The Influence of Weekly Sprint Volume and Maximal Velocity Exposures on Eccentric Hamstring Strength in Professional Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sprint Monitoring
2.3. Nordic Hamstring Exercise
2.4. Statistical Analysis
3. Results
3.1. Participant Data
3.2. Relationship between Sprinting and Hamstring Strength
4. Discussion
4.1. Main Findings
4.2. Weekly Efforts at 90% of Maximum Velocity
4.3. Weekly Efforts at 95% of Maximum Velocity
4.4. Weekly Sprint Distance
4.5. Sprinting and Hamstring Strength Trends in Football
4.6. Limitations and Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekstrand, J.; Hagglund, M.; Walden, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Krutsch, W.; Spreco, A.; van Zoest, W.; Roberts, C.; Meyer, T.; Bengtsson, H. Time before return to play for the most common injuries in professional football: A 16-year follow-up of the UEFA Elite Club Injury Study. Br. J. Sports Med. 2020, 54, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Hagglund, M.; Walden, M.; Bahr, R.; Ekstrand, J. Methods for epidemiological study of injuries to professional football players: Developing the UEFA model. Br. J. Sports Med. 2005, 39, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Hagglund, M.; Walden, M.; Ekstrand, J. Previous injury as a risk factor for injury in elite football: A prospective study over two consecutive seasons. Br. J. Sports Med. 2006, 40, 767–772. [Google Scholar] [CrossRef]
- De Visser, H.M.; Reijman, M.; Heijboer, M.P.; Bos, P.K. Risk factors of recurrent hamstring injuries: A systematic review. Br. J. Sports Med. 2012, 46, 124–130. [Google Scholar] [CrossRef]
- Garrett, W.E., Jr. Muscle strain injuries. Am. J. Sports Med. 1996, 24 (Suppl. S6), S2–S8. [Google Scholar] [CrossRef]
- Stauber, W.T. Eccentric action of muscles: Physiology, injury, and adaptation. Exerc. Sport Sci. Rev. 1989, 17, 157–185. [Google Scholar]
- Woods, C.; Hawkins, R.D.; Maltby, S.; Hulse, M.; Thomas, A.; Hodson, A. and Football Association Medical Research Programme. The Football Association Medical Research Programme: An audit of injuries in professional football—Analysis of hamstring injuries. Br. J. Sports Med. 2004, 38, 36–41. [Google Scholar] [CrossRef]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Bangsbo, J. Physiological demands of football. Sports Sci. Exch. 2014, 27, 1–6. [Google Scholar]
- Bush, M.; Barnes, C.; Archer, D.T.; Hogg, B.; Bradley, P.S. Evolution of match performance parameters for various playing positions in the English Premier League. Hum. Mov. Sci. 2015, 39, 1–11. [Google Scholar] [CrossRef]
- Ekstrand, J.; Walden, M.; Hagglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef]
- Morin, J.; Gimenez, P.; Edouard, P.; Arnal, P.; Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Mendiguchia, J. Sprint acceleration mechanics: The major role of hamstrings in horizontal force production. Front. Physiol. 2015, 6, 404. [Google Scholar] [CrossRef]
- Schache, A.G.; Dorn, T.W.; Blanch, P.D.; Brown, N.A.; Pandy, M.G. Mechanics of the human hamstring muscles during sprinting. Med. Sci. Sports Exerc. 2012, 44, 647–658. [Google Scholar] [CrossRef]
- Yu, B.; Queen, R.M.; Abbey, A.N.; Liu, Y.; Moorman, C.T.; Garrett, W.E. Hamstring muscle kinematics and activation during overground sprinting. J. Biomech. 2008, 41, 3121–3126. [Google Scholar] [CrossRef]
- Ono, T.; Higashihara, A.; Shinohara, J.; Hirose, N.; Fukubayashi, T. Estimation of tensile force in the hamstring muscles during overground sprinting. Int. J. Sports Med. 2015, 36, 163–168. [Google Scholar]
- LaStayo, P.C.; Woolf, J.M.; Lewek, M.D.; Snyder-Mackler, L.; Reich, T.; Lindstedt, S.L. Eccentric muscle contractions: Their contribution to injury, prevention, rehabilitation, and sport. J. Orthop. Sports Phys. Ther. 2003, 33, 557–571. [Google Scholar] [CrossRef]
- Lee, J.W.; Mok, K.; Chan, H.C.; Yung, P.S.; Chan, K. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: A prospective study of 146 professional players. J. Sci. Med. Sport 2018, 21, 789–793. [Google Scholar] [CrossRef]
- Liu, H.; Garrett, W.E.; Moorman, C.T.; Yu, B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: A review of the literature. J. Sport Health Sci. 2012, 1, 92–101. [Google Scholar] [CrossRef]
- Opar, D.; Williams, M.; Timmins, R.; Hickey, J.; Duhig, S.; Shield, A. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med. Sci. Sports Exerc. 2015, 47, 857–865. [Google Scholar] [CrossRef]
- Mjølsnes, R.; Arnason, A.; Østhagen, T.; Raastad, T.; Bahr, R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand. J. Med. Sci. Sports 2004, 14, 311–317. [Google Scholar] [CrossRef]
- McAllister, M.J.; Hammond, K.G.; Schilling, B.K.; Ferreria, L.C.; Reed, J.P.; Weiss, L.W. Muscle activation during various hamstring exercises. J. Strength Cond. Res. 2014, 28, 1573–1580. [Google Scholar] [CrossRef]
- Arnason, A.; Andersen, T.; Holme, I.; Engebretsen, L.; Bahr, R. Prevention of hamstring strains in elite soccer: An intervention study. Scand. J. Med. Sci. Sports 2008, 18, 40–48. [Google Scholar] [CrossRef]
- Petersen, J.; Thorborg, K.; Nielsen, M.B.; Budtz-Jørgensen, E.; Hölmich, P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: A cluster-randomized controlled trial. Am. J. Sports Med. 2011, 39, 2296–2303. [Google Scholar] [CrossRef]
- Van der Horst, N.; Smits, D.W.; Petersen, J.; Goedhart, E.A.; Backx, F.J. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: A randomized controlled trial. Am. J. Sports Med. 2015, 43, 1316–1323. [Google Scholar] [CrossRef]
- Bourne, M.N.; Duhig, S.J.; Timmins, R.G.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: Implications for injury prevention. Br. J. Sports Med. 2017, 51, 469–477. [Google Scholar] [CrossRef]
- Presland, J.D.; Timmins, R.G.; Bourne, M.N.; Williams, M.D.; Opar, D.A. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand. J. Med. Sci. Sports 2018, 28, 1775–1783. [Google Scholar] [CrossRef]
- Chumanov, E.S.; Schache, A.G.; Heiderscheit, B.C.; Thelen, D.G. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br. J. Sports Med. 2012, 46, 90. [Google Scholar] [CrossRef]
- Opar, D.A.; Piatkowski, T.; Williams, M.D.; Shield, A.J. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: A reliability and retrospective injury study. J. Orthop. Sports Phys. Ther. 2013, 43, 636–640. [Google Scholar] [CrossRef]
- Opar, D.A.; Timmins, R.G.; Behan, F.P.; Hickey, J.T.; van Dyk, N.; Price, K.; Maniar, N. Is pre-season eccentric strength testing during the Nordic hamstring exercise associated with future hamstring strain injury? A systematic review and meta-analysis. Sports Med. 2021, 51, 1935–1945. [Google Scholar] [CrossRef]
- Wille, C.M.; Stiffler-Joachim, M.R.; Kliethermes, S.A.; Sanfilippo, J.L.; Tanaka, C.S.; Heiderscheit, B.C. Preseason Eccentric Strength is Not Associated with Hamstring Strain Injury: A Prospective Study in Collegiate Athletes. Med. Sci. Sports Exerc. 2022, 54, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Sconce, E.; Jones, P.; Turner, E.; Comfort, P.; Graham-Smith, P. The validity of the nordic hamstring lower for a field-based assessment of eccentric hamstring strength. J. Sport Rehabil. 2015, 24, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Higashihara, A.; Nagano, Y.; Ono, T.; Fukubayashi, T. Differences in activation properties of the hamstring muscles during overground sprinting. Gait Posture 2015, 42, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.; Roe, M.; Doran, D.A.; Gabbett, T.J.; Collins, K. High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football. J. Sci. Med. Sport 2017, 20, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. The training—injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Colby, M.J.; Dawson, B.; Peeling, P.; Heasman, J.; Rogalski, B.; Drew, M.K.; Stares, J. Improvement of prediction of noncontact injury in elite Australian Footballers with repeated exposure to established high-risk workload scenarios. Int. J. Sports Physiol. Perform. 2018, 13, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T. The Science of Training-Soccer: A Scientific Approach to Developing Strength, Speed and Endurance, 1st ed.; Routledge: Abingdon, UK, 2006. [Google Scholar]
- Owen, A.; Twist, C.; Ford, P. Small-sided games: The physiological and technical effect of altering pitch size and player numbers. Insight 2004, 7, 50–53. [Google Scholar]
- Bradley, P.S.; Carling, C.; Diaz, A.G.; Hood, P.; Barnes, C.; Ade, J.; Boddy, M.; Krustrup, P.; Mohr, M. Match performance and physical capacity of players in the top three competitive standards of English professional soccer. Hum. Mov. Sci. 2013, 32, 808–821. [Google Scholar] [CrossRef]
- Di Mascio, M.; Bradley, P.S. Evaluation of the most intense high-intensity running period in English FA premier league soccer matches. J. Strength Cond. Res. 2013, 27, 909–915. [Google Scholar] [CrossRef]
- Anderson, L.; Orme, P.; Di Michele, R.; Close, G.L.; Morgans, R.; Drust, B.; Morton, J.P. Quantification of training load during one-, two-and three-game week schedules in professional soccer players from the English Premier League: Implications for carbohydrate periodisation. J. Sports Sci. 2016, 34, 1250–1259. [Google Scholar] [CrossRef]
- Malone, S.; Solan, B.; Collins, K.D.; Doran, D.A. Positional match running performance in elite Gaelic football. J. Strength Cond. Res. 2016, 30, 2292–2298. [Google Scholar] [CrossRef]
- Van de Pol, P.K.; Kavussanu, M. Achievement motivation across training and competition in individual and team sports. Sport Exerc. Perform. Psychol. 2012, 1, 91. [Google Scholar] [CrossRef]
- Malone, S.; Owen, A.; Mendes, B.; Hughes, B.; Collins, K.; Gabbett, T.J. High-speed running and sprinting as an injury risk factor in soccer: Can well-developed physical qualities reduce the risk? J. Sci. Med. Sport 2018, 21, 257–262. [Google Scholar] [CrossRef]
- Varley, M.C.; Jaspers, A.; Helsen, W.F.; Malone, J.J. Methodological considerations when quantifying high-intensity efforts in team sport using global positioning system technology. Int. J. Sports Physiol. Perform. 2017, 12, 1059–1068. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using GPS devices in sport. Int. J. Sports Physiol. Perform. 2017, 12, S2-18–S2-26. [Google Scholar] [CrossRef]
- Castellano, J.; Casamichana, D.; Calleja-González, J.; San Román, J.; Ostojic, S.M. Reliability and accuracy of 10 Hz GPS devices for short-distance exercise. J. Sports Sci. Med. 2011, 10, 233. [Google Scholar]
- Rampinini, E.; Alberti, G.; Fiorenza, M.; Riggio, M.; Sassi, R.; Borges, T.O.; Coutts, A.J. Accuracy of GPS devices for measuring high-intensity running in field-based team sports. Int. J. Sports Med. 2015, 36, 49–53. [Google Scholar] [CrossRef]
- Johnston, R.J.; Watsford, M.L.; Kelly, S.J.; Pine, M.J.; Spurrs, R.W. Validity and interunit reliability of 10 Hz and 15 Hz GPS units for assessing athlete movement demands. J. Strength Cond. Res. 2014, 28, 1649–1655. [Google Scholar] [CrossRef]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Li, F.X. Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. Br. J. Sports Med. 2017, 51, 452–459. [Google Scholar] [CrossRef]
- Hopkins, W. A Scale of Magnitude for Effect Statistics. Internet Society for Sport Science. 2002. Available online: http://www.sportsci.org/resource/stats/effectmag.html (accessed on 27 May 2021).
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef]
- Coutts, A.J.; Quinn, J.; Hocking, J.; Castagna, C.; Rampinini, E. Match running performance in elite Australian Rules Football. J. Sci. Med. Sport 2010, 13, 543–548. [Google Scholar] [CrossRef]
- Di Salvo, V.; Baron, R.; González-Haro, C.; Gormasz, C.; Pigozzi, F.; Bachl, N. Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J. Sports Sci. 2010, 28, 1489–1494. [Google Scholar] [CrossRef]
- Schimpchen, J.; Skorski, S.; Nopp, S.; Meyer, T. Are “classical” tests of repeated-sprint ability in football externally valid? A new approach to determine in-game sprinting behaviour in elite football players. J. Sports Sci. 2016, 34, 519–526. [Google Scholar] [CrossRef]
- Fleay, B.; Joyce, C.; Banyard, H.; Woods, C.T. Manipulating field dimensions during small-sided games impacts the technical and physical profiles of Australian footballers. J. Strength Cond. Res. 2018, 32, 2039–2044. [Google Scholar] [CrossRef]
- Castillo, D.; Raya-González, J.; Yanci, J.; Clemente, F.M. Influence of pitch size on short-term high intensity actions and body impacts in soccer sided games. J. Hum. Kinet. 2021, 78, 187. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Nassis, G.P.; Oetter, E.; Pretorius, J.; Johnston, N.; Medina, D.; Rodas, G.; Myslinski, T.; Howells, D.; Beard, A.; et al. The athlete monitoring cycle: A practical guide to interpreting and applying training monitoring data. Br. J. Sports Med. 2017, 51, 1451–1452. [Google Scholar] [CrossRef]
- Scott, M.T.; Scott, T.J.; Kelly, V.G. The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef]
- Little, T. Optimizing the use of soccer drills for physiological development. Strength Cond. J. 2009, 31, 67–74. [Google Scholar] [CrossRef]
- Duhig, S.; Shield, A.J.; Opar, D.; Gabbett, T.J.; Ferguson, C.; Williams, M. Effect of high-speed running on hamstring strain injury risk. Br. J. Sports Med. 2016, 50, 1536–1540. [Google Scholar] [CrossRef]
- Hulin, B.T.; Gabbett, T.J.; Lawson, D.W.; Caputi, P.; Sampson, J.A. The acute:chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. Br. J. Sports Med. 2016, 50, 231–236. [Google Scholar] [CrossRef]
- Murray, N.B.; Gabbett, T.J.; Townshend, A.D.; Blanch, P. Calculating acute:chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. Br. J. Sports Med. 2017, 51, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Cummins, C.; Welch, M.; Inkster, B.; Cupples, B.; Weaving, D.; Jones, B.; King, D.; Murphy, A. Modelling the relationships between volume, intensity and injury-risk in professional rugby league players. J. Sci. Med. Sport 2019, 22, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Bruce-Low, S.; Li, F.X. Spikes in acute:chronic workload ratio (ACWR) associated with a 5–7 times greater injury rate in English Premier League football players: A comprehensive 3-year study. Br. J. Sports Med. 2020, 54, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Miñano-Espin, J.; Casais, L.; Lago-Penas, C.; Gomez-Ruano, M.A. High Speed Running and Sprinting Profiles of Elite Soccer Players. J. Hum. Kinet. 2017, 58, 169–176. [Google Scholar] [CrossRef]
- Dellal, A.; Chamari, K.; Wong, D.P.; Ahmaidi, S.; Keller, D.; Barros, R.; Bisciotti, G.N.; Carling, C. Comparison of physical and technical performance in European soccer match-play: FA Premier League and La Liga. Eur. J. Sport Sci. 2011, 11, 51–59. [Google Scholar] [CrossRef]
- Teixeira, J.E.; Leal, M.; Ferraz, R.; Ribeiro, J.; Cachada, J.M.; Barbosa, T.M.; Monteiro, A.M.; Forte, P. Effects of match location, quality of opposition and match outcome on match running performance in a Portuguese professional football team. Entropy 2021, 23, 973. [Google Scholar] [CrossRef]
- Barnes, C.; Archer, D.; Hogg, B.; Bush, M.; Bradley, P. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Haugen, T.A.; Breitschädel, F.; Seiler, S. Sprint mechanical properties in soccer players according to playing standard, position, age and sex. J. Sports Sci. 2020, 38, 1070–1076. [Google Scholar] [CrossRef]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of high intensity activity in Premier League soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef]
- Dellal, A.; Wong, D.P.; Moalla, W.; Chamari, K. Physical and technical activity of soccer players in the French First League-with special reference to their playing position. Int. SportMed J. 2010, 11, 278–290. [Google Scholar]
- Hagglund, M.; Waldén, M.; Ekstrand, J. Risk factors for lower extremity muscle injury in professional soccer: The UEFA Injury Study. Am. J. Sports Med. 2013, 41, 327–335. [Google Scholar] [CrossRef]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Risk factors for injuries in football. Am. J. Sports Med. 2004, 32 (Suppl. S1), 5–16. [Google Scholar] [CrossRef]
- Engebretsen, A.H.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R. Intrinsic risk factors for hamstring injuries among male soccer players: A prospective cohort study. Am. J. Sports Med. 2010, 38, 1147–1153. [Google Scholar] [CrossRef]
- Carling, C.; Le Gall, F.; Orhant, E. A four-season prospective study of muscle strain reoccurrences in a professional football club. Res. Sports Med. 2011, 19, 92–102. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Tiggelen, D.; Danneels, L.; Witvrouw, E. Susceptibility to hamstring injuries in soccer: A prospective study using muscle functional magnetic resonance imaging. Am. J. Sports Med. 2016, 44, 1276–1285. [Google Scholar] [CrossRef]
- Bourne, M.N.; Opar, D.A.; Williams, M.D.; Shield, A.J. Eccentric knee flexor strength and risk of hamstring injuries in rugby union: A prospective study. Am. J. Sports Med. 2015, 43, 2663–2670. [Google Scholar] [CrossRef]
- Vald Performance 2020 European Football Report Season 2019–20: Nordic Strength. Available online: https://valdperformance.com/nordic-strength/ (accessed on 21 October 2021).
- SkillCorner Competing at the Pinnacle: Physical Demands of the UEFA Champions League. 2020. Available online: https://medium.com/skillcorner/competing-at-the-pinnacle-physical-demands-of-the-uefa-champions-league-278399632d80 (accessed on 15 November 2021).
- Buchheit, M. Applying the acute:chronic workload ratio in elite football: Worth the effort? Br. J. Sports Med. 2017, 51, 1325–1327. [Google Scholar] [CrossRef]
- Wang, C.; Vargas, J.T.; Stokes, T.; Steele, R.; Shrier, I. Analyzing activity and injury: Lessons learned from the acute: Chronic workload ratio. Sports Med. 2020, 50, 1243–1254. [Google Scholar] [CrossRef]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Monitoring accumulated training and match load in football: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 3906. [Google Scholar] [CrossRef]
Playing Positions * | Age (Years) | Height (cm) | Mass (kg) | Body Fat (%) | Yo-Yo IE2 † Distance (m) |
---|---|---|---|---|---|
Defenders (n = 21) | 21.7 ± 4.2 | 183.4 ± 5.7 | 78.9 ± 8.2 | 11.2 ± 2.2 | 2027 ± 714 |
Midfielders (n = 17) | 21.5 ± 5.4 | 177.7 ± 5.3 | 71.1 ± 8.1 | 11.2 ± 2.3 | 2096 ± 808 |
Attackers (n = 20) | 22.2 ± 4.6 | 181.3 ± 7.0 | 78.4 ± 10.7 | 11.3 ± 3.3 | 1875 ± 938 |
Squad (n = 58) | 21.8 ± 4.6 | 181.0 ± 6.4 | 76.5 ± 9.6 | 11.2 ± 2.6 | 2002 ± 442 |
Position | Maximum Velocity (m/s) | Weekly Sprint Distance (m) | Weekly Efforts > 90% of Max Velocity (n) | Weekly Efforts > 95% of Max Velocity (n) | Hamstring Strength (N) | Strength Imbalance (%) |
---|---|---|---|---|---|---|
Defenders | 9.30 ± 0.24 | 204.8 ± 178.8 | 1.12 ± 1.51 | 0.02 ± 0.14 | 420.14 ± 52.84 | 7.90 ± 7.35 |
Midfielders | 9.19 ± 0.23 | 208.4 ± 193.2 | 0.86 ± 1.24 | 0.01 ± 0.10 | 416.15 ± 48.80 | 9.87 ± 6.32 |
Attackers | 9.32 ± 0.30 | 224.7 ± 195.3 | 0.87 ± 1.37 | 0.02 ± 0.18 | 446.98 ± 66.42 | 6.99 ± 5.75 |
Overall Squad | 9.27 ± 0.27 | 212.1 ± 188.6 | 0.96 ± 1.39 | 0.02 ± 0.14 | 427.47 ± 57.98 | 8.20 ± 6.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.; Collins, K.; Macgregor, L.J. The Influence of Weekly Sprint Volume and Maximal Velocity Exposures on Eccentric Hamstring Strength in Professional Football Players. Sports 2022, 10, 125. https://doi.org/10.3390/sports10080125
Shah S, Collins K, Macgregor LJ. The Influence of Weekly Sprint Volume and Maximal Velocity Exposures on Eccentric Hamstring Strength in Professional Football Players. Sports. 2022; 10(8):125. https://doi.org/10.3390/sports10080125
Chicago/Turabian StyleShah, Sunnan, Kieran Collins, and Lewis J. Macgregor. 2022. "The Influence of Weekly Sprint Volume and Maximal Velocity Exposures on Eccentric Hamstring Strength in Professional Football Players" Sports 10, no. 8: 125. https://doi.org/10.3390/sports10080125
APA StyleShah, S., Collins, K., & Macgregor, L. J. (2022). The Influence of Weekly Sprint Volume and Maximal Velocity Exposures on Eccentric Hamstring Strength in Professional Football Players. Sports, 10(8), 125. https://doi.org/10.3390/sports10080125