Physiological Responses and Stroke Variables during Arm Stroke Swimming Using Critical Stroke Rate in Competitive Swimmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Procedure
2.3. Determination of CSR and CV
2.4. Interval Test
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ogita, F.; Hara, M.; Tabata, I. Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol. Scand. 1996, 157, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Deschodt, V.J.; Arsac, L.M.; Rouard, A.H. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Silveira, R.P.; de Souza Castro, F.A.; Figueiredo, P.; Vilas-Boas, J.P.; Zamparo, P. The effects of leg kick on swimming speed and arm-stroke efficiency in the front crawl. Int. J. Sports Physiol. Perform. 2017, 12, 728–735. [Google Scholar] [CrossRef]
- Dekerle, J.; Sidney, M.; Hespel, J.M.; Pelayo, P. Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances. Int. J. Sports Med. 2002, 23, 93–98. [Google Scholar] [CrossRef]
- Franken, M.; Diefenthaeler, F.; Moré, F.C.; Silveira, R.P.; de Souza Castro, F.A. Critical stroke rate as a parameter for evaluation in swimming. Mot. Rev. De Educ. Física 2013, 19, 724–729. [Google Scholar] [CrossRef][Green Version]
- Dekerle, J. The use of critical velocity in swimming: A place for critical stroke rate? Port. J. Sport. Sci. 2006, 6, 201–205. [Google Scholar]
- Raimundo, J.A.; Ribeiro, G.; Lisbôa, F.D.; Pereira, G.S.; Loch, T.; De Aguiar, R.A.; Martins, E.C.; Caputo, F. The effects of predictive trials on critical stroke rate and critical swimming speed. J. Sports Med. Phys. Fit. 2020, 60, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Funai, Y.; Matsunami, M.; Taba, S. Physiological responses and swimming technique during upper limb critical stroke rate training in competitive swimmers. J. Hum. Kinet. 2019, 70, 61–68. [Google Scholar] [CrossRef][Green Version]
- Machado, M.V.; Júnior, O.A.; Marques, A.C.; Colantonio, E.; Cyrino, E.S.; De Mello, M.T. Effect of 12 weeks of training on critical velocity and maximal lactate steady state in swimmers. Eur. J. Sport Sci. 2011, 11, 165–170. [Google Scholar] [CrossRef]
- Minganti, C.; Demarie, S.; Comotto, S.; Meeusen, R.; Piacentini, M.F. Evaluation of critical swimming velocity in young amateur swimmers. Sport Sci. Health 2012, 7, 87–91. [Google Scholar] [CrossRef]
- Takahashi, S.; Wakayoshi, K.; Hayashi, A.; Sakaguchi, Y.; Kitagawa, K. A method for determining critical swimming velocity. Int. J. Sports Med. 2009, 30, 119–123. [Google Scholar] [CrossRef]
- Wakayoshi, K.; Yoshida, T.; Udo, M.; Harada, T.; Moritani, T.; Mutoh, Y.; Miyashita, M. Does critical swimming velocity represent exercise intensity at maximal lactate steady state? Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Maglischo, E.W. Swimming Fastest; Human Kinetics: Leeds, UK, 2003; pp. 395–431. [Google Scholar]
- Dalamitros, A.A.; Zafeiridis, A.S.; Toubekis, A.G.; Tsalis, G.A.; Pelarigo, J.G.; Manou, V.; Kellis, S. Effects of short-interval and long-interval swimming protocols on performance, aerobic adaptations, and technical parameters: A training study. J. Strength Cond. Res. 2016, 30, 2871–2879. [Google Scholar] [CrossRef] [PubMed]
- Piatrikova, E.; Willsmer, N.J.; Sousa, A.C.; Gonzalez, J.T.; Williams, S. Individualizing Training in Swimming: Evidence for Utilizing the Critical Speed and Critical Stroke Rate Concepts. Int. J. Sports Physiol. Perform. 2020, 15, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Hellard, P.; Dekerle, J.; Nesi, X.; Toussaint, J.F.; Houel, N.; Hausswirth, C. Ventilatory and biomechanical response analysis in short vs. long interval training sessions in elite long distance swimmers. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Oslo, Norway, 16–19 June 2010; Nordbergtrykk: Oslo, Norway, 2010; pp. 259–261. [Google Scholar]
- Neiva, H.P.; Marques, M.C.; Barbosa, T.M.; Izquierdo, M.; Marinho, D.A. Warm-up and performance in competitive swimming. Sports Med. 2014, 44, 319–330. [Google Scholar] [CrossRef][Green Version]
- Onodera, K.; Miyashita, M. A study on Japanese scale for rating of perceived exertion in endurance exercise (in Japanese). Jpn. J. Phys. Educ. 1976, 21, 191–203. [Google Scholar]
- Craig, A.B., Jr.; Pendergast, D.R. Relationships of stroke rate, distance per stroke, and velocity in competitive swimming. Med. Sci. Sports 1979, 11, 278–283. [Google Scholar] [CrossRef]
- Yanai, T. Rotational effect of buoyancy in frontcrawl: Does it really cause the legs to sink? J. Biomech. 2001, 34, 235–243. [Google Scholar] [CrossRef]
- Konstantaki, M.; Winter, E.; Swaine, I. Effects of arms-only swimming training on performance, movement economy, and aerobic power. Int. J. Sports Physiol. Perform. 2008, 3, 294–304. [Google Scholar] [CrossRef]
- Ogasawara, K.; Shimada, K.; Tachi, M.; Wakayoshi, K. Determination of critical velocity in arm strokes, leg kicks and whole crawl strokes for competitive swimmers and water polo players (in Japanese). Jpn. J. Sci. Swim. Water Exerc. 2009, 12, 10–17. [Google Scholar] [CrossRef][Green Version]
- Hatta, H. Lactate, an Efficient Energy Source; Kyorin Shoin: Tokyo, Japan, 2008; pp. 1–12. [Google Scholar]
- Martin, L.; Whyte, G.P. Comparison of critical swimming velocity and velocity at lactate threshold in elite triathletes. Int. J. Sports Med. 2000, 25, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Pelarigo, J.G.; Denadai, B.S.; Greco, C.C. Stroke phases responses around maximal lactate steady state in front crawl. J. Sci. Med. Sport 2011, 14, 168.e1–168.e5. [Google Scholar] [CrossRef] [PubMed]
- Shimoyama, Y.; Nomura, T. Role of rest interval during interval training at OBLA speed. In Proceedings of the VIIIth International Symposium for Biomechanics and Medicine in Swimming, Jyväskylä, Finland, 28 June–2 July 1998; Gummerus Printing: Jyväskylä, Finland, 1999; pp. 459–464. [Google Scholar]
- Olbrecht, J.; Madsen, O.; Mader, A.; Liesen, H.; Hollmann, W. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercise. Int. J. Sports Med. 1985, 6, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Figueiredo, P.; Sousa, J.; Monteiro, J.; Pelarigo, J.; Vilas-Boas, J.P.; Toussaint, H.M.; Fernandes, R.F. VO2 kinetics and metabolic contributions during full and upper body extreme swimming intensity. Eur. J. Appl. Physiol. 2015, 115, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Chatard, J.C.; Busso, T.; Geyssant, A.; Barale, F.; Lacoste, L. Effects of training on performance in competitive swimming. Can. J. Appl. Physiol. 1995, 20, 395–406. [Google Scholar] [CrossRef]
- Keskinen, K.L.; Komi, P.V. Stroking characteristics of front crawl swimming during exercise. J. Appl. Biomech. 1993, 9, 219–226. [Google Scholar] [CrossRef]
- Pelarigo, J.G.; Greco, C.C.; Denadai, B.S.; Fernandes, R.J.; Vilas-Boas, J.P.; Pendergast, D.R. Do 5% changes around maximal lactate steady state lead to swimming biophysical modifications? Hum. Mov. Sci. 2016, 49, 258–266. [Google Scholar] [CrossRef][Green Version]
- Alberty, M.; Potdevin, F.; Dekerle, J.; Pelayo, P.; Gorce, P.; Sidney, N. Changes in swimming technique during time to exhaustion at freely chosen and controlled stroke rates. J. Sports Sci. 2008, 26, 1191–1200. [Google Scholar] [CrossRef]
- Bassan, N.M.; César, T.E.; Denadai, B.S.; Greco, C.C. Relationship between fatigue and changes in swim technique during an exhaustive swim exercise. Int. J. Sports Physiol. Perform. 2016, 11, 33–39. [Google Scholar] [CrossRef]
- Barden, J.M.; Kell, R.T. Relationships between stroke parameters and critical swimming speed in a sprint interval training set. J. Sports Sci. 2009, 27, 227–235. [Google Scholar] [CrossRef]
First | Second | Third | Fourth | Fifth | Sixth | ||
---|---|---|---|---|---|---|---|
Swimming velocity (m/s) | CSR | 1.41 ± 0.05 | 1.39 ± 0.05 1 | 1.39 ± 0.06 1 | 1.38 ± 0.05 1 | 1.38 ± 0.05 1 | 1.38 ± 0.05 1 |
105% CSR | 1.44 ± 0.04 a | 1.42 ± 0.04 a,1 | 1.42 ± 0.04 a,1 | 1.41 ± 0.04 a,1 | 1.42 ± 0.04 a,1 | 1.42 ± 0.04 a,1 | |
110% CSR | 1.46 ± 0.04 a,b | 1.45 ± 0.04 a,b,1 | 1.44 ± 0.03 a,b,1 | 1.44 ± 0.03 a,b,1 | 1.44 ± 0.04 a,b,1 | 1.45 ± 0.03 a,b,1 | |
Swimming time (s) | CSR | 71.13 ± 2.47 | 71.98 ± 2.73 1 | 72.09 ± 2.80 1 | 72.41 ± 2.73 1 | 72.41 ± 2.82 1 | 72.32 ± 2.52 1 |
105% CSR | 69.68 ± 2.09 a | 70.36 ± 2.19 a,1 | 70.58 ± 1.88 a,1 | 70.95 ± 2.06 a,1 | 70.75 ± 2.10 a,1 | 70.69 ± 1.83 a,1 | |
110% CSR | 68.73 ± 2.05 a,b | 69.23 ± 1.65 a,b,1 | 69.34 ± 1.47 a,b,1 | 69.33 ± 1.35 a,b,1 | 69.34 ± 1.86 a,b,1 | 69.26 ± 1.60 a,b,1 | |
Stroke rate (cycles/min) | CSR | 33.39 ± 3.80 | 33.69 ± 3.70 | 33.97 ± 3.87 | 33.66 ± 3.64 | 33.70 ± 3.85 | 33.67 ± 3.44 |
105% CSR | 35.23 ± 3.78 a | 35.34 ± 3.90 a | 35.24 ± 3.88 a | 35.24 ± 3.73 a | 35.41 ± 3.76 a | 35.21 ± 3.69 a | |
110% CSR | 36.84 ± 4.10 a,b | 37.00 ± 4.00 a,b | 36.89 ± 3.73 a,b | 37.17 ± 3.89 a,b | 37.16 ± 4.15 a,b | 37.17 ± 4.11 a,b | |
Stroke length (m/cycle) | CSR | 2.55 ± 0.22 | 2.50 ± 0.21 1 | 2.47 ± 0.21 1 | 2.48 ± 0.20 1 | 2.48 ± 0.22 1 | 2.48 ± 0.20 1 |
105% CSR | 2.47 ± 0.27 a | 2.44 ± 0.22 a,1 | 2.44 ± 0.23 a,1 | 2.42 ± 0.22 a,1 | 2.42 ± 0.21 a,1 | 2.43 ± 0.21 a,1 | |
110% CSR | 2.39 ± 0.21 a,b | 2.37 ± 0.22 a,b,1 | 2.37 ± 0.21 a,b,1 | 2.35 ± 0.22 a,b,1 | 2.35 ± 0.21 a,b,1 | 2.35 ± 0.22 a,b,1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funai, Y.; Matsunami, M.; Taba, S.; Takahashi, S. Physiological Responses and Stroke Variables during Arm Stroke Swimming Using Critical Stroke Rate in Competitive Swimmers. Sports 2022, 10, 46. https://doi.org/10.3390/sports10040046
Funai Y, Matsunami M, Taba S, Takahashi S. Physiological Responses and Stroke Variables during Arm Stroke Swimming Using Critical Stroke Rate in Competitive Swimmers. Sports. 2022; 10(4):46. https://doi.org/10.3390/sports10040046
Chicago/Turabian StyleFunai, Yuki, Masaru Matsunami, Shoichiro Taba, and Shigehiro Takahashi. 2022. "Physiological Responses and Stroke Variables during Arm Stroke Swimming Using Critical Stroke Rate in Competitive Swimmers" Sports 10, no. 4: 46. https://doi.org/10.3390/sports10040046