Changes in the Sprint, Vertical Jump and Quadriceps Strength after a Capacitive Resistive Electric Transfer Therapy Intervention—A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Variables
2.3.1. Knee Extension Force
2.3.2. Vertical Jump Height
2.3.3. Sprinting Speed
2.3.4. Muscle Activity
2.4. Intervention
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castagna, C.; Castellini, E. Vertical jump performance in italian male and female national team soccer players. J. Strength Cond. Res. 2013, 27, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Andrew, J.H.; Keane, S.P.; Coglan, J. Department; Force velocity relationship and stretch shortening cycle function in sprint and endurance athletes. J. Strength Cond. Res. 2004, 18, 473–479. [Google Scholar]
- Rodríguez-Rosell, D.; Mora-Custodio, R.; Franco-Márquez, F.; Yáñez-García, J.M.; González-Badillo, J.J. Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship with the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players. J. Strength Cond. Res. 2017, 31, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Hammami, A.; Zois, J.; Slimani, M.; Russel, M.; Bouhlel, E. The Efficacy and Characteristics of Warm-up and Re-Warm-up. SSRN Electron. J. 2018, 58, 135–149. [Google Scholar] [CrossRef]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-up Strategies for Sport and Exercise: Mechanisms and Applications. Sport. Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef]
- Guggenheimer, J.D.; Dickin, D.C.; Reyes, G.F.; Dolny, A.D.G. The Effects of Specific Preconditioning Activities on Acute Sprint Performance. J. Strength Cond. Res. 2009, 23, 1135–1139. [Google Scholar] [CrossRef]
- Jesunathadas, M.; Lippa, N.; York, S.; Krzeminski, D.E.; Piland, S.G.; Rawlins, J.W.; Paprzycki, P.; Kleinberger, M.; Gould, T.E. Influence of foam thickness on the control of EMG activity during a step-down task in females. J. Electromyogr. Kinesiol. 2021, 60, 102585. [Google Scholar] [CrossRef]
- Barbosa, J.L.; Barros, T.A.; Dalton, D.E.; Machado-Oliveira, L.; Farah, B.Q.; André, L.P. Acute effects of pre-activation method with single and multiple joint exercises on muscular activity and training volume during the bench press exercise. Med. Dello Sport Riv. Di Fisiopatol. Dello Sport 2021, 74, 396–405. [Google Scholar] [CrossRef]
- Stronska, K.; Golas, A.; Wilk, M.; Zajac, A.; Maszczyk, A.; Stastny, P. The effect of targeted resistance training on bench press performance and the alternation of prime mover muscle activation patterns. Sports Biomech. 2022, 21, 1262–1276. [Google Scholar] [CrossRef]
- Córdova Martínez, A.; Nuin, I.; Fernández-Lázaro, D.; Latasa Zudaire, I.A.; Rodríguez Falces, J. Electromyographic activity (EMG) during pedaling, its usefulness in the diagnosis of fatigue in cyclists. Arch. Med. Dep. 2017, 34, 217–223. [Google Scholar]
- R Júnior, V.A.; Bottaro, M.; Pereira, M.C.; Andrade, M.M.; PJúnior, P.R.; Carmo, J.C. Electromyographic analyses of muscle pre-activation induced by single joint exercise. Braz. J. Phys. Ther. 2010, 14, 158–165. [Google Scholar]
- Fletcher, I.M. An investigation into the effect of a pre-performance strategy on jump performance. J. Strength Cond. Res. 2013, 27, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Kannas, T.M.; Kellis, E.; Amiridis, I.G. Incline plyometrics-induced improvement of jumping performance. Eur. J. Appl. Physiol. 2012, 112, 2353–2361. [Google Scholar] [CrossRef] [PubMed]
- Czelusniak, O.; Favreau, E.; Ives, S.J. Effects of Warm-up on Sprint Swimming Performance, Rating of Perceived Exertion, and Blood Lactate Concentration: A Systematic Review. J. Funct. Morphol. Kinesiol. 2021, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Gogte, K.; Srivastav, P.; Miyaru, G.B. Effect of Passive, Active and Combined Warm up on Lower Limb Muscle Performance and Dynamic Stability in Recreational Sports Players. J. Clin. Diagn. Res. 2017, 11, YC05–YC08. [Google Scholar] [CrossRef]
- van den Tillaar, R.; Lerberg, E.; von Heimburg, E. Comparison of Three Types of Warm-up upon Sprint Ability in Experienced Soccer Players. J. Sport Health Sci. 2019, 8, 574–578. [Google Scholar] [CrossRef]
- Fletcher, I.M. The Effects of Pre-competition Massage on the Kinematic Parameters of 20-m Sprint Performance. J. Strength Cond. Res. 2010, 24, 1179–1183. [Google Scholar] [CrossRef]
- Kilduff, L.P.; West, D.J.; Williams, N.; Cook, C.J. The Influence of Passive Heat Maintenance on Lower Body Power Output and Repeated Sprint Performance in Professional Rugby League Players. J. Sci. Med. Sport 2013, 16, 482–486. [Google Scholar] [CrossRef]
- Mueller, F.; Gibbs, M.R.; Vetere, F.; Edge, D. Designing for Bodily Interplay in Social Exertion Games. ACM Trans. Comput. Interact. 2017, 24, 1–41. [Google Scholar] [CrossRef]
- Wiehr, F.; Vujic, M.; Krüger, A.; Daiber, F. The Jungle Warm-up Run: Augmenting Athletes with Coach-Guided Dynamic Game Elements. In Proceedings of the Augmented Humans International Conference; Association for Computing Machinery: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Márquez Segura, E.; Turmo Vidal, L.; Waern, A.; Duval, J.S.; Parrilla Bel, L.; Altarriba Bertran, F. Physical Warm-up Games: Exploring the Potential of Play and Technology Design. In Proceedings of the CHI ‘21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 8–13 May 2021; pp. 1–14. [Google Scholar]
- Duñabeitia, I.; Arrieta, H.; Torres-Unda, J.; Gil, J.; Santos-Concejero, J.; Gil, S.M.; Irazusta, J.; Bidaurrazaga-Letona, I. Effects of a Capacitive-Resistive Electric Transfer Therapy on Physiological and Biomechanical Parameters in Recreational Runners: A Randomized Controlled Crossover Trial. Phys. Ther. Sport 2018, 32, 227–234. [Google Scholar] [CrossRef]
- Becero, M.; Saitua, A.; Argüelles, D.; Sánchez De Medina, A.L.; Castejón-Riber, C.; Riber, C.; Muñoz, A. Capacitive Resistive Electric Transfer Modifies Gait Pattern in Horses Exercised on a Treadmill. BMC Vet. Res. 2020, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Argüelles, D.; Becero, M.; Muñoz, A.; Saitua, A.; Ramón, T.; Gascón, E.; de Medina, A.S.; Prades, M. Accelerometric Changes before and after Capacitive Resistive Electric Transfer Therapy in Horses with Thoracolumbar Pain Compared to a Sham Procedure. Animals 2020, 10, 2305. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, Y.; Hasegawa, S.; Yokota, Y.; Nishiguchi, S.; Fukutani, N.; Shirooka, H.; Tasaka, S.; Matsushita, T.; Matsubara, K.; Nakayama, Y.; et al. Effect of Capacitive and Resistive Electric Transfer on Haemoglobin Saturation and Tissue Temperature. Int. J. Hyperth. 2017, 33, 696–702. [Google Scholar] [CrossRef] [PubMed]
- López-De-Celis, C.; Hidalgo-García, C.; Pérez-Bellmunt, A.; Fanlo-Mazas, P.; González-Rueda, V.; Tricás-Moreno, J.M.; Ortiz, S.; Rodríguez-Sanz, J. Thermal and Non-Thermal Effects off Capacitive-Resistive Electric Transfer Application on the Achilles Tendon and Musculotendinous Junction of the Gastrocnemius Muscle: A Cadaveric Study. BMC Musculoskelet. Disord. 2020, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sanz, J.; López-De-Celis, C.; Hidalgo-García, C.; González-Rueda, V.; Ragazzi, P.; Bueno-Gracia, E.; Llurda-Almuzara, L.; Pérez-Bellmunt, A. Is Tecar Therapy Effective on Biceps Femoris and Quadriceps Rehabilitation? A Cadaveric Study. J. Sport Rehabil. 2022, 31, 756–763. [Google Scholar] [CrossRef]
- Review, C.; Communication, S.; Principles, G. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. J. Am. Coll. Dent. 2014, 81, 14–18. [Google Scholar] [CrossRef]
- Garcia, D.; Neto, I.V.d.S.; Monteiro, Y.d.S.; Magalhães, D.P.; Ferreira, G.M.L.; Grisa, R.; Prestes, J.; Rosa, B.V.; Abrahin, O.; Martins, T.M.; et al. Reliability and Validity of a Portable Traction Dynamometer in Knee-Strength Extension Tests: An Isometric Strength Assessment in Recreationally Active Men. Healthcare 2023, 11, 1466. [Google Scholar] [CrossRef]
- Medici, F.; Group PCE. Instrucciones de Uso Dinamómetro de la Serie PCE–SH/PCE-SH 500. Available online: https://www.pce-iberica.es/manuales/manual-dinamometro-pce-sh.pdf (accessed on 30 December 2023).
- Gallardo-Fuentes, F.; Gallardo-Fuentes, J.; Ramírez-Campillo, R.; Balsalobre-Fernández, C.; Martínez, C.; Caniuqueo, A.; Cañas, R.; Banzer, W.; Loturco, I.; Nakamura, F.Y.; et al. Intersession and Intrasession Reliability and Validity of the My Jump App for Measuring Different Jump Actions in Trained Male and Female Athletes. J. Strength Cond. Res. 2016, 30, 2049–2056. [Google Scholar] [CrossRef]
- Yingling, V.R.; Castro, D.A.; Duong, J.T.; Malpartida, F.J.; Usher, J.R.; Jenny, O. The Reliability of Vertical Jump Tests between the Vertec and My Jump Phone Application. PeerJ 2018, 2018, e4669. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The Validity and Reliability of an IPhone App for Measuring Vertical Jump Performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef]
- De Blas, X.; Padullés, J.M.; Del Amo, J.L.L.; Guerra-Balic, M. Creación y Validación de Chronojump-Boscosystem: Un Instrumento Libre Para La Medición de Saltos Verticales. RICYDE Rev. Int. Cienc. Del Deport. 2012, 8, 334–356. [Google Scholar] [CrossRef]
- Fauth, M.L.; Petushek, E.J.; Feldmann, C.R.; Hsu, B.E.; Garceau, L.R.; Lutsch, B.N.; Ebben, W.P. Reliability of surface electromyography during maximal voluntary isometric contractions, jump landings, and cutting. J. Strength Cond. Res. 2010, 24, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Bastida Castillo, A.; Gómez Carmona, C.D.; Pino Ortega, J.; de La Cruz Sánchez, E. Validity of an Inertial System to Measure Sprint Time and Sport Task Time: A Proposal for the Integration of Photocells in an Inertial System. Int. J. Perform. Anal. Sport 2017, 17, 600–608. [Google Scholar] [CrossRef]
- Molina-Molina, A.; Ruiz-Malagón, E.J.; Carrillo-Pérez, F.; Roche-Seruendo, L.E.; Damas, M.; Banos, O.; García-Pinillos, F. Validation of MDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment. Front. Physiol. 2020, 11, 1556. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European Recommendations for Surface ElectroMyoGraphy. Roessingh Res. Dev. 1999, 8, 13–54. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence E.: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Roche-Seruendo, L.E.; García-Pinillos, F.; Haicaguerre, J.; Bataller-Cervero, A.V.; Soto-Hermoso, V.M.; Latorre-Román, P. Lack of Influence of Muscular Performance. J. Strength Cond. Res. 2018, 32, 409–415. [Google Scholar] [CrossRef]
- Mangine, G.T.; Kliszczewicz, B.M.; Boone, J.B.; Williamson-Reisdorph, C.M.; Bechke, E.E. Pre-Anticipatory Anxiety and Autonomic Nervous System Response to Two Unique Fitness Competition Workouts. Sports 2019, 7, 199. [Google Scholar] [CrossRef]
- Tank, A.W.; Wong, D.L. Peripheral and Central Effects of Circulating Catecholamines. Compr. Physiol. 2015, 5, 1–15. [Google Scholar] [CrossRef]
- Wallace, J.L.; Sharkey, K.A. Pharmacotherapy of Gastric Acidity, Peptic Ulcers, and Gastroesophageal Reflux Disease. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics; McGraw Hill Medical: New York, NY, USA, 2011; pp. 171–218. ISBN 978-0-07-176939-6. [Google Scholar]
- Cheetham, M.E.; Boobis, L.H.; Brooks, S.; Williams, C. Human Muscle Metabolism during Sprint Running. J. Appl. Physiol. 1986, 61, 54–60. [Google Scholar] [CrossRef]
Experimental Group (n = 30) | Sham Group (n = 30) | |
---|---|---|
Age (years) | 20.6 ± 2.96 | 20.7 ± 2.64 |
Sex | 63.3% Men 36.7% Women | 60% Men 40% Women |
Dominance | 80% Right 20% Left | 83.3% Right 16.7% Left |
Height (cm) | 173.5 ± 8.65 | 173.7 ± 9.75 |
Weight (kg) | 65.2 ± 12.12 | 69.2 ± 13.9 |
Hours of sport per week | 7.5 ± 2.4 | 7.7 ± 3.0 |
Outcome/Group | Pre-Treatment | Post-Treatment | Mean Difference (95% CI) | Group–Time Interaction |
---|---|---|---|---|
Isometric Extension Force (Newtons) | ||||
Experimental Group | 327.30 ± 110.75 | 376.21 ± 124.55 | 48.91 (17.96, 79.87) | p = 0.087 F = 3.026 ŋ2 = 0.50 |
Sham Group | 379.06 ± 148.64 | 389.93 ± 141.77 | 10.87 (−20.09, 41.82) | |
Countermovement vertical jump CMJ (cm) | ||||
Experimental Group | 34.71 ± 7.99 | 35.18 ± 7.65 | 0.47 (−0.90, 1.84) | p = 0.799 F = 0.065 ŋ2 = 0.01 |
Sham Group | 31.60 ± 8.23 | 31.82 ± 9.08 | 0.22 (−1.15, 1.60) | |
30 m Sprint (s) | ||||
Experimental Group | 4.83 ± 0.44 | 4.70 ± 0.42 | −0.13 (−0.22, −0.03) | p = 0.270 F = 1.238 ŋ2 = 0.21 |
Sham Group | 5.05 ± 0.72 | 5.01 ± 0.72 | −0.04 (−0.14, 0.05) |
Outcome/Group | Pre-Treatment | Post-Treatment | Mean Difference | Group–Time Interaction |
---|---|---|---|---|
Rectus Femoris RMS in CMJ (%) | ||||
Experimental Group | 63.50 ± 34.74 | 45.77 ± 19.99 | −17.73 (−34.08, −1.37) | p = 0.828 F = 0.048 ŋ2 = 0.01 |
Sham Group | 69.77 ± 57.45 | 49.52 ± 25.92 | −20.25 (−36.60, −3.89) | |
Vastus Lateralis RMS in CMJ (%) | ||||
Experimental Group | 69.78 ± 37.15 | 64.78 ± 27.11 | −5.00 (−17.15, 7.16) | p = 0.155 F = 2.081 ŋ2 = 0.35 |
Sham Group | 73.63 ± 28.06 | 56.96 ± 22.98 | −16.67 (−29.84, −5.12) | |
Vastus Medialis RMS in CMJ (%) | ||||
Experimental Group | 75.68 ± 61.71 | 53.66 ± 19.18 | −22.02 (−39.17, −4.88) | p = 0.327 F = 0.975 ŋ2 = 0.17 |
Sham Group | 68.63 ± 26.11 | 58.57 ± 25.93 | −10.06 (−27.20, 7.08) | |
Rectus Femoris RMS in isometric extension force (%) | ||||
Experimental Group | 46.16 ± 12.67 | 43.59 ± 13.36 | −2.57 (−8.28, 3.16) | p = 0.473 F = 0.522 ŋ2 = 0.09 |
Sham Group | 43.72 ± 13.98 | 44.08 ± 12.98 | 0.36 (−5.36, 6.08) | |
Vastus Lateralis RMS in isometric extension force (%) | ||||
Experimental Group | 44.05 ± 11.00 | 42.37 ± 12.99 | −1.68 (−7.72, 4.36) | p = 0.973 F = 0.001 ŋ2 = 0.00 |
Sham Group | 44.86 ± 13.68 | 43.03 ± 15.11 | −1.83 (−7.87, 4.21) | |
Vastus Medialis RMS in isometric extension force (%) | ||||
Experimental Group | 44.82 ± 12.64 | 41.36 ± 13.36 | −3.46 (−9.43, 2.49) | p = 0.258 F = 1.304 ŋ2 = 0.22 |
Sham Group | 42.39 ± 13.18 | 43.73 ± 14.07 | 1.34 (−4.62, 7.30) | |
Rectus Femoris RMS in Sprint (%) | ||||
Experimental Group | 240.79 ± 209.84 | 148.92 ± 178.78 | −91.87 (−168.26, −15.48) | p = 0.416 F = 0.671 ŋ2 = 0.11 |
Sham Group | 172.60 ± 138.01 | 124.94 ± 106.21 | −47.66 (−124.05, 28.73) | |
Vastus Lateralis RMS in Sprint (%) | ||||
Experimental Group | 214.53 ± 216.86 | 404.28 ± 574.84 | 379.75 (−76.30, 455.80) | p = 0.943 F = 0.005 ŋ2 = 0.00 |
Sham Group | 190.56 ± 206.65 | 366.86 ± 794.78 | 176.30 (−89.75, 442.35) | |
Vastus Medialis RMS in Sprint (%) | ||||
Experimental Group | 268.71 ± 521.13 | 565.64 ± 763.96 | 296.93 (−2.15, 596.00) | p = 0.146 F = 2.167 ŋ2 = 0.36 |
Sham Group | 278.10 ± 789.26 | 263.96 ± 383.51 | −14.14 (−313.21, 284.94) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canet-Vintró, M.; Rodríguez-Sanz, J.; López-de-Celis, C.; Hidalgo-García, C.; Oviedo, G.R.; Rodríguez-Rodríguez, S.; Pérez-Bellmunt, A. Changes in the Sprint, Vertical Jump and Quadriceps Strength after a Capacitive Resistive Electric Transfer Therapy Intervention—A Randomized Clinical Trial. Sports 2024, 12, 36. https://doi.org/10.3390/sports12010036
Canet-Vintró M, Rodríguez-Sanz J, López-de-Celis C, Hidalgo-García C, Oviedo GR, Rodríguez-Rodríguez S, Pérez-Bellmunt A. Changes in the Sprint, Vertical Jump and Quadriceps Strength after a Capacitive Resistive Electric Transfer Therapy Intervention—A Randomized Clinical Trial. Sports. 2024; 12(1):36. https://doi.org/10.3390/sports12010036
Chicago/Turabian StyleCanet-Vintró, Max, Jacobo Rodríguez-Sanz, Carlos López-de-Celis, César Hidalgo-García, Guillermo R. Oviedo, Sergi Rodríguez-Rodríguez, and Albert Pérez-Bellmunt. 2024. "Changes in the Sprint, Vertical Jump and Quadriceps Strength after a Capacitive Resistive Electric Transfer Therapy Intervention—A Randomized Clinical Trial" Sports 12, no. 1: 36. https://doi.org/10.3390/sports12010036
APA StyleCanet-Vintró, M., Rodríguez-Sanz, J., López-de-Celis, C., Hidalgo-García, C., Oviedo, G. R., Rodríguez-Rodríguez, S., & Pérez-Bellmunt, A. (2024). Changes in the Sprint, Vertical Jump and Quadriceps Strength after a Capacitive Resistive Electric Transfer Therapy Intervention—A Randomized Clinical Trial. Sports, 12(1), 36. https://doi.org/10.3390/sports12010036