Effects of Drop Jump Training on Physical Fitness in Highly Trained Young Male Volleyball Players: Comparing Maximal Rebound Height and Standard Drop Height Training
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Anthropometrics and Body Composition
2.2.2. Drop Jump Performance
2.2.3. Dynamic Balance
2.2.4. Linear Sprint Speed
2.2.5. Change-of-Direction Speed
2.2.6. Drop Jump Training Programs
2.3. Statistical Analyses
3. Results
3.1. Drop Jump Performance
3.2. Dynamic Balance
3.3. Linear Sprint Speed
3.4. Change-of-Direction Speed
3.5. Reactive Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-de-Alcaraz, A.; Ramirez-Campillo, R.; Rivera-Rodriguez, M.; Romero-Moraleda, B. Analysis of jump load during a volleyball season in terms of player role. J. Sci. Med. Sport 2020, 23, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Martinez, J.; Guzman-Munoz, E.; Ramirez-Campillo, R.; Herrera-Valenzuela, T.; Magnani Branco, B.H.; Avila-Valencia, S.; Luis Carter-Beltran, J.; Aravena-Sagardia, P.; Mendez-Cornejo, J.; Valdes-Badilla, P. Effects of different plyometric training frequencies on physical performance in youth male volleyball players: A randomized trial. Front. Physiol. 2023, 14, 1270512. [Google Scholar] [CrossRef] [PubMed]
- Vassil, K.; Bazanovk, B. The effect of plyometric training program on young volleyball players in their usual training period. J. Hum. Sport Exerc. 2012, 7, S34–S40. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Dingley, A.A.; Janssen, I.; Spratford, W.; Chapman, D.W.; Newton, R.U. The effect of assisted jumping on vertical jump height in high-performance volleyball players. J. Sci. Med. Sport 2011, 14, 85–89. [Google Scholar] [CrossRef]
- Ziv, G.; Lidor, R. Vertical jump in female and male basketball players—A review of observational and experimental studies. J. Sci. Med. Sport 2010, 13, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F. Drop jumping as a training method for jumping ability. Sports Med. 1990, 9, 7–22. [Google Scholar] [CrossRef]
- Taube, W.; Leukel, C.; Lauber, B.; Gollhofer, A. The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training. Scand. J. Med. Sci. Sports 2012, 22, 671–683. [Google Scholar] [CrossRef]
- Peng, H.T.; Kernozek, T.W.; Song, C.Y. Quadricep and hamstring activation during drop jumps with changes in drop height. Phys. Ther. Sport 2011, 12, 127–132. [Google Scholar] [CrossRef]
- Wallace, B.J.; Kernozek, T.W.; White, J.M.; Kline, D.E.; Wright, G.A.; Peng, H.T.; Huang, C.F. Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. J. Strength. Cond. Res. 2010, 24, 207–212. [Google Scholar] [CrossRef]
- Komi, P.V.; Gollhofer, A. Stretch reflexes can have an important role in force enhancement during SSC exercise. J. Appl. Biomech. 1997, 13, 451–460. [Google Scholar] [CrossRef]
- Prieske, O.; Chaabene, H.; Puta, C.; Behm, D.G.; Busch, D.; Granacher, U. Effects of drop height on jump performance in male and female elite adolescent handball players. Int. J. Sports Physiol. Perform. 2019, 14, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Bassa, E.I.; Patikas, D.A.; Panagiotidou, A.I.; Papadopoulou, S.D.; Pylianidis, T.C.; Kotzamanidis, C.M. The effect of dropping height on jumping performance in trained and untrained prepubertal boys and girls. J. Strength. Cond. Res. 2012, 26, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Birat, A.; Sebillaud, D.; Bourdier, P.; Dore, E.; Duche, P.; Blazevich, A.J.; Patikas, D.; Ratel, S. Effect of drop height on vertical jumping performance in pre-, circa-, and post-pubertal boys and girls. Pediatr. Exerc. Sci. 2020, 32, 23–29. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Garcia-Pinillos, F.; Gentil, P.; Moran, J.; Pereira, L.A.; Loturco, I. Effects of plyometric training on physical performance of young male soccer players: Potential effects of different drop jump heights. Pediatr. Exerc. Sci. 2019, 31, 306–313. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, J.; Izquierdo, M. Optimal reactive strength index: Is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J. Strength. Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef]
- Brown, K.A.; Patel, D.R.; Darmawan, D. Participation in sports in relation to adolescent growth and development. Transl. Pediatr. 2017, 6, 150–159. [Google Scholar] [CrossRef]
- Bobbert, P.; Wind, M.; Vlieger, J. Diffusion to an assembly of slowly growing particles on a substrate. Phys. A Stat. Mech. Appl. 1987, 146, 69–88. [Google Scholar] [CrossRef]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Lloyd, R.S. The influence of maturity status on muscle architecture in school-aged boys. Pediatr. Exerc. Sci. 2020, 32, 89–96. [Google Scholar] [CrossRef]
- Andrade, D.C.; Manzo, O.; Beltran, A.R.; Alvarez, C.; Del Rio, R.; Toledo, C.; Moran, J.; Ramirez-Campillo, R. Kinematic and neuromuscular measures of intensity during plyometric jumps. J. Strength Cond. Res. 2020, 34, 3395–3402. [Google Scholar] [CrossRef]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2021, 17, 317–331. [Google Scholar] [CrossRef]
- Deurenberg, P.; Weststrate, J.A.; Seidell, J.C. Body mass index as a measure of body fatness: Age-and sex-specific prediction formulas. Br. J. Nutr. 1991, 65, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.; Cameron, N.; Brasher, P.M. Enhancing a somatic maturity prediction model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Fusco, A.; Giancotti, G.F.; Fuchs, P.X.; Wagner, H.; da Silva, R.A.; Cortis, C. Y balance test: Are we doing it right? J. Sci. Med. Sport 2020, 23, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-H.; Kim, G.-M.; Kwon, O.-Y.; Weon, J.-H.; Oh, J.-S.; An, D.-H. Relationship between the kinematics of the trunk and lower extremity and performance on the Y-balance test. PMR 2015, 7, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, R.J.; Sporer, B.C.; Stellingwerff, T.; Sleivert, G.G. Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J. Strength Cond. Res. 2015, 29, 2522–2531. [Google Scholar] [CrossRef]
- Sassi, R.H.; Dardouri, W.; Yahmed, M.H.; Gmada, N.; Mahfoudhi, M.E.; Gharbi, Z. Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. J. Strength. Cond. Res. 2009, 23, 1644–1651. [Google Scholar] [CrossRef]
- McGawley, K.; Andersson, P.-I. The order of concurrent training does not affect soccer-related performance adaptations. Int. J. Sports Med. 2013, 34, 983–990. [Google Scholar] [CrossRef]
- Achilleopoulos, I.; Sotiropoulos, K.; Tsakiri, M.; Drikos, S.; Zacharakis, E.; Barzouka, K. The effect of a proprioception and balance training program on balance and technical skills in youth female volleyball players. J. Phys. Educ. Sport 2022, 22, 840–847. [Google Scholar]
- Read, M.M.; Cisar, C. The influence of varied rest interval lengths on depth jump performance. J. Strength. Cond. Res. 2001, 15, 279–283. [Google Scholar]
- Weissgerber, J. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Laurence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 20–27. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Weissgerber, T.L.; Milic, N.M.; Winham, S.J.; Garovic, V.D. Beyond bar and line graphs: Time for a new data presentation paradigm. PLoS. Biol. 2005, 13, e1002128. [Google Scholar] [CrossRef] [PubMed]
- Pedley, J.S.; Lloyd, R.S.; Read, P.; Moore, I.S.; Oliver, J.L. Drop jump: A technical model for scientific application. Strength Cond. J. 2017, 39, 36–44. [Google Scholar] [CrossRef]
- Dos Santos, M.L.; Shields, J.; Berton, R.; Dinyer-McNeely, T.; Trevino, M.; Anderson, O.; Dawes, J.J. Does box height matter? A comparative analysis of box height on box jump performance in men and women. Int. J. Exerc. Sci. 2024, 17, 720. [Google Scholar] [PubMed]
- Alkjaer, T.; Meyland, J.; Raffalt, P.C.; Lundbye-Jensen, J.; Simonsen, E.B. Neuromuscular adaptations to 4 weeks of intensive drop jump training in well-trained athletes. Physiological Rep. 2023, 1, e00099. [Google Scholar] [CrossRef]
- Byrne, P.J.; Kenny, J.; O’Rourke, B. Acute potentiating effect of depth jumps on sprint performance. J. Strength. Cond. Res. 2014, 28, 610–615. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Zanetti, V.; Kitamura, K.; Abad, C.C.; Nakamura, F.Y. Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. J. Sports Sci. 2015, 33, 2182–2191. [Google Scholar] [CrossRef]
- Asadi, A.; Arazi, H.; Young, W.B.; Saez de Villarreal, E. The effects of plyometric training on change-of-direction ability: A meta-analysis. Int. J. Sports Physiol. Perform. 2016, 11, 563–573. [Google Scholar] [CrossRef]
- Komi, P.V.; Salonen, M.; Jarvinen, M.; Kokko, O. In vivo registration of Achilles tendon forces in man. I. Methodological development. Int. J. Sports Med. 1987, 8, 3–8. [Google Scholar] [CrossRef]
- Lauber, B.; Gollhofer, A.; Taube, W. What to train first: Balance or explosive strength? Impact on performance and intracortical inhibition. Scand. J. Med. Sci. Sports 2021, 31, 1301–1312. [Google Scholar] [CrossRef]
- Ruben, R.M.; Molinari, M.A.; Bibbee, C.A.; Childress, M.A.; Harman, M.S.; Reed, K.P.; Haff, G.G. The acute effects of an ascending squat protocol on performance during horizontal plyometric jumps. J. Strength. Cond. Res. 2010, 24, 358–369. [Google Scholar] [CrossRef]
- Trajkovic, N.; Bogataj, S. Effects of neuromuscular training on motor competence and physical performance in young female volleyball players. Int. J. Environ. Res. Public Health. 2020, 17, 1755. [Google Scholar] [CrossRef] [PubMed]
Variables | MRHT Group (n = 15) | SDHT Group (n = 15) | p-Value |
---|---|---|---|
Age (years) | 15.88 ± 0.48 | 15.33 ± 0.57 | 0.38 |
Height (cm) | 185.67 ± 6.15 | 182.60 ± 0.93 | 0.14 |
Body mass (kg) | 72.53 ± 10.08 | 69.20 ± 7.83 | 0.32 |
Maturity offset (years) | 2.65 ± 0.48 | 2.11 ± 0.50 | 0.005 |
APHV (years) | 13.23 ± 0.39 | 13.22 ± 0.45 | 0.95 |
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
---|---|---|---|---|---|---|
Warm-up (15 min) MRHT and SDHT (20 min) Tactical defensive situations (20 min) Simulated matches (30 min) Cool down (5 min) | Warm-up (15 min) Technical passing drills (20 min) Machine-based contrast strength training) (20 min) Simulated matches (30 min) Cool down (5 min) | Warm-up (15 min) Technical smashing and passing drills (20 min) Vertical and horizontal countermovement jump (20 min) Simulated matches (30 min) Cool down (5 min) | Warm-up (15 min) MRHT and SDHT (20 min) Tactical offensive situations (20 min) Simulated matches (30 min) Cool down (5 min) | Warm-up (15 min) Technical spiking and passing drills (20 min) Tactical offensive and defensive situations) (20 min) Simulated matches (30 min) Cool down (5 min) | Competition | Day off |
90 min | 90 min | 90 min | 90 min | 90 min |
Variables | ICC (3.1) (95% CI) | SEM | CV (%) |
---|---|---|---|
Dynamic balance | |||
CS-YBT (°/°) | 0.89 [0.81–0.91] | 1.22 | 1.74 |
Vertical jump height | |||
DJ height | |||
DJ 30 cm (cm) | 0.91 [0.88–0.93] | 0.96 | 2.14 |
DJ 40 cm (cm) | 0.90 [0.87–0.92] | 0.91 | 2.17 |
DJ 50 cm (cm) | 0.89 [0.78–0.90] | 1.92 | 1.13 |
Contact time | |||
CT 30 cm (ms) | 0.87 [0.73–0.90] | 0.73 | 4.23 |
CT 40 cm (ms) | 0.91 [0.90–0.96] | 0.80 | 1.65 |
CT 50 cm (ms) | 0.90 [0.87–0.93] | 0.15 | 2.02 |
Reactive strength | |||
RSI 30 (cm) | 0.90 [0.83–0.94] | 4.38 | 1.06 |
RSI 40 (cm) | 0.92 [−0.89–0.96] | 6.62 | 4.36 |
RSI 50 (cm) | 0.91 [0.88–0.97] | 0.46 | 4.78 |
Linear sprint speed | |||
5 m (s) | 0.91 [0.82–0.96] | 3.41 | 1.32 |
20 m (s) | 0.92 [0.87–0.93] | 2.17 | 2.16 |
Change-of-direction speed | |||
T-half-test (s) | 0.88 [0.81–0.90] | 1.81 | 2.12 |
Variables | Groups | Pre-Intervention | Post-Intervention | Δ Change % | ANOVA p-Value (Cohen’s d) | |||
---|---|---|---|---|---|---|---|---|
Cohen’s d (d Lower Limit to d Upper Limit) | Time | Group | Group × Time | |||||
Vertical jump performance | ||||||||
SDHT | 32.01 ± 2.76 | 33.12 ± 9.26 | 3.47 | −0.17 (−1.56 to 4.52) | 0.005 (0.78) | 0.184 (0.36) | 0.046 (0.54) | |
DJ 30 cm | MRHT | 31.11 ± 1.69 | 37.47 ± 1.85 | 20.44 | −3.69 (−4.55 to −2.75) | |||
DJ 40 cm | SDHT | 32.07 ± 2.44 | 35.05 ± 1.95 | 9.27 | −1.40 (−2.63 to −0.41) | 0.001 (2.18) | 0.001 (1.44) | 0.002 (0.85) |
MRHT | 33.39 ± 2.54 | 40.17 ± 2.30 | 20.33 | −2.90 (−4.18 to −1.73) | ||||
DJ 50 cm | SDHT | 32.94 ± 2.26 | 35.66 ± 2.09 | 8.26 | −1.29 (−2.44 to −0.24) | 0.001 (2.26) | 0.001 (1.37) | 0.002 (0.88) |
MRHT | 33.90 ± 2.01 | 40.12 ± 1.80 | 18.34 | −3.37 (−4.39 to −2.46) | ||||
Dynamic balance | ||||||||
CS-YBT | SDHT | 103.49 ± 7.58 | 108.77 ± 8.33 | 5.10 | −0.69 (−4.52 to3.53) | 0.003 (0.82) | 0.999 (0.001) | 0.623 (0.12) |
MRHT | 102.48 ± 7.94 | 109.79 ± 8.04 | 7.14 | −0.95 (−4.97 to 3.12) | ||||
Linear sprint speed | ||||||||
5 m sprint (s) | SDHT | 1.44 ± 0.08 | 1.40 ± 0.10 | 2.55 | 0.46 (0.42 to 0.51) | 0.002 (0.89) | 0.003 (0.82) | 0.067 (0.50) |
MRHT | 1.41 ± 0.08 | 1.28 ± 0.12 | 9.25 | 1.32 (1.28 to 1.38) | ||||
20 m sprint (s) | SDHT | 3.68 ± 0.13 | 3.59 ± 0.11 | 2.45 | 0.77 (0.71 to 0.83) | 0.001 (1.56) | 0.001 (1.46) | 0.005 (0.77) |
MRHT | 3.60 ± 0.10 | 3.33 ± 0.14 | 7.39 | 2.30 (2.25 to 2.37) | ||||
Change-of-direction speed | ||||||||
T-half test (s) | SDHT | 6.32 ± 0.14 | 5.94 ± 0.31 | 5.97 | 1.64 (1.56 to 1.79) | 0.001 (1.7) | 0.094 (0.45) | 0.101 (0.22) |
MRHT | 6.31 ± 0.25 | 5.67 ± 0.46 | 10.22 | 1.79 (1.66 to 2.02) | ||||
Reactive strength | ||||||||
SDHT | 1.57 ± 0.13 | 1.92 ± 0.08 | 22.06 | −3.36 (−3.42 to −3.32) | 0.001 (4.24) | 0.536 (0.17) | 0.145 (0.40) | |
RSI30 | MRHT | 1.52 ± 0.07 | 1.94 ± 0.08 | 27.52 | −5.78 (−5.82 to −5.74) | |||
RSI40 | SDHT | 1.56 ± 0.13 | 1.81 ± 0.10 | 16.14 | −2.23 (−2.30 to −2.18) | 0.001(1.47) | 0.014 (0.68) | 0.182 (0.36) |
MRHT | 1.63 ± 0.13 | 2.05 ± 0.42 | 25.53 | −1.10 (−1.46 to −1.19) | ||||
RSI50 | SDHT | 1.60 ± 0.10 | 1.84 ± 0.10 | 15.14 | −2.48 (−2.53 to −2.43) | 0.001(3.42) | 0.001 (1.71) | <0.001(1.19) |
MRHT | 1.66 ± 0.11 | 2.16 ± 0.30 | 30.14 | −2.29 (−2.35 to −2.14) | ||||
CT30 | SDHT | 205.08 ± 14.57 | 193.30 ± 2.51 | 5.75 | 1.17 (−6.21 to 2.44) | 0.001 (1.96) | 0.031 (0.59) | 0.149 (0.39) |
MRHT | 203.59 ± 2.10 | 185.93 ± 4.26 | 8.67 | 4.82 (3.76 to 4.82) | ||||
CT40 | SDHT | 206.12 ± 14.57 | 193.47 ± 2.51 | 6.14 | 1.25 (−6.12 to 2.52) | 0.001 (2.07) | 0.031 (0.59) | 0.149 (0.39) |
MRHT | 204.63 ± 2.10 | 186.10 ± 4.26 | 4.26 | 5.71 (4.65 to 7.87) | ||||
CT50 | SDHT | 206.24 ± 14.57 | 193.57 ± 2.51 | 6.15 | 1.25 (−6.12 to 2.52) | 0.001 (2.08) | 0.031 (0.59) | 0.149 (0.39) |
MRHT | 204.75 ± 2.10 | 186.20 ± 4.26 | 4.26 | 5.72 (4.65 to 7.87) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammami, R.; Ayed, K.B.; Negra, Y.; Ramirez-Campillo, R.; Duncan, M.; Rebai, H.; Granacher, U. Effects of Drop Jump Training on Physical Fitness in Highly Trained Young Male Volleyball Players: Comparing Maximal Rebound Height and Standard Drop Height Training. Sports 2024, 12, 336. https://doi.org/10.3390/sports12120336
Hammami R, Ayed KB, Negra Y, Ramirez-Campillo R, Duncan M, Rebai H, Granacher U. Effects of Drop Jump Training on Physical Fitness in Highly Trained Young Male Volleyball Players: Comparing Maximal Rebound Height and Standard Drop Height Training. Sports. 2024; 12(12):336. https://doi.org/10.3390/sports12120336
Chicago/Turabian StyleHammami, Raouf, Karim Ben Ayed, Yassine Negra, Rodrigo Ramirez-Campillo, Michael Duncan, Haithem Rebai, and Urs Granacher. 2024. "Effects of Drop Jump Training on Physical Fitness in Highly Trained Young Male Volleyball Players: Comparing Maximal Rebound Height and Standard Drop Height Training" Sports 12, no. 12: 336. https://doi.org/10.3390/sports12120336
APA StyleHammami, R., Ayed, K. B., Negra, Y., Ramirez-Campillo, R., Duncan, M., Rebai, H., & Granacher, U. (2024). Effects of Drop Jump Training on Physical Fitness in Highly Trained Young Male Volleyball Players: Comparing Maximal Rebound Height and Standard Drop Height Training. Sports, 12(12), 336. https://doi.org/10.3390/sports12120336