Spinal Muscle Thickness and Activation during Abdominal Hollowing and Bracing in CrossFit® Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Instruments
2.4. Exercise Protocol
2.5. US Measurements
2.6. EMG Measurements
2.7. Statistical Analysis
3. Results
3.1. Ultrasound Relative Thickness
3.2. EMG Muscles Activation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.d.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J. CrossFit Overview: Systematic Review and Meta-Analysis. Sports Med. Open 2018, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Gianzina, E.A.; Kassotaki, O.A. The Benefits and Risks of the High-Intensity CrossFit Training. Sport Sci. Health 2019, 15, 21–33. [Google Scholar] [CrossRef]
- Meier, N.; Schlie, J.; Schmidt, A. CrossFit®: ‘Unknowable’ or Predictable? A Systematic Review on Predictors of CrossFit® Performance. Sports 2023, 11, 112. [Google Scholar] [CrossRef]
- Schlegel, P.; Křehký, A. Performance Sex Differences in CrossFit®. Sports 2022, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Bernstorff, M.A.; Schumann, N.; Maai, N.; Schildhauer, T.A.; Königshausen, M. An Analysis of Sport-Specific Pain Symptoms through Inter-Individual Training Differences in CrossFit. Sports 2021, 9, 68. [Google Scholar] [CrossRef]
- Ángel Rodríguez, M.; García-Calleja, P.; Terrados, N.; Crespo, I.; Del Valle, M.; Olmedillas, H. Injury in CrossFit®: A Systematic Review of Epidemiology and Risk Factors. Physician Sportsmed. 2022, 50, 3–10. [Google Scholar] [CrossRef]
- Mok, N.W.; Yeung, E.W.; Cho, J.C.; Hui, S.C.; Liu, K.C.; Pang, C.H. Core Muscle Activity during Suspension Exercises. J. Sci. Med. Sport 2015, 18, 189–194. [Google Scholar] [CrossRef]
- Faries, M.D.; Greenwood, M. Core Training: Stabilizing the Confusion. Strength Cond. J. 2007, 29, 10–25. [Google Scholar] [CrossRef]
- Smith, C.E.; Nyland, J.; Caudill, P.; Brosky, J.; Caborn, D.N.M. Dynamic Trunk Stabilization: A Conceptual Back Injury Prevention Program for Volleyball Athletes. J. Orthop. Sports Phys. Ther. 2008, 38, 703–720. [Google Scholar] [CrossRef]
- Anderson, K.; Behm, D.G. The Impact of Instability Resistance Training on Balance and Stability. Sports Med. 2005, 35, 43–53. [Google Scholar] [CrossRef]
- Borghuis, J.; Hof, A.L.; Lemmink, K.A.P.M. The Importance of Sensory-Motor Control in Providing Core Stability. Sports Med. 2008, 38, 893–916. [Google Scholar] [CrossRef] [PubMed]
- Grenier, S.G.; McGill, S.M. Quantification of Lumbar Stability by Using 2 Different Abdominal Activation Strategies. Arch. Phys. Med. Rehabil. 2007, 88, 54–62. [Google Scholar] [CrossRef]
- Richardson, C.A.; Snijders, C.J.; Hides, J.A.; Damen, L.; Pas, M.S.; Storm, J. The Relation between the Transversus Abdominis Muscles, Sacroiliac Joint Mechanics, and Low Back Pain. Spine 2002, 27, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Allison, G.T.; Godfrey, P.; Robinson, G. EMG Signal Amplitude Assessment during Abdominal Bracing and Hollowing. J. Electromyogr. Kinesiol. 1998, 8, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, D.M.; Hodges, P.W.; Allen, T.J.; Story, I.H. Abdominal Muscle Recruitment during a Range of Voluntary Exercises. Man. Ther. 2005, 10, 144–153. [Google Scholar] [CrossRef]
- Vaičienė, G.; Berškienė, K.; Slapsinskaite, A.; Mauricienė, V.; Razon, S. Not Only Static: Stabilization Manoeuvres in Dynamic Exercises—A Pilot Study. PLoS ONE 2018, 13, e0201017. [Google Scholar] [CrossRef]
- Oshikawa, T.; Adachi, G.; Akuzawa, H.; Okubo, Y.; Kaneoka, K. Electromyographic Analysis of Abdominal Muscles during Abdominal Bracing and Hollowing among Six Different Positions. J. Phys. Fit. Sports Med. 2020, 9, 157–163. [Google Scholar] [CrossRef]
- Stanton, T.; Kawchuk, G. The Effect of Abdominal Stabilization Contractions on Posteroanterior Spinal Stiffness. Spine 2008, 33, 649–701. [Google Scholar] [CrossRef]
- Moghadam, N.; Ghaffari, M.S.; Noormohammadpour, P.; Rostami, M.; Zarei, M.; Moosavi, M.; Kordi, R. Comparison of the Recruitment of Transverse Abdominis through Drawing-in and Bracing in Different Core Stability Training Positions. J. Exerc. Rehabil. 2019, 15, 819–825. [Google Scholar] [CrossRef]
- Arab, A.M.; Chehrehrazi, M. Ultrasound Measurement of Abdominal Muscles Activity during Abdominal Hollowing and Bracing in Women with and without Stress Urinary Incontinence. Man. Ther. 2011, 16, 596–601. [Google Scholar] [CrossRef]
- Madokoro, S.; Yokogawa, M.; Miaki, H. Effect of the Abdominal Draw-In Maneuver and Bracing on Abdominal Muscle Thickness and the Associated Subjective Difficulty in Healthy Individuals. Healthcare 2020, 8, 496. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, Y.; Oh, S.; Suh, D.; Eun, S.D.; Yoon, B. Abdominal Hollowing and Bracing Strategies Increase Joint Stability in the Trunk Region during Sudden Support Surface Translation but Not in the Lower Extremities. J. Back Musculoskelet. Rehabil. 2016, 29, 317–325. [Google Scholar] [CrossRef]
- Johnson, A.W.; Adams, L.; Kho, J.B.; Green, D.M.; Pace, N.B.; Mitchell, U.H. Extended Field-of-View Ultrasound Imaging Is Reliable for Measuring Transversus Abdominis Muscle Size at Rest and during Contraction. BMC Musculoskelet. Disord. 2021, 22, 282. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Ellinoudis, A.; Intziegianni, K.; Kofotolis, N. Muscle Thickness During Core Stability Exercises in Children and Adults. J. Hum. Kinet. 2020, 71, 131–144. [Google Scholar] [CrossRef]
- García-Jaén, M.; Cortell-Tormo, J.M.; Hernández-Sánchez, S.; Tortosa-Martínez, J. Influence of Abdominal Hollowing Maneuver on the Core Musculature Activation during the Prone Plank Exercise. Int. J. Environ. Res. Public Health 2020, 17, 7410. [Google Scholar] [CrossRef] [PubMed]
- Bokuda, K.; Shimizu, T.; Kimura, H.; Morishima, R.; Kamiyama, T.; Kawata, A.; Nakayama, Y.; Isozaki, E. Relationship between EMG-Detected and Ultrasound-Detected Fasciculations in Amyotrophic Lateral Sclerosis: A Prospective Cohort Study. Clin. Neurophysiol. 2020, 131, 259–264. [Google Scholar] [CrossRef]
- Brown, S.H.M.; McGill, S.M. A Comparison of Ultrasound and Electromyography Measures of Force and Activation to Examine the Mechanics of Abdominal Wall Contraction. Clin. Biomech. 2010, 25, 115–123. [Google Scholar] [CrossRef]
- Koh, H.-W.; Cho, S.-H.; Kim, C.-Y. Comparison of the Effects of Hollowing and Bracing Exercises on Cross-Sectional Areas of Abdominal Muscles in Middle-Aged Women. J. Phys. Ther. Sci. 2014, 26, 295–299. [Google Scholar] [CrossRef]
- Moon, J.-H.; Hong, S.-M.; Kim, C.-W.; Shin, Y.-A. Comparison of Deep and Superficial Abdominal Muscle Activity between Experienced Pilates and Resistance Exercise Instructors and Controls during Stabilization Exercise. J. Exerc. Rehabil. 2015, 11, 161–168. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cáceres-Matos, R.; Gil-García, E.; Vázquez-Santiago, S.; Cabrera-León, A. Factors That Influence the Impact of Chronic Non-Cancer Pain on Daily Life: A Partial Least Squares Modelling Approach. Int. J. Nurs. Stud. 2023, 138, 104383. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Babb, E.; DeWitt, R.; Jew, P.; Kelleher, P.; Burnham, T.; Busch, J.; D’Anna, K.; Mowbray, R.; Imamura, R.T. Electromyographic Analysis of Traditional and Nontraditional Abdominal Exercises: Implications for Rehabilitation and Training. Phys. Ther. 2006, 86, 656–671. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J.; Kuznetsov, M.; Gilmore, L.D.; Roy, S.H. Inter-Electrode Spacing of Surface EMG Sensors: Reduction of Crosstalk Contamination during Voluntary Contractions. J. Biomech. 2012, 45, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Dafkou, K.; Kellis, E.; Ellinoudis, A.; Sahinis, C.; Galanis, N. Assessment of Rectus Abdominis Muscle Thickness during Isometric Trunk and Leg Lifting Exercises Using Extended Field of View (EFOV) Ultrasound. Med. Ultrason. 2020, 22, 430–437. [Google Scholar] [CrossRef]
- Kahlaee, A.H.; Ghamkhar, L.; Arab, A.M. Effect of the Abdominal Hollowing and Bracing Maneuvers on Activity Pattern of the Lumbopelvic Muscles during Prone Hip Extension in Subjects with or without Chronic Low Back Pain: A Preliminary Study. J. Manip. Physiol Ther. 2017, 40, 106–117. [Google Scholar] [CrossRef]
- Jung, E.J.; Oh, J.S. The Effects of Abdominal Hollowing and Bracing Maneuvers on Trunk Muscle Activity and Pelvic Rotation Angle during Leg Pull Front Pilates Exercise. Healthcare 2023, 11, 60. [Google Scholar] [CrossRef]
- Vasseljen, O.; Unsgaard-Tøndel, M.; Westad, C.; Mork, P.J. Effect of Core Stability Exercises on Feed-Forward Activation of Deep Abdominal Muscles in Chronic Low Back Pain: A Randomized Controlled Trial. Spine 2012, 37, 1101–1108. [Google Scholar] [CrossRef]
- Wong, C.M.; Rugg, B.; Geere, J.A. The Effects of Pilates Exercise in Comparison to Other Forms of Exercise on Pain and Disability in Individuals with Chronic Non-specific Low Back Pain: A Systematic Review with Meta-analysis. Musculoskelet. Care 2023, 21, 78–96. [Google Scholar] [CrossRef]
- McGill, S. Low Back Disorders: Evidence-Based Prevention and Rehabilitation; Human Kinetics: Champaign, IL, USA, 2015; ISBN 1492585564. [Google Scholar]
- Lee, B.C.Y.; McGill, S.M. Effect of Long-Term Isometric Training on Core/Torso Stiffness. J. Strength Cond. Res. 2015, 29, 1515–1526. [Google Scholar] [CrossRef]
- Vera-Garcia, F.J.; Elvira, J.L.L.L.; Brown, S.H.M.M.; McGill, S.M. Effects of Abdominal Stabilization Maneuvers on the Control of Spine Motion and Stability against Sudden Trunk Perturbations. J. Electromyogr. Kinesiol. 2007, 17, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Endleman, I.; Critchley, D.J. Transversus Abdominis and Obliquus Internus Activity During Pilates Exercises: Measurement with Ultrasound Scanning. Arch. Phys. Med. Rehabil. 2008, 89, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Manshadi, F.D.; Parnianpour, M.; Sarrafzadeh, J.; reza Azghani, M.; Kazemnejad, A. Abdominal Hollowing and Lateral Abdominal Wall Muscles’ Activity in Both Healthy Men & Women: An Ultrasonic Assessment in Supine and Standing Positions. J. Bodyw. Mov. Ther. 2011, 15, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Lee, H. Activation of Abdominal Muscles during Abdominal Hollowing in Four Different Positions. J. Phys. Ther. Sci. 2010, 22, 203–207. [Google Scholar] [CrossRef]
- Hides, J.A.; Richardson, C.A.; Jull, G.A. Use of Real-Time Ultrasound Imaging for Feedback in Rehabilitation. Man. Ther. 1998, 3, 125–131. [Google Scholar] [CrossRef]
- Brown, S.H.; McGill, S.M. Transmission of Muscularly Generated Force and Stiffness between Layers of the Rat Abdmoninal Wall. Spine 2009, 34, 70–75. [Google Scholar] [CrossRef]
Total Sample | Men | Women | |
---|---|---|---|
N | 24 | 15 | 9 |
Age (years) | 29.5 ± 7.83 | 29.7 ± 8.63 | 29.3 ± 6.76 |
Height (cm) | 173.3 ± 10.1 | 179.1 ± 6.9 | 165.1 ± 4.9 |
Mass (kg) | 70.6 ± 12.4 | 76.3 ± 10.7 | 60.4 ± 7.5 |
BMI | 23.3 ± 2.2 | 23.8 ± 2.3 | 22.5 ± 2.0 |
CrossFit years | 4.2 ± 1.2 | 3.9 ± 2.9 | 5.1 ± 2.0 |
Exercise | Bracing | Hollowing |
---|---|---|
Plank | ||
TrA | 47.9 ± 16.0 | 85.9 ± 20.1 * |
IO | 33.3 ± 7.46 # | 58.5 ± 16.7 *# |
LM | 15.9 ± 3.54 ^ | 26.8 ± 5.33 *^ |
Side plank | ||
TrA | 61.2 ± 15.9 | 88.4 ± 11.9 * |
IO | 46.4 ± 8.39 # | 69.2 ± 10.2 *# |
LM | 19.3 ± 3.71 ^ | 33.7 ± 4.66 *^ |
Bridge | ||
TrA | 53.2 ± 8.37 | 94.3 ± 8.13 * |
IO | 50.9 ± 5.40 | 79.2 ± 6.72 *# |
LM | 38.1 ± 3.71 ^ | 56.9 ± 4.60 *^ |
Exercise | Bracing | Hollowing |
---|---|---|
Plank | ||
RA | 72.5 ± 9.17 | 55.6 ± 6.22 * |
EO | 55.6 ± 7.99 # | 45.4 ± 6.41 *# |
IL | 26.2 ± 4.62 ^ | 16.4 ± 3.70 *^ |
Side plank | ||
RA | 29.9 ± 5.07 | 22.1± 2.30 * |
EO | 71.6 ± 10.0 # | 56.6 ± 7.65 *# |
IL | 49.3 ± 6.72 ^ | 36.3 ± 5.50 *^ |
Bridge | ||
RA | 24.4 ± 7.30 | 17.7 ± 4.53 * |
EO | 29.4 ± 4.88 | 21.6 ± 4.18 * |
IL | 47.2 ± 5.69 ^ | 32.1 ± 5.02 *^ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsartsapakis, I.; Pantazi, G.-A.; Konstantinidou, A.; Zafeiroudi, A.; Kellis, E. Spinal Muscle Thickness and Activation during Abdominal Hollowing and Bracing in CrossFit® Athletes. Sports 2023, 11, 159. https://doi.org/10.3390/sports11080159
Tsartsapakis I, Pantazi G-A, Konstantinidou A, Zafeiroudi A, Kellis E. Spinal Muscle Thickness and Activation during Abdominal Hollowing and Bracing in CrossFit® Athletes. Sports. 2023; 11(8):159. https://doi.org/10.3390/sports11080159
Chicago/Turabian StyleTsartsapakis, Ioannis, Georgia-Andriana Pantazi, Agapi Konstantinidou, Aglaia Zafeiroudi, and Eleftherios Kellis. 2023. "Spinal Muscle Thickness and Activation during Abdominal Hollowing and Bracing in CrossFit® Athletes" Sports 11, no. 8: 159. https://doi.org/10.3390/sports11080159