A Systematic Review and Meta-Analysis of the Differences in Mean Propulsive Velocity between Men and Women in Different Exercises
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Inclusion Criteria
2.3. Data Extraction
2.4. Methodological Quality
2.5. Statistical Analyses
3. Results
3.1. Search Results
3.2. Study Characteristics
Reference | N | Age | Training Status | Exercise | Major Finding |
---|---|---|---|---|---|
Pareja-Blanco et al. [29] | M: 25 | 25.8 ± 3.3 | 1 year of RT | Squat and Bench Press | Significant differences between the sexes (30 to 75% 1RM) on Squat and Bench Press. |
W: 25 | 26.1 ± 4.0 | ||||
Torrejón et al. [30] | M: 14 | 23.8 ± 2.5 | Men presented higher experience with the bench press exercise than women | Bench Press | The MV associated with the light loads (≈30% 1RM) was higher for men, women presented higher MV values for heavy loads (≈100% 1RM). |
W: 14 | 21.5 ± 1.4 | ||||
Balsalobre et al. [35] | M: 26 | 21.2 ± 3.8 | At least 2 years of experience with the exercise | Seated military press | Moderate differences in the load–velocity profile between men and women. Namely, men showed higher MPV values at different % 1RM than women, with the exception of MPV at 100%1-RM in which the differences between males and females were trivial. |
W: 13 | 22.3 ± 3.3 | ||||
García-Ramos et al. [31] | M: 12 | 19.9 ± 1.2 | At least 2 years of resistance training experience (2–5 sessions/week) | Horizontal bench press (HBP); Inclined bench press; (IBP) Seated military press (SMP) | Men showed higher velocities than women for the same percentaje of 1RM during the three exercises (20 to 75% 1RM). The load–velocity profile is exercise-specific. |
W: 12 | 20.4 ± 1.3 | ||||
Iglesias-soler et al. [37] | M: 13 | 22 ± 3 | 4 rugby players and 4 judokas | Squat and Bench Press | The main finding of this study was that multilevel mixed regression models detected significant inter-individual variance in the slopes and intercepts of the LV relationship. Additionally, for BP, including sex as a fixed factor improved the goodness of fit, but this was not the case when the interaction between sex and percentaje of 1RM was added. |
W: 8 | 24 ± 2 | 5 rugby players and 8 judokas | |||
Alonso-Aubin Diego A. et al. (2019) [36] | M: 46 | 14.5 ± 1.3 | Rugby players | Squat and Bench Press | Significant sex-related differences were found on the squat exercise for maximum, mean, and time to maximum velocities as well as time to maximum power. On the bench press exercise, significant sex-related differences were found for power and time to maximum velocity. |
W: 41 | 14.9 ± 2.8 |
3.3. Summary of Quality
3.4. Meta-Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sport. Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Medicine American College of Sports Medicine Position Stand. Progression models in resistance training for healthy adults. Med. Sci. Sport. Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; García Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2020, 43, 31–49. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J.; Pérez, C.E.; Pallarés, J.G. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int. J. Sport. Med. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Muñoz-López, M.; Marchante, D.; Cano-Ruiz, M.A.; Chicharro, J.L.; Balsalobre-Fernández, C. Load-, Force-, and Power-Velocity Relationships in the Prone Pull-Up Exercise. Int. J. Sport. Physiol. Perform. 2017, 12, 1249–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Moreno, M.; Rodríguez-Rosell, D.; Pareja-Blanco, F.; Mora-Custodio, R.; González-Badillo, J.J. Movement velocity as indicator of relative intensity and level of effort attained during the set in pull-up Exercise. Int. J. Sport. Physiol. Perform. 2017, 12, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sport. Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef] [Green Version]
- de Hoyo, M.; Núñez, F.J.; Sañudo, B.; Gonzalo-Skok, O.; Muñoz-López, A.; Romero-Boza, S.; Otero-Esquina, C.; Sánchez, H.; Nimphius, S. Predicting loading intensity measuring velocity in barbell hip thrust exercise. J. Strength Cond. Res. 2021, 35, 2075–2081. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sport. Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; Pallarés, J.G.; Pérez, C.E.; Morán-Navarro, R.; González-Badillo, J.J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sport. Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef]
- Rhea, M.R.; Kenn, J.G.; Peterson, M.D.; Massey, D.; Simão, R.; Marín, P.J.; Favero, M.; Cardozo, D.; Krein, D.D. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Hum. Mov. 2016, 17, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Nuzzo, J.L. Narrative Rreview of sex differences in muscle strength, endurance, activation, size, fiber type, and strength training participation rates, preferences, motivations, injuries and neuromuscular adaptations. J. Strength Cond. Res. 2023, 37, 494–536. [Google Scholar] [CrossRef]
- Hunter, S.K. The relevance of sex differences in performance fatigability. Med. Sci. Sport. Exerc. 2016, 48, 2247–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, S.T.; Heather, A.K. Myths and Methodologies: Reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp. Physiol. 2018, 103, 1309–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besson, T.; Macchi, R.; Rossi, J.; Morio, C.Y.M.; Kunimasa, Y.; Nicol, C.; Vercruyssen, F.; Millet, G.Y. Sex differences in endurance running. Sport. Med. 2022, 52, 1235–1257. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.M.; Nuckols, G.; Krieger, J.W. Sex Differences in resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2020, 34, 1448–1460. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.R.S.; Blanco, F.P. Velocity-based resistance training: Do women need greater velocity loss to maximize adaptations? Eur. J. Appl. Physiol. 2022, 122, 1269–1280. [Google Scholar] [CrossRef]
- Ansdell, P.; Brownstein, C.G.; Škarabot, J.; Hicks, K.M.; Howatson, G.; Thomas, K.; Hunter, S.K.; Goodall, S. Sex differences in fatigability and recovery relative to the intensity-duration relationship. J. Physiol. 2019, 597, 5577–5595. [Google Scholar] [CrossRef]
- Hakkinen, K. Neuromuscular fatigue and recovery in male and female athletes during heavy resistance exercise. Int. J. Sport. Med. 1993, 14, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Linnanio, V.; Häkkinen, K.; Komi, P.V. Neuromuscular fatigue and recovery in maximal compared to explosive strength loading. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 77, 176–181. [Google Scholar] [CrossRef]
- Romero-Parra, N.; Cupeiro, R.; Alfaro-Magallanes, V.M.; Rael, B.; Rubio-Arias, J.Á.; Peinado, A.B.; Benito, P.J. Exercise-induced muscle damage during the menstrual cycle: A systematic review and meta-analysis. J. Strength Cond. Res. 2021, 35, 549–561. [Google Scholar] [CrossRef] [PubMed]
- McNulty, K.L.; Elliott-Sale, K.J.; Dolan, E.; Swinton, P.A.; Ansdell, P.; Goodall, S.; Thomas, K.; Hicks, K.M. The effects of menstrual cycle phase on exercise performance in eumenorrheic women: A systematic review and meta-analysis. Sport. Med. 2020, 50, 1813–1827. [Google Scholar] [CrossRef] [PubMed]
- Pinillos, F.; Lago Fuentes, C.; Bujalance-Moreno, P.; Pérez Castilla, A. Effect of the menstrual cycle when estimating 1 repetition maximum rrom the load-velocity relationship during the bench press exercise. J. Strength Cond. Res. 2020, 36, e55–e58. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Morrison, M.; García Ramos, A.; Johnston, R.; James, L.; Cole, M. The validity and reliability of commercially available resistance training monitoring devices: A systematic review. Sport. Med. 2021, 51, 443–502. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.A.; Cummings, G.G. The relationship between nursing leadership and patient outcomes: A systematic review. J. Nurs. Manag. 2007, 15, 508–521. [Google Scholar] [CrossRef]
- Cummings, G.; Lee, H.; Macgregor, T.; Davey, M.; Wong, C.; Paul, L.; Stafford, E. Factors contributing to nursing leadership: A systematic review. J. Health Serv. Res. Policy 2008, 13, 240–248. [Google Scholar] [CrossRef]
- Wagner, J.I.J.; Cummings, G.; Smith, D.L.; Olson, J.; Anderson, L.; Warren, S. The relationship between structural empowerment and psychological empowerment for nurses: A systematic review. J. Nurs. Manag. 2010, 18, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pareja-Blanco, F.; Walker, S.; Häkkinen, K. Validity of using velocity to estimate intensity in resistance exercises in men and women. Int. J. Sport. Med. 2020, 41, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Torrejón, A.; Balsalobre-Fernández, C.; Haff, G.G.; García-Ramos, A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sport. Biomech. 2019, 18, 245–255. [Google Scholar] [CrossRef]
- García-Ramos, A.; Suzovic, D.; Pérez-Castilla, A. The load-velocity profiles of three upper-body pushing exercises in men and women. Sport. Biomech. 2021, 20, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Li, L. The effects of body mass on optimal load for power during resistance training. Sport. Med. 2016, 46, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Castillo, F.; Valverde, T.; Morales, A.; Pérez-Guerra, A.; de León, F.; García-Manso, J.M. Maximum power, optimal load and optimal power spectrum for power training in upper-body (bench press): A review. Rev. Andal. Med. Deporte 2012, 5, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balsalobre-Fernández, C.; García Ramos, A.; Jimenez-Reyes, P. Load–velocity profiling in the military press exercise: Effects of gender and training. Int. J. Sport. Sci. Coach. 2017, 13, 743–750. [Google Scholar] [CrossRef]
- Alonso-Aubin, D.A.; Chulvi-Medrano, I.; Cortell-Tormo, J.M.; Picón-Martínez, M.; Rial Rebullido, T.; Faigenbaum, A.D. Squat and bench press force-velocity profiling in male and female adolescent rugby players. J. Strength Cond. Res. 2019, 35, S44–S50. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Soler, E.; Mayo, X.; Rial-Vázquez, J.; Haff, G.G. Inter-individual variability in the load-velocity relationship is detected by multilevel mixed regression models. Sport. Biomech. 2018, 20, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.; Rayner, M.; Mahmoud, M.M.I.; Behm, D.G. Push-ups vs. bench press differences in repetitions and muscle activation between sexes. J. Sport. Sci. Med. 2020, 19, 289–297. [Google Scholar]
- Amasay, T.; Mier, C.; Foley, K.; Carswell, T. Gender differences in performance of equivalently loaded push-up and bench-press exercises. J. Sport 2016, 5, 46–63. [Google Scholar] [CrossRef]
- Rodríguez-Ridao, D.; Antequera-Vique, J.A.; Martín-Fuentes, I.; Muyor, J.M. Effect of five bench inclinations on the electromyographic activity of the pectoralis major, anterior deltoid, and triceps brachii during the bench press exercise. Int. J. Environ. Res. Public Health 2020, 17, 7339. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P. Age- and sex-related differences in force-velocity characteristics of upper and lower limbs of competitive adolescent swimmers. J. Hum. Kinet. 2012, 32, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askow, A.T.; Merrigan, J.J.; Neddo, J.M.; Oliver, J.M.; Stone, J.D.; Jagim, A.R.; Jones, M.T. Effect of strength on velocity and power during back squat exercise in resistance-trained men and women. J. Strength Cond. Res. 2019, 33, 1–7. [Google Scholar] [CrossRef]
- Yoon, T.; Schlinder Delap, B.; Griffith, E.E.; Hunter, S.K. Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women. Muscle Nerve 2007, 36, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, J.A.; Lortie, G.; Boulay, M.R.; Thibault, M.C.; Thériault, G.; Bouchard, C. Skeletal muscle histochemical and biochemical characteristics in sedentary male and female subjects. Can. J. Physiol. Pharmacol. 1985, 63, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Rezende, F.A.C.; Ribeiro, A.Q.; Priore, S.E.; Franceschinni, S. do C.C. Anthropometric differences related to genders and age in the elderly. Nutr. Hosp. 2015, 32, 757–764. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Morán-Navarro, R.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; González-Badillo, J.J.; Pallarés, J.G. Range of motion and sticking region effects on the bench press load-velocity relationship. J. Sport. Sci. Med. 2019, 18, 645–652. [Google Scholar]
- Scanlan, A.T.; Dalbo, V.J.; Conte, D.; Stojanović, E.; Stojiljković, N.; Stanković, R.; Antić, V.; Milanović, Z. No Effect of Caffeine Supplementation on Dribbling Speed in Elite Basketball Players. Int. J. Sport. Physiol. Perform. 2019, 14, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Mookerjee, S.; Ratamess, N. Comparison of strength differences and joint action durations between full and partial range-of-motion bench press exercise. J. Strength Cond. Res. 1999, 13, 76–81. [Google Scholar]
- Fahs, C.A.; Blumkaitis, J.C.; Rossow, L.M. Factors related to average concentric velocity of four barbell exercises at various loads. J. Strength Cond. Res. 2019, 33, 597–605. [Google Scholar] [CrossRef]
- Miller, A.E.J.; MacDougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.A.; García-Ramos, A.; Calderbank, J.; Marín, P.J.; Sainz de Baranda, P.; Comfort, P. Does Sex Impact the Differences and Relationships in the One Repetition Maximum Performance Across Weightlifting Overhead Pressing Exercises? J. Strength Cond. Res. 2020, 36, 1930–1935. [Google Scholar] [CrossRef]
- Hennemanv, E.; Somjen, G.; Carpenter, D.O. Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 1965, 28, 560–580. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Ulloa-Díaz, D.; Barboza-González, P.; Rodríguez-Perea, Á.; Martínez-García, D.; Quidel-Catrilelbún, M.; Guede-Rojas, F.; Cuevas-Aburto, J.; Janicijevic, D.; Weakley, J. Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models. PLoS ONE 2019, 14, e0212085. [Google Scholar] [CrossRef] [PubMed]
- Zourdos, M.C.; Klemp, A.; Dolan, C.; Quiles, J.M.; Schau, K.A.; Jo, E.; Helms, E.; Esgro, B.; Duncan, S.; Garcia Merino, S.; et al. Novel resistance training-specific rating of perceived exertion scale measuring repetitions in reserve. J. Strength Cond. Res. 2016, 30, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, K.M.; Sato, K.; Bazyler, C.D.; Triplett, N.T.; Stone, M.H. Increases in variation of barbell kinematics are observed with increasing intensity in a graded back squat test. Sports 2017, 5, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, K.; Sato, K.; Beckham, G.; Triplett, N.; Griggs, C.; Stone, M. Relationship between concentric velocities at varying intensity in the back squat using a wireless inertial sensor. J. Trainology 2017, 6, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Fahs, C.A.; Rossow, L.M.; Zourdos, M.C. Analysis of factors related to back squat concentric velocity. J. Strength Cond. Res. 2018, 32, 2435–2441. [Google Scholar] [CrossRef]
- Helms, E.R.; Storey, A.; Cross, M.R.; Brown, S.R.; Lenetsky, S.; Ramsay, H.; Dillen, C.; Zourdos, M.C. RPE and velocity relationships for the back squat, bench press, and deadlift in powerlifters. J. Strength Cond. Res. 2017, 31, 292–297. [Google Scholar] [CrossRef]
- Fernandes, J.F.T.; Lamb, K.L.; Twist, C. A comparison of load-velocity and load-power relationships between well-trained young and middle-aged males during three popular resistance exercises. J. Strength Cond. Res. 2018, 32, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Differences in the load-velocity profile between 4 bench-press variants. Int. J. Sport. Physiol. Perform. 2018, 13, 326–331. [Google Scholar] [CrossRef]
Reference | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 | Item 6 | Item 7 | Item 8 | Item 9 | Item 10 | Item 11 | Item 12 | Item 13 | Total Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pareja-Blanco et al. [29] | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 9 |
Torrejón et al. [30] | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 9 |
García-Ramos et al. [31] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 11 |
Balsalobre et al. [35] | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 9 |
Iglesias-soler et al. [37] | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 10 |
Alonso-Aubin Diego A. et al. [36] | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Acevedo, R.; Romero-Moraleda, B.; Díaz-Lara, F.J.; Rubia, A.d.l.; González-García, J.; Mon-López, D. A Systematic Review and Meta-Analysis of the Differences in Mean Propulsive Velocity between Men and Women in Different Exercises. Sports 2023, 11, 118. https://doi.org/10.3390/sports11060118
Nieto-Acevedo R, Romero-Moraleda B, Díaz-Lara FJ, Rubia Adl, González-García J, Mon-López D. A Systematic Review and Meta-Analysis of the Differences in Mean Propulsive Velocity between Men and Women in Different Exercises. Sports. 2023; 11(6):118. https://doi.org/10.3390/sports11060118
Chicago/Turabian StyleNieto-Acevedo, Raúl, Blanca Romero-Moraleda, Francisco Javier Díaz-Lara, Alfonso de la Rubia, Jaime González-García, and Daniel Mon-López. 2023. "A Systematic Review and Meta-Analysis of the Differences in Mean Propulsive Velocity between Men and Women in Different Exercises" Sports 11, no. 6: 118. https://doi.org/10.3390/sports11060118
APA StyleNieto-Acevedo, R., Romero-Moraleda, B., Díaz-Lara, F. J., Rubia, A. d. l., González-García, J., & Mon-López, D. (2023). A Systematic Review and Meta-Analysis of the Differences in Mean Propulsive Velocity between Men and Women in Different Exercises. Sports, 11(6), 118. https://doi.org/10.3390/sports11060118