Comparison of Vertical Jump Force–Time Metrics Between ACL-Injured and Healthy Semi-Professional Male and Female Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grimm, N.L.; Jacobs, J.C., Jr.; Kim, J.; Denney, B.S.; Shea, K.G. Anterior cruciate ligament and knee injury prevention programs for soccer players: A systematic review and meta-analysis. Am. J. Sports Med. 2015, 43, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Walden, M.; Hagglund, M.; Werner, J.; Ekstrand, J. The epidemiology of anterior cruciate ligament injury in football (soccer): A review of the literature from a gender-related perspective. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Ferrete, C.; Requena, B.; Suarez-Arrones, L.; de Villarreal, E.S. Effect of strength and high-intensity training on jumping, sprinting, and intermittent endurance performance in prepubertal soccer players. J. Strength Cond. Res. 2014, 28, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Marcora, S.M.; Castagna, C.; Reilly, T.; Sassi, A.; Iaia, F.M.; Rampinini, E. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int. J. Sports Med. 2006, 27, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, K.C. The incidence of knee ligament injuries in the general population. Am. J. Knee Surg. 1991, 4, 3–8. [Google Scholar]
- Nielsen, A.B.; Yde, J. Epidemiology of acute knee injuries: A prospective hospital investigation. J. Trauma Acute Care Surg. 1991, 31, 1644–1648. [Google Scholar] [CrossRef]
- Brophy, R.H.; Schmitz, L.; Wright, R.W.; Dunn, W.R.; Parker, R.D.; Andrish, J.T.; McCarty, E.C.; Spindler, K.P. Return to play and future ACL injury risk after ACL reconstruction in soccer athletes from the Multicenter Orthopaedic Outcomes Network (MOON) group. Am. J. Sports Med. 2012, 40, 2517–2522. [Google Scholar] [CrossRef]
- Sutton, K.M.; Bullock, J.M. Anterior cruciate ligament rupture: Differences between males and females. J. Am. Acad. Orthop. Surg. 2013, 21, 41–50. [Google Scholar] [CrossRef]
- Dai, B.; Mao, D.; Garrett, W.E.; Yu, B. Anterior cruciate ligament injuries in soccer: Loading mechanisms, risk factors, and prevention programs. J. Sport Health Sci. 2014, 3, 299–306. [Google Scholar] [CrossRef]
- Bakal, D.R.; Morgan, J.J.; Lyons, S.M.; Chan, S.K.; Kraus, E.A.; Shea, K.G. Analysis of limb kinetic asymmetry during a drop vertical jump in adolescents post anterior cruciate ligament reconstruction. Clin. Biomech. 2022, 100, 105794. [Google Scholar] [CrossRef]
- Ruffieux, J.; Wälchli, M.; Kim, K.M.; Taube, W. Countermovement jump training is more effective than drop jump training in enhancing jump height in non-professional female volleyball players. Front. Physiol. 2020, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Sharafoddin-Shirazi, F.; Letafatkar, A.; Hogg, J.; Saatchian, V. Biomechanical asymmetries persist after ACL reconstruction: Results of a 2-year study. J. Exp. Orthop. 2020, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Collings, T.J.; Diamond, L.E.; Barrett, R.S.; Timmins, R.G.; Hickey, J.T.; du Moulin, W.S.; Gonçalves, B.A.; Cooper, C.; Bourne, M.N. Impact of prior anterior cruciate ligament, hamstring or groin injury on lower limb strength and jump kinetics in elite female footballers. Phys. Ther. Sport 2021, 52, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Wrona, H.L.; Zerega, R.; King, V.G.; Reiter, C.R.; Odum, S.; Manifold, D.; Latorre, K.; Sell, T.C. Ability of countermovement jumps to detect bilateral asymmetry in hip and knee strength in elite youth soccer players. Sports 2023, 11, 77. [Google Scholar] [CrossRef]
- Lem, H.W.; Cheng, S.C.; Chang, H.Y.; Hung, M.H.; Yeh, W.L. Single leg drop jump performance identifies functional deficit in collegiate athletes who have returned to sports after ACL reconstruction: A case control study. Medicine 2022, 101, e31790. [Google Scholar] [CrossRef]
- Gustavsson, A.; Neeter, C.; Thomee, P.; Gravare Silbernagel, K.; Augustsson, J.; Thomee, R.; Karlsson, J. A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 778–788. [Google Scholar] [CrossRef]
- Kotsifaki, A.; Van Rossom, S.; Whiteley, R.; Korakakis, V.; Bahr, R.; Sideris, V.; Jonkers, I. Single leg vertical jump performance identifies knee function deficits at return to sport after ACL reconstruction in male athletes. Br. J. Sports Med. 2022, 56, 490–498. [Google Scholar] [CrossRef]
- O’Malley, E.; Richter, C.; King, E.; Strike, S.; Moran, K.; Franklyn-Miller, A.; Moran, R. Countermovement jump and isokinetic dynamometry as measures of rehabilitation status after anterior cruciate ligament reconstruction. J. Athl. Train. 2018, 53, 687–695. [Google Scholar] [CrossRef]
- Krosshaug, T.; Steffen, K.; Kristianslund, E.; Nilstad, A.; Mok, K.M.; Myklebust, G.; Bahr, R. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: A prospective cohort study of 710 athletes. Am. J. Sports Med. 2016, 44, 874–883. [Google Scholar] [CrossRef]
- Schweizer, N.; Strutzenberger, G.; Franchi, M.V.; Farshad, M.; Scherr, J.; Sporri, J. Screening tests for assessing athletes at risk of ACL injury or reinjury—A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 2864. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Cabarkapa, D.V.; Aleksic, J.; Mihajlovic, F.; Fry, A.C. The Impact of the Official Basketball Champions League Game on Lower-Body Neuromuscular Performance Characteristics. J. Strength Cond. Res. 2024, 38, e595–e599. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Philipp, N.; Cabarkapa, D.; Eserhaut, D.; Fry, A. Comparison of force-time metrics between countermovement vertical jump with and without an arm swing in professional male basketball players. Int. J. Strength Cond. 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Strang, A.; Eckerle, J.; Mackowski, N.; Hierholzer, K.; Ray, N.T.; Smith, R.; Hagen, J.A.; Briggs, R.A. Countermovement jump force-time curve analyses: Reliability and comparability across force plate systems. J. Strength Cond. Res. 2024, 38, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Abbott, W.; Brashill, C.; Turner, A.; Lake, J.; Read, P. Bilateral vs. unilateral countermovement jumps: Comparing the magnitude and direction of asymmetry in elite academy soccer players. J. Strength Cond. Res. 2022, 36, 1660–1666. [Google Scholar] [CrossRef]
- Thomas, C.; Jones, P.A.; Dos’ Santos, T. Countermovement jump force–time curve analysis between strength-matched male and female soccer players. Int. J. Environ. Res. Public Health 2022, 19, 3352. [Google Scholar] [CrossRef]
- Philipp, N.M.; Cabarkapa, D.; Nijem, R.M.; Blackburn, S.D.; Fry, A.C. Vertical jump neuromuscular performance characteristics determining on-court contribution in male and female NCAA division 1 basketball players. Sports 2023, 11, 239. [Google Scholar] [CrossRef]
- Badby, A.J.; Mundy, P.D.; Comfort, P.; Lake, J.P.; McMahon, J.J. The validity of Hawkin Dynamics wireless dual force plates for measuring countermovement jump and drop jump variables. Sensors 2023, 23, 4820. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, J.J.; Stone, J.D.; Galster, S.M.; Hagen, J.A. Analyzing force-time curves: Comparison of commercially available automated software and custom MATLAB analyses. J. Strength Cond. Res. 2022, 36, 2387–2402. [Google Scholar] [CrossRef]
- Anicic, Z.; Janicijevic, D.; Knezevic, O.M.; Garcia-Ramos, A.; Petrovic, M.R.; Cabarkapa, D.; Mirkov, D.M. Assessment of countermovement jump: What should we report? Life 2023, 13, 190. [Google Scholar] [CrossRef]
- Cabarkapa, D.V.; Cabarkapa, D.; Philipp, N.M.; Fry, A.C. Competitive season-long changes in countermovement vertical jump force-time metrics in female volleyball players. J. Strength Cond. Res. 2024, 38, e72–e77. [Google Scholar] [CrossRef]
- Collings, T.J.; Lima, Y.L.; Dutaillis, B.; Bourne, M.N. Concurrent validity and test-retest reliability of VALD ForceDecks’ strength, balance, and movement assessment tests. J. Sci. Med. Sport 2024, 27, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Layer, J.S.; Bordelon, N.M.; Critchley, M.L.; LaCroix, S.E.; George, A.C.; Li, L.; Ross, J.D.; Jensen, M.A. Longitudinal assessments of balance and jump-landing performance before and after anterior cruciate ligament injuries in collegiate athletes. Res. Sports Med. 2021, 29, 129–140. [Google Scholar] [CrossRef]
- Keays, S.L.; Bullock-Saxton, J.; Keays, A.C.; Newcombe, P. Muscle strength and function before and after anterior cruciate ligament reconstruction using semitendonosus and gracilis. Knee 2001, 8, 229–234. [Google Scholar] [CrossRef]
- Lewis, J.L.; Lew, W.D.; Hill, J.A.; Hanley, P.; Ohland, K.; Kirstukas, S.; Hunter, R.E. Knee joint motion and ligament forces before and after ACL reconstruction. J. Biomech. Eng. 1989, 111, 97–106. [Google Scholar] [CrossRef]
- Goerger, B.M.; Marshall, S.W.; Beutler, A.I.; Blackburn, J.T.; Wilckens, J.H.; Padua, D.A. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: The JUMP-ACL study. Br. J. Sports Med. 2015, 49, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Mielinska, A.; Czamara, A.; Szuba, Ł.; Bedzinski, R. Biomechanical characteristics of the jump down of healthy subjects and patients with knee injuries. Acta Bioeng. Biomech. 2015, 17, 111–120. [Google Scholar]
- Paterno, M.V.; Ford, K.R.; Myer, G.D.; Heyl, R.; Hewett, T.E. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin. J. Sport Med. 2007, 17, 258–262. [Google Scholar] [CrossRef]
- Thomson, A.; Einarsson, E.; Hansen, C.; Bleakley, C.; Whiteley, R. Marked asymmetry in vertical force (but not contact times) during running in ACL reconstructed athletes < 9 months post-surgery despite meeting functional criteria for return to sport. J. Sci. Med. Sport 2018, 21, 890–893. [Google Scholar]
- Costley, J.A.; Miles, J.J.; King, E.; Daniels, K.A. Vertical jump impulse deficits persist from six to nine months after ACL reconstruction. Sports Biomech. 2023, 22, 123–141. [Google Scholar] [CrossRef]
- Legnani, C.; Del Re, M.; Peretti, G.M.; Borgo, E.; Macchi, V.; Ventura, A. Limb asymmetries persist 6 months after anterior cruciate ligament reconstruction according to the results of a jump test battery. Front. Med. 2024, 11, 1303172. [Google Scholar] [CrossRef]
- Renner, K.E.; Franck, C.T.; Miller, T.K.; Queen, R.M. Limb asymmetry during recovery from anterior cruciate ligament reconstruction. J. Orthop. Res. 2018, 36, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Meredith, S.J.; Rauer, T.; Chmielewski, T.L.; Fink, C.; Diermeier, T.; Rothrauff, B.B.; Wilk, K. Return to sport after anterior cruciate ligament injury. Orthop. J. Sports Med. 2020, 8, 2325967120930829. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt Jr, R.S.; Colosimo, A.J.; McLean, S.G.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Nimphius, S.; Seitz, L.B.; Spiteri, T.; Haff, G.G. Countermovement jump and drop jump performances are related to grand jete leap performance in dancers with different skill levels. J. Strength Cond. Res. 2021, 35, 3386–3393. [Google Scholar] [CrossRef] [PubMed]
- Ohji, S.; Aizawa, J.; Hirohata, K.; Ohmi, T.; Kawasaki, T.; Koga, H.; Yagishita, K. Relationship between single-leg vertical jump and drop jump performance, and return to sports after primary anterior cruciate ligament reconstruction using hamstring graft. Int. J. Sports Phys. Ther. 2024, 19, 1204–1215. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Mackay, M.; Schinkelshoek, D.; Huijing, P.A.; van Ingen Schenau, G.J. Biomechanical analysis of drop and countermovement jumps. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 54, 566–573. [Google Scholar] [CrossRef]
- Petushek, E.; Nilstad, A.; Bahr, R.; Krosshaug, T. Drop jump? Single-leg squat? Not if you aim to predict anterior cruciate ligament injury from real-time clinical assessment: A prospective cohort study involving 880 elite female athletes. J. Orthop. Sports Phys. Ther. 2021, 51, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Renstrom, P.; Ljungqvist, A.; Arendt, E.; Beynnon, B.; Fukubayashi, T.; Garrett, W.; Georgoulis, T.; Hewett, T.; Johnson, R.P.; Krosshaug, T.; et al. Non-contact ACL injuries in female athletes: An International Olympic Committee current concepts statement. Br. J. Sports Med. 2008, 42, 394–412. [Google Scholar] [CrossRef]
- Maguire, K.; Sugimoto, D.; Micheli, L.J.; Kocher, M.S.; Heyworth, B.E. Recovery after ACL reconstruction in male versus female adolescents: A matched, sex-based cohort analysis of 543 patients. Orthop. J. Sports Med. 2021, 9, 23259671211054804. [Google Scholar] [CrossRef]
- Beischer, S.; Gustavsson, L.; Senorski, E.H.; Karlsson, J.; Thomeé, C.; Samuelsson, K.; Thomeé, R. Young athletes who return to sport before 9 months after anterior cruciate ligament reconstruction have a rate of new injury 7 times that of those who delay return. J. Orthop. Sports Phys. Ther. 2020, 50, 83–90. [Google Scholar] [CrossRef]
Variable [Unit] | Male | Female | ||||
---|---|---|---|---|---|---|
Healthy | ACL | p-Value | Healthy | ACL | p-Value | |
Eccentric phase | ||||||
ECC duration [s] | 0.59 ± 0.14 | 0.59 ± 0.12 | 0.915 | 0.62 ± 0.10 | 0.63 ± 0.08 | 0.849 |
ECC velocity [m/s] | −1.09 ± 0.29 | −1.13 ± 0.38 | 0.672 | −0.84 ± 0.13 | −0.91 ± 0.18 | 0.261 |
ECC peak force [N/kg] | 20.5 ± 3.1 | 22.1 ± 3.5 | 0.126 | 19.0 ± 2.6 | 18.7 ± 2.7 | 0.691 |
ECC mean force [N/kg] | 9.8 [0.1] | 9.9 [0.3] | 0.499 * | 9.8 ± 0.1 | 9.9 ± 0.1 | 0.694 |
ECC peak power [W/kg] | 13.7 ± 4.7 | 15.6 ± 8.0 | 0.448 | 9.9 ± 2.8 | 8.9 ± 2.2 | 0.312 |
ECC mean power [W/kg] | 5.4 ± 1.3 | 5.9 ± 1.8 | 0.220 | 4.7 ± 0.7 | 4.8 ± 0.7 | 0.602 |
Concentric phase | ||||||
CON duration [s] | 0.30 ± 0.07 | 0.29 ± 0.05 | 0.452 | 0.29 ± 0.04 | 0.30 ± 0.06 | 0.679 |
CON velocity [m/s] | 2.8 [0.3] | 2.9 [0.4] | 0.920 * | 2.3 ± 0.2 | 2.4 ± 0.2 | 0.151 |
CON peak force [N/kg] | 24.5 ± 2.2 | 24.1 ± 2.5 | 0.585 | 20.7 ± 1.4 | 22.0 ± 2.1 | 0.098 |
CON mean force [N/kg] | 19.1 ± 1.7 | 19.5 ± 1.9 | 0.551 | 17.2 ± 0.9 | 17.7 ± 1.7 | 0.422 |
CON peak power [W/kg] | 56.6 ± 8.4 | 53.8 ± 7.3 | 0.303 | 39.9 ± 5.0 | 44.4 ± 5.9 | 0.510 |
CON mean power [W/kg] | 26.9 ± 4.3 | 28.8 ± 4.4 | 0.212 | 21.0 ± 3.0 | 21.4 ± 0.4 | 0.811 |
Asymmetry | ||||||
Takeoff force [%] | 3.4 [5.6] | 6.0 [8.7] | 0.184 * | 6.2 ± 3.6 | 6.1 ± 3.9 | 0.914 |
Landing force [%] | 6.8 [12.7] | 11.8 [15.7] | 0.101 * | 18.4 ± 14.4 | 17.8 ± 11.8 | 0.902 |
Other | ||||||
Contraction time [s] | 0.89 ± 0.17 | 0.88 ± 0.15 | 0.750 | 0.92 ± 0.12 | 0.93 ± 0.13 | 0.820 |
Jump height [cm] | 36.1 [9.9] | 37.8 [13.1] | 0.960 * | 23.2 [8.6] | 27.7 [5.4] | 0.190 * |
RSI-modified [ratio] | 0.46 [0.18] | 0.43 [0.25] | 0.764 * | 0.28 ± 0.1 | 0.32 ± 0.1 | 0.146 |
Countermovement depth [cm] | −34.3 ± 10.6 | −34.8 ± 6.9 | 0.851 | −26.6 [7.6] | −28.5 [7.2] | 0.938 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabarkapa, D.; Cabarkapa, D.V.; Fry, A.C.; Song, Y.; Gisladottir, T.; Petrovic, M. Comparison of Vertical Jump Force–Time Metrics Between ACL-Injured and Healthy Semi-Professional Male and Female Soccer Players. Sports 2024, 12, 339. https://doi.org/10.3390/sports12120339
Cabarkapa D, Cabarkapa DV, Fry AC, Song Y, Gisladottir T, Petrovic M. Comparison of Vertical Jump Force–Time Metrics Between ACL-Injured and Healthy Semi-Professional Male and Female Soccer Players. Sports. 2024; 12(12):339. https://doi.org/10.3390/sports12120339
Chicago/Turabian StyleCabarkapa, Dimitrije, Damjana V. Cabarkapa, Andrew C. Fry, Yu Song, Thordis Gisladottir, and Milos Petrovic. 2024. "Comparison of Vertical Jump Force–Time Metrics Between ACL-Injured and Healthy Semi-Professional Male and Female Soccer Players" Sports 12, no. 12: 339. https://doi.org/10.3390/sports12120339
APA StyleCabarkapa, D., Cabarkapa, D. V., Fry, A. C., Song, Y., Gisladottir, T., & Petrovic, M. (2024). Comparison of Vertical Jump Force–Time Metrics Between ACL-Injured and Healthy Semi-Professional Male and Female Soccer Players. Sports, 12(12), 339. https://doi.org/10.3390/sports12120339