
- McDuffie, J.R.; Calis, K.A.; Uwaifo, G.I.; Sebring, N.G.; Fallon, E.M.; Frazer, T.E.; Van Hubbard, S.; Yanovski, J.A. Efficacy of Orlistat as an Adjunct to Behavioral Treatment in Overweight African American and Caucasian Adolescents with Obesity-Related Co-Morbid Conditions. J. Pediatr. Endocrinol. Metab. 2004, 17, 307–319. [Google Scholar] [CrossRef]
- Chanoine, J.-P.; Hampl, S.; Jensen, C.; Boldrin, M.; Hauptman, J. Effect of Orlistat on Weight and Body Composition in Obese Adolescents: A Randomized Controlled Trial. JAMA 2005, 293, 2873–2883. [Google Scholar] [CrossRef]
- Dhillon, S. Phentermine/Topiramate: Pediatric First Approval. Paediatr. Drugs 2022, 24, 715–720. [Google Scholar] [CrossRef]
- Weghuber, D.; Barrett, T.; Barrientos-Pérez, M.; Gies, I.; Hesse, D.; Jeppesen, O.K.; Kelly, A.S.; Mastrandrea, L.D.; Sørrig, R.; Arslanian, S.; et al. Once-Weekly Semaglutide in Adolescents with Obesity. N. Engl. J. Med. 2022, 387, 2245–2257. [Google Scholar] [CrossRef]
- Ryder, J.R.; Edwards, N.M.; Gupta, R.; Khoury, J.; Jenkins, T.M.; Bout-Tabaku, S.; Michalsky, M.P.; Harmon, C.M.; Inge, T.H.; Kelly, A.S. Changes in Functional Mobility and Musculoskeletal Pain After Bariatric Surgery in Teens with Severe Obesity: Teen-Longitudinal Assessment of Bariatric Surgery (LABS) Study. JAMA Pediatr. 2016, 170, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Olbers, T.; Beamish, A.J.; Gronowitz, E.; Flodmark, C.-E.; Dahlgren, J.; Bruze, G.; Ekbom, K.; Friberg, P.; Göthberg, G.; Järvholm, K.; et al. Laparoscopic Roux-En-Y Gastric Bypass in Adolescents with Severe Obesity (AMOS): A Prospective, 5-Year, Swedish Nationwide Study. Lancet Diabetes Endocrinol. 2017, 5, 174–183. [Google Scholar] [CrossRef]
- Inge, T.H.; Courcoulas, A.P.; Jenkins, T.M.; Michalsky, M.P.; Brandt, M.L.; Xanthakos, S.A.; Dixon, J.B.; Harmon, C.M.; Chen, M.K.; Xie, C.; et al. Five-Year Outcomes of Gastric Bypass in Adolescents as Compared with Adults. N. Engl. J. Med. 2019, 380, 2136–2145. [Google Scholar] [CrossRef]
- Elhag, W.; El Ansari, W. Durability of Cardiometabolic Outcomes Among Adolescents After Sleeve Gastrectomy: First Study with 9-Year Follow-Up. Obes. Surg. 2021, 31, 2869–2877. [Google Scholar] [CrossRef]
- Robinson, L.E. The Relationship between Perceived Physical Competence and Fundamental Motor Skills in Preschool Children. Child Care Health Dev. 2011, 37, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.E.; Goodway, J.D. Instructional Climates in Preschool Children Who Are At-Risk. Part I: Object-Control Skill Development. Res. Q. Exerc. Sport 2009, 80, 533–542. [Google Scholar] [CrossRef]
- Robinson, L.E.; Wadsworth, D.D.; Peoples, C.M. Correlates of School-Day Physical Activity in Preschool Students. Res. Q. Exerc. Sport 2012, 83, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.E.; Webster, E.K.; Logan, S.W.; Lucas, W.A.; Barber, L.T. Teaching Practices That Promote Motor Skills in Early Childhood Settings. Early Child. Educ. J. 2012, 40, 79–86. [Google Scholar] [CrossRef]
- Stodden, D.; Goodway, J.; Langendorfer, S.; Roberton, M.A.; Rudisill, M.; Garcia, C.; Garcia, L. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Fisher, A.; Reilly, J.J.; Kelly, L.A.; Montgomery, C.; Williamson, A.; Paton, J.Y.; Grant, S. Fundamental Movement Skills and Habitual Physical Activity in Young Children. Med. Sci. Sports Exerc. 2005, 37, 684–688. [Google Scholar] [CrossRef]
- Okely, A.D.; Booth, M.L. Mastery of Fundamental Movement Skills among Children in New South Wales: Prevalence and Sociodemographic Distribution. J. Sci. Med. Sport 2004, 7, 358–372. [Google Scholar] [CrossRef]
- Okely, A.D.; Booth, M.L.; Patterson, J.W. Relationship of Cardiorespiratory Endurance to Fundamental Movement Skill Proficiency among Adolescents. Pediatr. Exerc. Sci. 2001, 13, 380–391. [Google Scholar] [CrossRef]
- Goodway, J.D.; Smith, D.W. Keeping All Children Healthy: Challenges to Leading an Active Lifestyle for Preschool Children Qualifying for at-Risk Programs. Fam. Community Health 2005, 28, 142–155. [Google Scholar] [CrossRef]
- DiLorenzo, T.M.; Stucky-Ropp, R.C.; Vander Wal, J.S.; Gotham, H.J. Determinants of Exercise among Children. II. A Longitudinal Analysis. Prev. Med. 1998, 27, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Prochaska, J.J.; Taylor, W.C. A Review of Correlates of Physical Activity of Children and Adolescents. Med. Sci. Sports Exerc. 2000, 32, 963–975. [Google Scholar] [CrossRef]
- Barnett, L.M.; Lai, S.K.; Veldman, S.L.C.; Hardy, L.L.; Cliff, D.P.; Morgan, P.J.; Zask, A.; Lubans, D.R.; Shultz, S.P.; Ridgers, N.D.; et al. Correlates of Gross Motor Competence in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1663–1688. [Google Scholar] [CrossRef]
- Queiroz, D.d.R.; Aguilar, J.A.; Martins Guimarães, T.G.; Hardman, C.M.; Lima, R.A.; Duncan, M.J.; Santos, M.A.M.D.; de Barros, M.V.G. Association between Body Mass Index, Physical Activity and Motor Competence in Children: Moderation Analysis by Different Environmental Contexts. Ann. Hum. Biol. 2020, 47, 417–424. [Google Scholar] [CrossRef]
- Davids, K.; Button, C.; Bennett, S. Dynamics of Skill Acquisition: A Constraints-Led Approach; Human Kinetics: Champaign, IL, USA, 2008; 251p, ISBN 0-7360-3686-5. [Google Scholar]
- Henrique, R.S.; Bustamante, A.V.; Freitas, D.L.; Tani, G.; Katzmarzyk, P.T.; Maia, J.A. Tracking of Gross Motor Coordination in Portuguese Children. J. Sports Sci. 2018, 36, 220–228. [Google Scholar] [CrossRef]
- Lima, R.A.; Pfeiffer, K.; Larsen, L.R.; Bugge, A.; Moller, N.C.; Anderson, L.B.; Stodden, D.F. Physical Activity and Motor Competence Present a Positive Reciprocal Longitudinal Relationship Across Childhood and Early Adolescence. J. Phys. Act. Health 2017, 14, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M. Tracking of Physical Activity and Physical Fitness across the Lifespan. Res. Q. Exerc. Sport 1996, 67, S-48–S-57. [Google Scholar] [CrossRef] [PubMed]
- Tammelin, T.; Näyhä, S.; Hills, A.P.; Järvelin, M.R. Adolescent Participation in Sports and Adult Physical Activity. Am. J. Prev. Med. 2003, 24, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.M.; van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Childhood Motor Skill Proficiency as a Predictor of Adolescent Physical Activity. J. Adolesc. Health 2009, 44, 252–259. [Google Scholar] [CrossRef]
- Herrmann, C.; Seelig, H. Structure and Profiles of Basic Motor Competencies in the Third Grade-Validation of the Test Instrument MOBAK-3. Percept. Mot. Ski. 2017, 124, 5–20. [Google Scholar] [CrossRef]
- Bardid, F.; Vannozzi, G.; Logan, S.W.; Hardy, L.L.; Barnett, L.M. A Hitchhiker’s Guide to Assessing Young People’s Motor Competence: Deciding What Method to Use. J. Sci. Med. Sport 2019, 22, 311–318. [Google Scholar] [CrossRef]
- Herrmann, C.; Heim, C.; Seelig, H. Construct and Correlates of Basic Motor Competencies in Primary School-Aged Children. J. Sport Health Sci. 2019, 8, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.M.; Webster, E.K.; Hulteen, R.M.; De Meester, A.; Valentini, N.C.; Lenoir, M.; Pesce, C.; Getchell, N.; Lopes, V.P.; Robinson, L.E.; et al. Through the Looking Glass: A Systematic Review of Longitudinal Evidence, Providing New Insight for Motor Competence and Health. Sports Med. 2022, 52, 875–920. [Google Scholar] [CrossRef]
- Lopes, V.P.; Rodrigues, L.P. The Role of Physical Fitness on the Relationship between Motor Competence and Physical Activity: Mediator or Moderator? J. Mot. Learn. Dev. 2021, 9, 456–469. [Google Scholar] [CrossRef]
- Henderson, S.E.; Sudgen, D.A.; Barnett, A.L. Movement Assessment Battery for Children-2 Second Edition [Movement ABC-2]; The Psychological Corporation: London, UK, 2007. [Google Scholar]
- Goodway, J.D.; Ozmun, J.C.; Gallahue, D.L. Understanding Motor Development: Infants, Children, Adolescents, Adults; Jones & Bartlett Learning: Burlington, MA, USA, 2019; ISBN 978-1-284-17494-6. [Google Scholar]
- Newell, K.; Rovegno, I. Teaching Children’s Motor Skills for Team Games Through Guided Discovery: How Constraints Enhance Learning. Front. Psychol. 2021, 12, 724848. [Google Scholar] [CrossRef]
- Sigmundsson, H.; Trana, L.; Polman, R.; Haga, M. What Is Trained Develops! Theoretical Perspective on Skill Learning. Sports 2017, 5, 38. [Google Scholar] [CrossRef]
- Herrmann, C.; Gerlach, E.; Seelig, H. Development and Validation of a Test Instrument for the Assessment of Basic Motor Competencies in Primary School. Meas. Phys. Educ. Exerc. Sci. 2015, 19, 80–90. [Google Scholar] [CrossRef]
- Quitério, A.; Martins, J.; Onofre, M.; Costa, J.; Mota Rodrigues, J.; Gerlach, E.; Scheur, C.; Herrmann, C. MOBAK 1 Assessment in Primary Physical Education: Exploring Basic Motor Competences of Portuguese 6-Year-Olds. Percept. Mot. Ski. 2018, 125, 1055–1069. [Google Scholar] [CrossRef]
- Ulrich, D.A. Test of Gross Motor Development 2: Examiner’s Manual, 2nd ed.; PRO-ED: Austin, TX, USA, 2000. [Google Scholar]
- Iivonen, S.; Sääkslahti, A.; Laukkanen, A. A Review of Studies Using the Körperkoordinationstest Für Kinder (KTK). Eur. J. Adapt. Phys. Act. 2015, 8, 18–36. [Google Scholar] [CrossRef]
- Webster, E.K.; Ulrich, D.A. Evaluation of the Psychometric Properties of the Test of Gross Motor Development—Third Edition. J. Mot. Learn. Dev. 2017, 5, 45–58. [Google Scholar] [CrossRef]
- Clark, J.E.; Whitall, J. What Is Motor Development? The Lessons of History. Quest 1989, 41, 183–202. [Google Scholar] [CrossRef]
- Bardid, F.; Rudd, J.R.; Lenoir, M.; Polman, R.; Barnett, L.M. Cross-Cultural Comparison of Motor Competence in Children from Australia and Belgium. Front. Psychol. 2015, 6, 964. [Google Scholar] [CrossRef]
- Cattuzzo, M.T.; Dos Santos Henrique, R.; Ré, A.H.N.; de Oliveira, I.S.; Melo, B.M.; de Sousa Moura, M.; de Araújo, R.C.; Stodden, D. Motor Competence and Health Related Physical Fitness in Youth: A Systematic Review. J. Sci. Med. Sport 2016, 19, 123–129. [Google Scholar] [CrossRef]
- Rudd, J.; Butson, M.L.; Barnett, L.; Farrow, D.; Berry, J.; Borkoles, E.; Polman, R. A Holistic Measurement Model of Movement Competency in Children. J. Sports Sci. 2016, 34, 477–485. [Google Scholar] [CrossRef]
- Novak, A.R.; Bennett, K.J.M.; Beavan, A.; Pion, J.; Spiteri, T.; Fransen, J.; Lenoir, M. The Applicability of a Short Form of the Körperkoordinationstest Für Kinder for Measuring Motor Competence in Children Aged 6 to 11 Years. J. Mot. Learn. Dev. 2017, 5, 227–239. [Google Scholar] [CrossRef]
- Platvoet, S.; Faber, I.R.; de Niet, M.; Kannekens, R.; Pion, J.; Elferink-Gemser, M.T.; Visscher, C. Development of a Tool to Assess Fundamental Movement Skills in Applied Settings. Front. Educ. 2018, 3, 75. [Google Scholar] [CrossRef]
- Sigmundsson, H.; Newell, K.M.; Polman, R.; Haga, M. Exploration of the Specificity of Motor Skills Hypothesis in 7–8 Year Old Primary School Children: Exploring the Relationship between 12 Different Motor Skills From Two Different Motor Competence Test Batteries. Front. Psychol. 2021, 12, 631175. [Google Scholar] [CrossRef]
- Maeng, H.; Webster, E.K.; Pitchford, E.A.; Ulrich, D.A. Inter- and Intrarater Reliabilities of the Test of Gross Motor Development-Third Edition Among Experienced TGMD-2 Raters. Adapt. Phys. Act. Q. 2017, 34, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Vandorpe, B.; Vandendriessche, J.; Lefevre, J.; Pion, J.; Vaeyens, R.; Matthys, S.; Philippaerts, R.; Lenoir, M. The KörperkoordinationsTest Für Kinder: Reference Values and Suitability for 6–12-Year-Old Children in Flanders. Scand. J. Med. Sci. Sports 2011, 21, 378–388. [Google Scholar] [CrossRef]
- Biino, V.; Giustino, V.; Guidetti, L.; Lanza, M.; Gallotta, M.C.; Baldari, C.; Battaglia, G.; Palma, A.; Bellafiore, M.; Giuriato, M.; et al. Körperkoordinations Test Für Kinder: A Short Form Is Not Fully Satisfactory. Front. Educ. 2022, 7, 914445. [Google Scholar] [CrossRef]
- Bruininks, R.; Bruininks, B. Bruininks-Oseretsky Test of Motor Proficiency, Second Edition—PsycNET. Available online: https://psycnet.apa.org/doiLanding?doi=10.1037%2Ft14991-000 (accessed on 28 January 2023).
- Malina, R.M. Physical Growth and Biological Maturation of Young Athletes. Exerc. Sport Sci. Rev. 1994, 22, 389–433. [Google Scholar] [CrossRef]
- Branta, C.; Haubenstricker, J.; Seefeldt, V. Age Changes in Motor Skills during Childhood and Adolescence. Exerc. Sport Sci. Rev. 1984, 12, 467–520. [Google Scholar] [CrossRef]
- Nervik, D.; Martin, K.; Rundquist, P.; Cleland, J. The Relationship between Body Mass Index and Gross Motor Development in Children Aged 3 to 5 Years. Pediatr. Phys. Ther. 2011, 23, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Utley, A.; Astill, S.L. Developmental Sequences of Two-Handed Catching: How Do Children with and without Developmental Coordination Disorder Differ? Physiother. Theory Pract. 2007, 23, 65–82. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Viegas, Â.A.; Lacerda, A.C.R.; Nobre, J.N.P.; Morais, R.L.D.S.; Figueiredo, P.H.S.; Costa, H.S.; Camargos, A.C.R.; Ferreira, F.D.O.; de Freitas, P.M.; et al. Association between Executive Functions and Gross Motor Skills in Overweight/Obese and Eutrophic Preschoolers: Cross-Sectional Study. BMC Pediatr. 2022, 22, 498. [Google Scholar] [CrossRef]
- Gentier, I.; D’Hondt, E.; Shultz, S.; Deforche, B.; Augustijn, M.; Hoorne, S.; Verlaecke, K.; De Bourdeaudhuij, I.; Lenoir, M. Fine and Gross Motor Skills Differ between Healthy-Weight and Obese Children. Res. Dev. Disabil. 2013, 34, 4043–4051. [Google Scholar] [CrossRef]
- Cairney, J.; Hay, J.; Veldhuizen, S.; Missiuna, C.; Mahlberg, N.; Faught, B.E. Trajectories of Relative Weight and Waist Circumference among Children with and without Developmental Coordination Disorder. CMAJ 2010, 182, 1167–1172. [Google Scholar] [CrossRef]
- Marmeleira, J.; Veiga, G.; Cansado, H.; Raimundo, A. Relationship between Motor Proficiency and Body Composition in 6- to 10-Year-Old Children. J. Paediatr. Child Health 2017, 53, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; East, P.; Blanco, E.; Sim, E.K.; Castillo, M.; Lozoff, B.; Gahagan, S. Obesity Leads to Declines in Motor Skills across Childhood. Child Care Health Dev. 2016, 42, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Barros, W.M.A.; da Silva, K.G.; Silva, R.K.P.; Souza, A.P.d.S.; da Silva, A.B.J.; Silva, M.R.M.; Fernandes, M.S.d.S.; de Souza, S.L.; Souza, V.d.O.N. Effects of Overweight/Obesity on Motor Performance in Children: A Systematic Review. Front. Endocrinol. 2021, 12, 759165. [Google Scholar] [CrossRef] [PubMed]
- D’Hondt, E.; Deforche, B.; Gentier, I.; Verstuyf, J.; Vaeyens, R.; De Bourdeaudhuij, I.; Philippaerts, R.; Lenoir, M. A Longitudinal Study of Gross Motor Coordination and Weight Status in Children. Obesity 2014, 22, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Hilpert, M.; Brockmeier, K.; Dordel, S.; Koch, B.; Weiß, V.; Ferrari, N.; Tokarski, W.; Graf, C. Sociocultural Influence on Obesity and Lifestyle in Children: A Study of Daily Activities, Leisure Time Behavior, Motor Skills, and Weight Status. Obes Facts. 2017, 10, 168–178. [Google Scholar] [CrossRef] [PubMed]
- D’Hondt, E.; Deforche, B.; Gentier, I.; De Bourdeaudhuij, I.; Vaeyens, R.; Philippaerts, R.; Lenoir, M. A Longitudinal Analysis of Gross Motor Coordination in Overweight and Obese Children versus Normal-Weight Peers. Int. J. Obes. 2013, 37, 61–67. [Google Scholar] [CrossRef]
- Graf, C.; Koch, B.; Kretschmann-Kandel, E.; Falkowski, G.; Christ, H.; Coburger, S.; Lehmacher, W.; Bjarnason-Wehrens, B.; Platen, P.; Tokarski, W.; et al. Correlation between BMI, Leisure Habits and Motor Abilities in Childhood (CHILT-Project). Int. J. Obes. Relat. Metab. Disord. 2004, 28, 22–26. [Google Scholar] [CrossRef]
- de Chaves, R.N.; Bustamante Valdívia, A.; Nevill, A.; Freitas, D.; Tani, G.; Katzmarzyk, P.T.; Maia, J.A.R. Developmental and Physical-Fitness Associations with Gross Motor Coordination Problems in Peruvian Children. Res. Dev. Disabil. 2016, 53–54, 107–114. [Google Scholar] [CrossRef]
- Antunes, A.M.; Maia, J.A.; Stasinopoulos, M.D.; Gouveia, É.R.; Thomis, M.A.; Lefevre, J.A.; Teixeira, A.Q.; Freitas, D.L. Gross Motor Coordination and Weight Status of Portuguese Children Aged 6–14 Years. Am. J. Hum. Biol. 2015, 27, 681–689. [Google Scholar] [CrossRef]
- Abdelkarim, O.; Ammar, A.; Soliman, A.M.A.; Hökelmann, A. Prevalence of Overweight and Obesity Associated with the Levels of Physical Fitness among Primary School Age Children in Assiut City. Egypt. Pediatr. Assoc. Gaz. 2017, 65, 43–48. [Google Scholar] [CrossRef]
- Sacchetti, R.; Dallolio, L.; Musti, M.A.; Guberti, E.; Garulli, A.; Beltrami, P.; Castellazzi, F.; Centis, E.; Zenesini, C.; Coppini, C.; et al. Effects of a School Based Intervention to Promote Healthy Habits in Children 8–11 Years Old, Living in the Lowland Area of Bologna Local Health Unit. Ann. Ig. 2015, 27, 432–446. [Google Scholar] [CrossRef]
- Chivers, P.; Larkin, D.; Rose, E.; Beilin, L.; Hands, B. Low Motor Performance Scores among Overweight Children: Poor Coordination or Morphological Constraints? Hum. Mov. Sci. 2013, 32, 1127–1137. [Google Scholar] [CrossRef]
- Morano, M.; Colella, D.; Robazza, C.; Bortoli, L.; Capranica, L. Physical Self-Perception and Motor Performance in Normal-Weight, Overweight and Obese Children. Scand. J. Med. Sci. Sports 2011, 21, 465–473. [Google Scholar] [CrossRef]
- Baldinger, N.; Krebs, A.; Müller, R.; Aeberli, I. Swiss Children Consuming Breakfast Regularly Have Better Motor Functional Skills and Are Less Overweight than Breakfast Skippers. J. Am. Coll. Nutr. 2012, 31, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Hardy, L.L.; Reinten-Reynolds, T.; Espinel, P.; Zask, A.; Okely, A.D. Prevalence and Correlates of Low Fundamental Movement Skill Competency in Children. Pediatrics 2012, 130, e390–e398. [Google Scholar] [CrossRef]
- Fang, Y.; Ma, Y.; Mo, D.; Zhang, S.; Xiang, M.; Zhang, Z. Methodology of an Exercise Intervention Program Using Social Incentives and Gamification for Obese Children. BMC Public Health 2019, 19, 686. [Google Scholar] [CrossRef] [PubMed]
- Horsak, B.; Artner, D.; Baca, A.; Pobatschnig, B.; Greber-Platzer, S.; Nehrer, S.; Wondrasch, B. The Effects of a Strength and Neuromuscular Exercise Programme for the Lower Extremity on Knee Load, Pain and Function in Obese Children and Adolescents: Study Protocol for a Randomised Controlled Trial. Trials 2015, 16, 586. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.-W.; Hinman, R.S.; Wrigley, T.V.; Sharma, L.; Bennell, K.L. Does Knee Malalignment Mediate the Effects of Quadriceps Strengthening on Knee Adduction Moment, Pain, and Function in Medial Knee Osteoarthritis? A Randomized Controlled Trial. Arthritis Rheum. 2008, 59, 943–951. [Google Scholar] [CrossRef]
- Bennell, K.L.; Egerton, T.; Wrigley, T.V.; Hodges, P.W.; Hunt, M.; Roos, E.M.; Kyriakides, M.; Metcalf, B.; Forbes, A.; Ageberg, E.; et al. Comparison of Neuromuscular and Quadriceps Strengthening Exercise in the Treatment of Varus Malaligned Knees with Medial Knee Osteoarthritis: A Randomised Controlled Trial Protocol. BMC Musculoskelet. Disord. 2011, 12, 276. [Google Scholar] [CrossRef]
- Sánchez-López, A.M.; Menor-Rodríguez, M.J.; Sánchez-García, J.C.; Aguilar-Cordero, M.J. Play as a Method to Reduce Overweight and Obesity in Children: An RCT. Int. J. Environ. Res. Public Health 2020, 17, 346. [Google Scholar] [CrossRef]
- Wrotniak, B.H.; Littlefield, M. Commentary on “The Relationship between Body Mass Index and Gross Motor Development in Children Aged 3 to 5 Years”. Pediatr. Phys. Ther. 2011, 23, 149. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Song, H.H.; Kim, S. Effects of school-based exercise program on obesity and physical fitness of urban youth: A quasi-experiment. Healthcare 2021, 9, 358. [Google Scholar] [CrossRef] [PubMed]
Organs | Complications |
---|---|
Cardiovascular system | Hypertension, dyslipidemia, impaired cardiac structure and function, atherosclerosis, cardiovascular events |
Endocrine system | Insulin-resistance, pre-diabetes, type 2 diabetes mellitus, metabolic syndrome, polycystic ovary syndrome, and hyperandrogenism |
Gastrointestinal system | Nonalcoholic fatty liver disease, nonalcoholic fatty liver, nonalcoholic steatohepatitis, and cholelithiasis |
Respiratory system | Obstructive sleep apnea syndrome, obesity hypoventilation syndrome, and asthma |
Renal system | Chronic kidney disease |
Nutritional system | Vitamin D and iron deficiency |
Musculoskeletal system | Slipped capital femoral epiphysis, genu valgum and varus, impaired mobility, musculoskeletal pain, and fractures |
Oncological risk | Breast cancer, colorectal cancer, leukemia, and Hodgkin lymphoma |
Dermatologic system | Acanthosis nigricans, hidradenitis suppurativa, intertrigo, and stretch marks |
Neurologic system | Intracranial hypertension |
Psychosocial sphere | Low self-esteem, distorted peer relationship, anxiety, depression, and disordered eating patterns |
Test Batteries | Authors | Age Range and Country | Domains Tested | Subtests/Sub-Tests/ Test Items | Reliability | Test Evaluation Procedure |
---|---|---|---|---|---|---|
MOBAK-1-2 | Herrmann et al. [88] | 6–8 years; developed in Germany and Switzerland | Basic motor competencies and qualifications divided into the following: 1. Object movement 2. Self movement | 1. Object movement:
[88] | NA | A maximum of eight points can be reached in each area of the motor competencies. Points are assigned according to the guidelines described by Herrmann et al. [88]. |
TGDM-2 | Ulrich, 2000 [90] | 3–10 years; developed in the USA and commonly used in Australia, Iran, Netherlands, Korea, Belgium, Brazil, and China | Overview of gross motor skills divided into the following: 1. Locomotor 2. Object control | 1. Locomotor subtests:
| Interrater reliability for the total score, locomotor subscale, and object control subscale (ICC: 0.92–0.96) were all excellent [100] | Every test can be conducted two times, achieving five points maximum for every try; then, the scores obtained should be summed to obtain a raw skill score (run, gallop, hop, etc.). The skill scores add up to a raw subtest score (Locomotor; object control), which is converted to a standard score following Ulrich guidelines; then, subtest standard scores are combined and converted to an overall gross motor quotient. |
KTK | Novak et al. [97] Vandorpe et al. [101] | 5–14 years; the test battery was developed in Germany then used in Belgium, Portugal, Netherlands, Switzerland, Austria, Brazil, Costa Rica, Denmark, Finland, and the US | Sensory–motor integration capacities for fine and gross control and coordination of the body [90] | The test batteries consists of the following:
| Test-retest reliability:
[101] | The test scores are assigned based on the manual guidelines described by Kiphard and Schilling in 2007. Each score is transformed into a motor quotient according to gender and age parameters based on the performance of normally developed German children in 1974 [101]. |
KTK-3 | Biino et al. [102] | 5–14 years | Evaluation of fine and/or gross motor coordination skills [102] | KTK-3 is a shorter version of the KTK test battery and includes the following
| Test–retest reliability of the three tests are the same as described in the previous row | The test scoring procedure is the same as described in the previous row. |
TMC | Sigmundsson et al. [99] | 5–83 years; developed and commonly used in Norway | It is composed of four different tests that evaluate the following: 1. Fine motor tasks based on manual dexterity 2. Gross motor tasks based on dynamic balance | 1. Fine motor tasks:
| The Cronbach’s alpha value for the standardized test items was 0.79, which can be considered as acceptable [99] | The tests are measured in seconds, and for all the items, a lower time indicates a better performance [99]. |
BOT—Short form | Bruininks et al. [103] | 4–21 years; developed in the USA and also used in Taiwan | Comprehensive overview of fine and gross motor development in four motor areas divided into the following 1. Fine Manual control
| 1. Fine motor precision: drawing lines through paths—crooked; Folding paper 2. Fine motor integration: copying a square; copying a star 3. Manual dexterity: transferring pennies 4. Upper-limb coordination: dropping and catching a ball—both hands; dribbling a ball—alternating hands 5. Bilateral coordination: jumping in place—same sides synchronized; tapping feet and fingers—same sides synchronized 6. Balance: walking forward on a line; standing on a balance beam—eyes open 7. Running speed and agility: one-legged stationary hop 8. Strength: knee push-ups; sit-ups. | Test–retest reliability in healthy children for all the mentioned items is above 0.70 [103] | In the BOT-2 test, raw scores must be transformed. The initial test results are converted into points ranging from 2 to 13; then, when all the points are added together, the total result is obtained [103]. |
Quadriceps Strengthening Exercises |
1. Perform a supine straight leg lift, lifting the leg to 30° of hip flexion and applying resistance with ankle weights. |
2. Execute a knee extension within a limited arc, utilizing a knee roll for stabilization and applying resistance using ankle weights. |
3. Attain full knee extension in a seated position, starting from 90° of knee flexion, and introduce resistance through ankle weights. |
4. Execute small arc squats on both legs, ranging from full extension to 30° of knee flexion, with a ball braced against a wall. Utilize two dumbbells, one in each hand. |
5. Engage in small arc squats on both legs, ranging from 40° to 90° of knee flexion, with a ball against a wall. Apply resistance using two dumbbells, one in each hand. |
6. Perform step-ups on a ‘stepper’ platform with a height of 30 cm. |
Hip Strengthening Exercises |
1. Side-lying Abduction: performing unilateral hip abduction while lying on one side, utilizing ankle cuff weights. |
2. Standing Abduction: executing unilateral hip abduction in a standing position with the aid of a resistance band. |
3. Isometric Hip Abduction against a Wall in Standing Position: conducted in a monopodial stance with the opposite limb at a 90° knee flexion. |
4. Clam Exercise in Side-Lying Posture using an Elastic Band for Resistance. |
5. Bilateral Bridging Exercise. |
6. Unilateral Bridging with the opposite limb flexed at approximately 90° at the knee. |
Neuromuscular Exercises |
---|
1. Standing on both feet on a cushioned surface. |
2. Standing on both feet on a soft surface with closed eyes. |
3. Two children standing and facing each other while throwing a ball, on a soft surface. |
4. Stationary squat lunge on a cushioned surface. |
5. Stationary squat lunge on a soft surface while tossing and catching a ball. |
6. Balancing on one foot on a soft surface. |
7. Balancing on one foot on a soft surface with closed eyes. |
Flexibility Exercises |
---|
1. Trunk Flexion and Extension. |
2. Hip Flexion and Extension. |
3. Leg Flexion and Extension. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandoni, M.; Marin, L.; Cavallo, C.; Gatti, A.; Grazi, R.; Albanese, I.; Taranto, S.; Silvestri, D.; Di Carlo, E.; Patanè, P.; et al. Poor Motor Competence Affects Functional Capacities and Healthcare in Children and Adolescents with Obesity. Sports 2024, 12, 44. https://doi.org/10.3390/sports12020044
Vandoni M, Marin L, Cavallo C, Gatti A, Grazi R, Albanese I, Taranto S, Silvestri D, Di Carlo E, Patanè P, et al. Poor Motor Competence Affects Functional Capacities and Healthcare in Children and Adolescents with Obesity. Sports. 2024; 12(2):44. https://doi.org/10.3390/sports12020044
Chicago/Turabian StyleVandoni, Matteo, Luca Marin, Caterina Cavallo, Alessandro Gatti, Roberta Grazi, Ilaria Albanese, Silvia Taranto, Dario Silvestri, Eleonora Di Carlo, Pamela Patanè, and et al. 2024. "Poor Motor Competence Affects Functional Capacities and Healthcare in Children and Adolescents with Obesity" Sports 12, no. 2: 44. https://doi.org/10.3390/sports12020044
APA StyleVandoni, M., Marin, L., Cavallo, C., Gatti, A., Grazi, R., Albanese, I., Taranto, S., Silvestri, D., Di Carlo, E., Patanè, P., Carnevale Pellino, V., Zuccotti, G., & Calcaterra, V. (2024). Poor Motor Competence Affects Functional Capacities and Healthcare in Children and Adolescents with Obesity. Sports, 12(2), 44. https://doi.org/10.3390/sports12020044