The Effect of a Handball Warm-Up Program on Dynamic Balance among Elite Adolescent Handball Players
Abstract
:1. Introduction
2. Methods
2.1. Participants and Study Design
2.2. HWP Warm-Up Program
2.3. Control Group
2.4. Measures
2.4.1. Dynamic Single-Leg Balance Test
2.4.2. Y Dynamic Balance Test
2.5. Statistical Analysis
3. Results
3.1. BBS Dynamic Single Leg Test
3.2. Y Dynamic Balance Test
3.3. Comparison between Legs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luig, P.; Krutsch, W.; Nerlich, M.; Henke, T.; Klein, C.; Bloch, H.; Platen, P.; Achenbach, L. Increased injury rates after the restructure of Germany’s national second league of team handball. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, F.; Nuhrenborger, C.; Hoffmann, A.; Pape, D.; Seil, R. Unusual injury mechanism of a tibial plateau fracture in relation with a knee brace in handball–A case study. Sports Orthop. Traumatol. 2016, 32, 165–168. [Google Scholar] [CrossRef]
- Achenbach, L.; Loose, O.; Laver, L.; Zeman, F.; Nerlich, M.; Angele, P.; Krutsch, W. Beach handball is safer than indoor team handball: Injury rates during the 2017 European beach handball championships. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1909–1915. [Google Scholar] [CrossRef] [PubMed]
- Olsen, O.E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury pattern in youth team handball: A comparison of two prospective registration methods. Scand. J. Med. Sci. Sports 2006, 16, 426–432. [Google Scholar] [CrossRef]
- Takahashi, S.; Nagano, Y.; Ito, W.; Kido, Y.; Okuwaki, T. A retrospective study of mechanisms of anterior cruciate ligament injuries in high school basketball, handball, judo, soccer, and volleyball. Medicine 2019, 98, e16030. [Google Scholar] [CrossRef]
- Daneshjoo, A.; Mokhtar, A.H.; Rahnama, N.; Yusof, A. The effects of comprehensive warm-up programs on proprioception, static and dynamic balance on male soccer players. PLoS ONE 2012, 7, e51568. [Google Scholar] [CrossRef]
- Zarei, M.; Abbasi, H.; Daneshjoo, A.; Gheitasi, M.; Johari, K.; Faude, O.; Rommers, N.; Rössler, R. The effect of the “11+ Kids” on the isokinetic strength of young football players. Int. J. Sports Physiol. Perform. 2018, 15, 25–30. [Google Scholar] [CrossRef]
- Zarei, M.; Abbasi, H.; Daneshjoo, A.; Barghi, T.S.; Rommers, N.; Faude, O.; Rössler, R. Long-term effects of the 11+ warm-up injury prevention programme on physical performance in adolescent male football players: A cluster-randomised controlled trial. J. Sports Sci. 2018, 36, 2447–2454. [Google Scholar] [CrossRef]
- Oliano, V.J.; Teixeira, L.P.; Lara, S.; Balk, R.S.; Fagundes, S.G. Effect of FIFA 11+ in addition to conventional handball training on balance and isokinetic strength. Rev. Bras. Cineantropometria Desempenho Hum. 2017, 19, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Schedler, S.; Brock, K.; Fleischhauer, F.; Kiss, R.; Muehlbauer, T. Effects of balance training on balance performance in youth: Are there age differences? Res. Q. Exerc. Sport. 2020, 91, 405–414. [Google Scholar] [CrossRef]
- Penichet-Tomas, A.; Pueo, B. stabilometry profile in fixed seat rowers. J. Phys. Educ. Sport 2017, 17, 537–542. [Google Scholar] [CrossRef]
- Hartley, E.M.; Hoch, M.C.; Boling, M.C. Y-balance test performance and BMI are associated with ankle sprain injury in collegiate male athletes. J. Sci. Med. Sport 2018, 21, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Steffen, K.; Nilstad, A.; Krosshaug, T.; Pasanen, K.; Killingmo, A.; Bahr, R.O.R.; Narici, M.V.; Kjaer, M. No association between static and dynamic postural control and ACL injury risk among female elite handball and football players: A prospective study of 838 players. Br. J. Sports Med. 2017, 51, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Zech, A.; Hübscher, M.; Vogt, L.; Banzer, W.; Hänsel, F.; Pfeifer, K. Balance training for neuromuscular control and performance enhancement: A systematic review. J. Athl. Train. 2010, 45, 392–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouteraa, I.; Negra, Y.; Shephard, R.J.; Chelly, M.S. Effects of combined balance and plyometric training on athletic performance in female basketball players. J. Stre. Cond. Res. 2020, 34, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Cachupe, W.J.C.; Shifflett, B.; Kahanov, L.; Wughalter, E.H. Reliability of Biodex Balance System measures. Meas. Phys. Educ. Exerc. Sci. 2001, 5, 97–108. [Google Scholar] [CrossRef]
- Ku, P.X.; Abu Osman, N.A.; Yusof, A.; Wan Abas, W.A. Biomechanical evaluation of the relationship between postural control and body mass index. J. Biomech. 2012, 45, 1638–1642. [Google Scholar] [CrossRef] [Green Version]
- Salas-Gómez, D.; Fernández-Gorgojo, M.; Sanchez-Juan, P.; Bercero, E.L.; Perez-Núñez, M.I.; Barbado, D. Quantifying balance deficit in people with ankle fracture six months after surgical intervention through the Y-Balance test. Gait Posture 2020, 6. [Google Scholar] [CrossRef]
- Xaverova, Z.; Dirnberger, J.; Lehnert, M.; Belka, J.; Wagner, H.; Orechovska, K. Isokinetic strength profile of elite female handball players. J. Hum. Kinet. 2015, 49, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using SPSS; Allen & Unwin: Crows Nest, NSW, Austrlia, 2009. [Google Scholar]
- Neto, M.G.; Conceição, C.S.; Brasileiro, A.J.A.L.; Sousa, C.S.; Carvalho, V.O.; Jesus, F.L.A. Effects of the FIFA 11 training program on injury prevention and performance in football players: A systematic review and meta-analysis. Clin. Rehabil. 2016, 31, 651–659. [Google Scholar] [CrossRef]
- Bixler, B.; Jones, R.L. High-school football injuries: Effects of a post-halftime warm-up and stretching routine. Fam. Pract. 1992, 12, 131–139. [Google Scholar] [PubMed]
- Sander, A.; Keiner, M.; Schlumberger, A.; Wirth, K.; Schmidtbleicher, D. Effects of functional exercises in the warm-up on sprint performances. J. Strength Cond. Res. 2013, 27, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Daneshjoo, A.; Mokhtar, A.H.; Rahnama, N.; Yusof, A. Effect of the 11+ and Harmoknee warm-up programs on physical performance measures in professional soccer players. J. Sports Sci. Med. 2013, 12, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Perez, V.; Hernandez-Davo, J.L.; Nakamura, F.; Lopez-Samanes, A.; Jimenez-Reyes, P.; Fernandez-Fernandez, J.; Behm, D.G. Post-activation performance enhancement of dynamic stretching and heavy load warm-up strategies in elite tennis players. J. Back Musculoskelet. Rehabil. 2021, 34, 413–423. [Google Scholar] [CrossRef]
- Skof, B.; Strojnik, V. The effect of two warm-up protocols on some biomechanical parameters of the neuromuscular system of middle distance runners. J. Strength Cond. Res. 2007, 21, 394–399. [Google Scholar] [CrossRef]
- Racinais, S.; Blonc, S.; Hue, O. Effects of active warm-up and diurnal increase in temperature on muscular power. Med. Sci. Sports Exerc. 2005, 37, 2134–2139. [Google Scholar] [CrossRef]
- Rosenbaum, D.; Hennig, E. The influence of stretching and warm-up exercises on achilles tendon reflex activity. J. Sport Sci. 1995, 13, 481–490. [Google Scholar] [CrossRef]
- Young, W.B.; Behm, D.G. Should static stretching be used during a warm-up for strength and power activities? J. Strength Cond. Res. 2002, 24, 33–37. [Google Scholar] [CrossRef]
- Magalhaes, T.; Ribeiro, F.; Pinheiro, A.; Oliveira, J. Warming-up before sporting activity improves knee position sense. Phys. Ther. Sport 2010, 11, 86–90. [Google Scholar] [CrossRef]
- Pasanen, K.; Parkkari, J.; Pasanen, M.; Kannus, P. Effect of a neuromuscular warm-up programme on muscle power, balance, speed and agility: A randomised controlled study. Br. J. Sports Med. 2009, 43, 1073–1078. [Google Scholar] [CrossRef]
- Leavey, V.; Sandrey, M.; Dahmer, G. Comparative effects of 6-week balance, gluteus medius strength, and combined programs on dynamic postural control. J. Sport Rehabil. 2010, 19, 268–287. [Google Scholar] [CrossRef] [PubMed]
- Almarzouki, R.; Bains, G.; Lohman, E.; Bradley, B.; Nelson, T.; Alqabbani, S.; Alonazi, A.; Daher, N. Improved balance in middle-aged adults after 8 weeks of a modified version of Otago exercise program: A randomized controlled trial. PLoS ONE 2020, 15, e0235734. [Google Scholar] [CrossRef] [PubMed]
- Olmsted, L.C.; Carcia, C.R.; Hertel, J.; Shultz, S.J. Efficacy of the star excursion balance tests in detecting reach deficits in subjects with chronic ankle instability. J. Athl. Train. 2003, 37, 501–506. [Google Scholar]
- Earl, J.E.; Hertel, J. Lower-extremity muscle activation during the star excursion balance tests. J. Sport Rehabil. 2001, 10, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Sale, D.G. Velocity Specificity of Resistance Training: A Review. Sports Med. 1993, 15, 1–15. [Google Scholar] [CrossRef]
- Ruas, C.V.; Minozzo, F.; Pinto, M.D.; Brown, L.E.; Pinto, R.S. Lower-extremity strength ratios of professional soccer players according to field position. J. Strength Cond. Res. 2015, 29, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.; Schrader, J.; Applegate, T.; Koceja, D. Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. J. Athl. Train. 1998, 33, 319–322. [Google Scholar] [PubMed]
- Mutlu, C.; Recep, A.Ö.; Emre, A.K. Influence of leg dominance on single-leg stance performance during dynamic conditions: An investigation into the validity of symmetry hypothesis for dynamic postural control in healthy individuals. Turk. J. Phys. Med. Rehabil. 2014, 60, 22–26. [Google Scholar] [CrossRef]
- Promsri, A.; Haid, T.; Werner, I.; Federolf, P. Leg dominance effects on postural control when performing challenging balance exercises. Brain Sci. 2020, 10, 128. [Google Scholar] [CrossRef] [Green Version]
- Vaisman, A.; Guiloff, R.; Rojas, J.; Delgado, I.; Figueroa, D.; Calvo, R. Lower limb symmetry: Comparison of muscular power between dominant and nondominant legs in healthy young adults associated with single-leg-dominant sports. Orthop. J. Sports Med. 2017, 5, 1–6. [Google Scholar] [CrossRef]
HWP Group | Control Group | p-Value | |
---|---|---|---|
Age (y) | 14.75 ± 1.14 | 14.58 ± 0.51 | 0.65 |
Weight (kg) | 65.87 ± 9.60 | 68.42 ± 12.61 | 0.2 |
Height (m) | 1.77 ± 0.50 | 1.78 ± 0.69 | 0.68 |
Leg length (cm) | 94.73 ± 3.29 | 95.50 ± 5.20 | 0.67 |
BMI (kg/m2) | 20.85 ± 2.64 | 21.46 ± 3.62 | 0.24 |
Exercise | Repetitions | Total Time |
---|---|---|
I. Running exercises and brisk walking, 8 min (opening warm up, in pairs; course consists of 6–10 pairs of parallel cones): | ||
Running, forward and backward | 2 | 60 s |
Lunge with turning upper body | 2 | 90 s |
Walking with reach hand to opposite leg | 2 | 80 s |
Crawling | 2 | 90 s |
Side-to-side run | 2 | 100 s |
Smooth swaying carioca | 2 | 50 s |
II. Strength, plyometric, balance, 10 min (one of three exercise progression levels each training session): | ||
Crossover V sit-ups: | ||
Level 1: knee and elbow in flexion | 2 × 10 | 50 s |
Level 2: knee and elbow full extension | 2 × 10 | 50 s |
Level 3: knee and elbow full extension and elevate upper body (trunk flexion) | 2 × 10 | 60 s |
Back extension | ||
Level 1: Back extension | 2 × 10–15 s (each side) | 80–120 s |
Level 2: Back extension | 2 × 15–20 s (each side) | 80–120 s |
Level 3: Back extension | 2 × 20–25 s (each side) | 80–120 s |
hamstrings strength | ||
Level 1 Hamstrings curl | 3–5 | 15–20 s |
Level 2 Nordic hamstrings | 4–6 | 25–30 s |
Level 3 Nordic hamstrings | 7–10 | 40–45 s |
Single leg balance | ||
Level 1: single leg stance with pass ball | 2 × 20 s (each leg) | 80 s |
Level 2: single leg with heel raises with pass ball | 2 × 20 s (each leg) | 80 s |
Level 3: single leg with jumping with pass ball | 2 × 20 s (each leg) | 80 s |
Medicine ball throwing | ||
Level 1: throwing with two hands | 4–6 | 30 s |
Level 2: throwing with horizontal jumping | 4–6 | 30 s |
Level 3: throwing with horizontal jumping | 4–6 | 30 s |
Ladder training | ||
Level 1: double leg jump | 2 | 30 s |
Level 2: single leg jump | 2 | 35 s |
Level 3: fast single leg jump | 2 | 35 s |
III. Cutting and Bounding with stop exercises, 4 min | ||
Cutting training | ||
direct 8 m, oblique 2 m | 3 | 30 s |
direct 12 m, oblique 4 m | 3 | 35 s |
direct 18 m, oblique 6 m | 3 | 40 s |
Bounding | 2 | 30 s |
Group | Leg | Pre-Test | Post-Test | ∆% | (95% CI) | p-Values | |
---|---|---|---|---|---|---|---|
OSI | HWP | DL | 2.76 (1.11) | 1.92 (0.44) | 30.4 | (0.21 to 1.48) | p < 0.013 |
Non-DL | 2.76 (0.96) | 1.90 (0.83) | 31.1 | (0.61 to 1.11) | p < 0.0001 | ||
Control | DL | 3.33 (0.89) | 3.42 (1.11) | −2.6 | (−0.42 to 0.23) | NS | |
Non-DL | 2.64 (0.79) | 2.65 (0.82) | −0.4 | (−0.24 to 0.22) | NS | ||
APSI | HWP | DL | 2.42 (0.49) | 1.34 (0.35) | 44.6 | (0.78 to 1.38) | p < 0.0001 |
Non-DL | 1.90 (0.40) | 1.23 (0.26) | 35.2 | (0.47 to 0.86) | p < 0.0001 | ||
Control | DL | 2.55 (0.64) | 2.36 (0.63) | 7.4 | (−0.01 to 0.39) | NS | |
Non-DL | 1.82 (0.55) | 1.88 (0.55) | −3.2 | (−0.20 to 0.07) | NS | ||
MLSI | HWP | DL | 1.98 (1.09) | 1.21 (0.75) | 38.8 | (0.45 to 1.08) | p < 0.0001 |
Non-DL | 1.93 (0.64) | 1.10 (0.40) | 43.0 | (0.54 to 1.12) | p < 0.0001 | ||
Control | DL | 2.31 (0.95) | 2.32 (0.84) | −0.4 | (−0.15 to 0.12) | NS | |
Non-DL | 1.88 (0.64) | 2.10 (0.67) | −11.7 | (−0.46 to 0.24) | NS |
Group | Leg | Pre-Test (cm) | Post-Test (cm) | ∆% | (95% CI) | p-Values | |
---|---|---|---|---|---|---|---|
OSI | HWP | DL | 88.7 (4.4) | 100.4 (2.7) | 13.2 | (9.6–13.7) | p < 0.0001 |
Non-DL | 89.6 (4.4) | 99.1 (4.0) | 10.6 | (8.2–10.8) | p < 0.0001 | ||
Control | DL | 91.7 (4.9) | 92.5 (4.4) | 0.9 | (−0.5–2.1) | NS | |
Non-DL | 89.4 (5.2) | 89.8 (5.1) | 0.4 | (−0.2–1.1) | NS | ||
Anterior | HWP | DL | 84.3 (5.6) | 98.8 (3.0) | 17.2 | (10.7–18.4) | p < 0.0001 |
Non-DL | 85.4 (4.9) | 96.2 (3.7) | 12.6 | (7.7–13.9) | p < 0.0001 | ||
Control | DL | 88.8 (4.9) | 91.1 (5.8) | 2.6 | (−0.3–4.8) | NS | |
Non-DL | 86.9 (4.6) | 86.6 (3.9) | -0.3 | (−2.3–1.5) | NS | ||
Posterior-L | HWP | DL | 88.7 (4.9) | 100.4 (4.3) | 12.8 | (8.7–14.7) | p < 0.0001 |
Non-DL | 90.1 (7.0) | 100.3 (5.6) | 11.3 | (7.4–13.1) | p < 0.0001 | ||
Control | DL | 92.5 (6.5) | 91.8 (6.5) | −0.7 | (−3.1–1.7) | NS | |
Non-DL | 88.7 (6.6) | 88.5 (5.6) | 0.2 | (−0.02–2.3) | NS | ||
Posterior-M | HWP | DL | 93.2 (4.8) | 101.8 (4.7) | 9.2 | (5.7–11.6) | p < 0.0001 |
Non-DL | 93.2 (5.7) | 100.6 (6.5) | 7.9 | (4.8–10.0) | p < 0.0001 | ||
Control | DL | 93.6 (7.1) | 94.5 (7.3) | 0.9 | (−0.5–2.2) | NS | |
Non-DL | 92.7 (8.2) | 93.1 (9.4) | 0.4 | (−1.2–1.9) | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daneshjoo, A.; Hoseinpour, A.; Sadeghi, H.; Kalantari, A.; Behm, D.G. The Effect of a Handball Warm-Up Program on Dynamic Balance among Elite Adolescent Handball Players. Sports 2022, 10, 18. https://doi.org/10.3390/sports10020018
Daneshjoo A, Hoseinpour A, Sadeghi H, Kalantari A, Behm DG. The Effect of a Handball Warm-Up Program on Dynamic Balance among Elite Adolescent Handball Players. Sports. 2022; 10(2):18. https://doi.org/10.3390/sports10020018
Chicago/Turabian StyleDaneshjoo, Abdolhamid, Ali Hoseinpour, Hassan Sadeghi, Aref Kalantari, and David George Behm. 2022. "The Effect of a Handball Warm-Up Program on Dynamic Balance among Elite Adolescent Handball Players" Sports 10, no. 2: 18. https://doi.org/10.3390/sports10020018
APA StyleDaneshjoo, A., Hoseinpour, A., Sadeghi, H., Kalantari, A., & Behm, D. G. (2022). The Effect of a Handball Warm-Up Program on Dynamic Balance among Elite Adolescent Handball Players. Sports, 10(2), 18. https://doi.org/10.3390/sports10020018