The Addition of High-Load Resistance Exercises to a High-Intensity Functional Training Program Elicits Further Improvements in Body Composition and Strength: A Randomized Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Anthropometric and Body Composition Assessment
2.4. Cardiorespiratory Fitness Assessment
2.5. Isokinetic Torque Assessment
2.6. Vertical Jump Performance
2.7. Upper-Body Strength Assessment
2.8. Upper-Body Muscle Endurance Assessment
2.9. Heart Rate Monitoring
2.10. Statistical Analyses
3. Results
3.1. Antrhopometry and Body Composition
3.2. Cardiorespiratory Fitness
3.3. Lower- and Upper-Body Strength
3.4. Upper-Body Muscle Endurance
3.5. Heart Rate Responses during Training Sessions
3.6. Performance during Training Sessions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feito, Y.; Heinrich, K.; Butcher, S.; Poston, W. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Poston, W.S.C. Mission essential fitness: Comparison of functional circuit training to traditional Army physical training for active duty military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batrakoulis, A.; Jamurtas, A.Z.; Tsimeas, P.; Poulios, A.; Perivoliotis, K.; Syrou, N.; Papanikolaou, K.; Draganidis, D.; Deli, C.K.; Metsios, G.S.; et al. Hybrid-type, multicomponent interval training upregulates musculoskeletal fitness of adults with overweight and obesity in a volume-dependent manner: A 1-year dose-response randomised controlled trial. Eur. J. Sport Sci. 2022, 31, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sillanpää, E.; Laaksonen, D.E.; Häkkinen, A.; Karavirta, L.; Jensen, B.; Kraemer, W.J.; Nyman, K.; Häkkinen, K. Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur. J. Appl. Physiol. 2009, 106, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, S.J.; Crawford, D.A.; Heinrich, K.M. Multiple Fitness Improvements Found after 6-Months of High Intensity Functional Training. Sports 2019, 7, 203. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, K.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Harms, C. High-intensity functional training improves functional movement and body composition among cancer survivors: A pilot study. Eur. J. Cancer Care 2015, 24, 812–817. [Google Scholar] [CrossRef]
- Posnakidis, G.; Aphamis, G.; Giannaki, C.D.; Mougios, V.; Aristotelous, P.; Samoutis, G.; Bogdanis, G.C. High-Intensity Functional Training Improves Cardiorespiratory Fitness and Neuromuscular Performance Without Inflammation or Muscle Damage. J. Strength Cond. Res. 2022, 36, 615–623. [Google Scholar] [CrossRef]
- Batrakoulis, A.; Loules, G.; Georgakouli, K.; Tsimeas, P.; Draganidis, D.; Chatzinikolaou, A.; Papanikolaou, K.; Deli, C.K.; Syrou, N.; Comoutos, N.; et al. High-intensity interval neuromuscular training promotes exercise behavioral regulation, adherence and weight loss in inactive obese women. Eur. J. Sport Sci. 2020, 20, 783–792. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Kapsis, D.P.; Tsoukos, A.; Psarraki, M.P.; Douda, H.T.; Smilios, I.; Bogdanis, G.C. Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study. Sports 2022, 10, 7. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, B.; Grgic, J.; Van Every, D.; Plotkin, D. Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum. Sports 2021, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Iversen, V.M.; Norum, M.; Schoenfeld, B.J.; Fimland, M.S. No Time to Lift? Designing Time-Efficient Training Programs for Strength and Hypertrophy: A Narrative Review. Sports Med. 2021, 51, 2079–2095. [Google Scholar] [CrossRef]
- Lopez, P.; Radaelli, R.; Taaffe, D.R.; Newton, R.U.; Galvão, D.A.; Trajano, G.S.; Teodoro, J.L.; Kraemer, W.J.; Häkkinen, K.; Pinto, R.S. Resistance Training Load Effects on Muscle Hypertrophy and Strength Gain: Systematic Review and Network Meta-analysis. Med. Sci. Sports Exerc. 2021, 53, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; Riebe, A.R.; Thompson, D. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Wolters Kluwer/Lippincott Williams & Wilkins: Amsterdam, the Netherlands, 2014. [Google Scholar]
- Wasserman, K. The anaerobic threshold measurement in exercise testing. Clin. Chest. Med. 1984, 5, 77–88. [Google Scholar] [CrossRef]
- Brisebois, M.F.; Rigby, B.R.; Nichols, D.L. Nichols, Physiological and Fitness Adaptations after Eight Weeks of High-Intensity Functional Training in Physically Inactive Adults. Sports 2018, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Neto, J.F.; Kennedy, M. The Multimodal Nature of High-Intensity Functional Training: Potential Applications to Improve Sport Performance. Sports 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Batrakoulis, A.; Jamurtas, A.Z.; Metsios, G.S.; Perivoliotis, K.; Liguori, G.; Feito, Y.; Riebe, D.; Thompson, W.R.; Angelopoulos, T.J.; Krustrup, P.; et al. Comparative Efficacy of 5 Exercise Types on Cardiometabolic Health in Overweight and Obese Adults: A Systematic Review and Network Meta-Analysis of 81 Randomized Controlled Trials. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e008243. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A.; Dooly, C.; Feigenbaum, M.S.; Fleck, S.J.; Franklin, B.; Fry, A.C.; Hoffman, J.; et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2002, 34, 364–380. [Google Scholar] [CrossRef]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Patel, P.; Redondo, A.S.; Heinrich, K.M. Effects of Eight Weeks of High Intensity Functional Training on Glucose Control and Body Composition among Overweight and Obese Adults. Sports 2019, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Cadegiani, F.A.; Kater, C.E.; Gazola, M. Clinical and biochemical characteristics of high-intensity functional training (HIFT) and overtraining syndrome: Findings from the EROS study (The EROS-HIFT). J. Sports Sci. 2019, 37, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Talanian, J.L.; Galloway, S.D.R.; Heigenhauser, G.J.F.; Bonen, A.; Spriet, L.L. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 2007, 102, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, A.; Simoneau, J.-A.; Bouchard, C. Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism 1994, 43, 814–818. [Google Scholar] [CrossRef]
- Paoli, A.; Gentil, P.; Moro, T.; Marcolin, G.; Bianco, A. Resistance Training with Single vs. Multi-joint Exercises at Equal Total Load Volume: Effects on Body Composition, Cardiorespiratory Fitness, and Muscle Strength. Front. Physiol. 2017, 8, 1105. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Campo, D.; Caravaca, L.A.; Martínez-Rodríguez, A.; Rubio-Arias, J. Effects of Resistance Circuit-Based Training on Body Composition, Strength and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Biology 2021, 10, 377. [Google Scholar] [CrossRef]
- Mandsager, K.; Harb, S.; Cremer, P.; Phelan, D.; Nissen, S.E.; Jaber, W. Association of Cardiorespiratory Fitness With Long-term Mortality Among Adults Undergoing Exercise Treadmill Testing. JAMA Netw. Open 2018, 1, e183605. [Google Scholar] [CrossRef]
- Fisher, J.; Steele, J. Questioning the Resistance/Aerobic Training Dichotomy: A commentary on physiological adaptations determined by effort rather than exercise modality. J. Hum. Kinet. 2014, 44, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.N.; Shepherd, S.O.; Hopkins, N.; Dawson, E.A.; Strauss, J.A.; Wright, D.J.; Cooper, R.G.; Kumar, P.; Wagenmakers, A.J.M.; Cocks, M. Home-hit improves muscle capillarisation and eNOS/NAD(P)Hoxidase protein ratio in obese individuals with elevated cardiovascular disease risk. J. Physiol. 2019, 597, 4203–4225. [Google Scholar] [CrossRef]
- Jenkins, N.D.M.; Miramonti, A.A.; Hill, E.C.; Smith, C.M.; Cochrane-Snyman, K.C.; Housh, T.J.; Cramer, J. Greater Neural Adaptations following High- vs. Low-Load Resistance Training. Front. Physiol. 2017, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, T.; Yang, H.; Wang, J.; Liu, M.; Wang, S.; He, Y.; Jiang, B. Association between muscle strength and health-related quality of life in a Chinese rural elderly population: A cross-sectional study. BMJ Open 2020, 10, e026560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, B.J.; Blizzard, L.; Buscot, M.-J.; Schmidt, M.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. The Association Between Grip Strength Measured in Childhood, Young- and Mid-adulthood and Prediabetes or Type 2 Diabetes in Mid-adulthood. Sports Med. 2021, 51, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.J.; Blizzard, L.; Buscot, M.-J.; Schmidt, M.D.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. Muscular strength across the life course: The tracking and trajectory patterns of muscular strength between childhood and mid-adulthood in an Australian cohort. J. Sci. Med. Sport 2021, 24, 696–701. [Google Scholar] [CrossRef]
- Hoare, E.; Stavreski, B.; Jennings, G.L.; Kingwell, B.A. Exploring Motivation and Barriers to Physical Activity among Active and Inactive Australian Adults. Sports 2017, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Ræder, H.; Kværner, A.S.; Henriksen, C.; Florholmen, G.; Henriksen, H.B.; Bøhn, S.K.; Paur, I.; Smeland, S.; Blomhoff, R. Validity of bioelectrical impedance analysis in estimation of fat-free mass in colorectal cancer patients. Clin. Nutr. 2018, 37, 292–300. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Jensen, B.; Braun, W.; Pourhassan, M.; Gallagher, D.; Müller, M.J. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur. J. Clin. Nutr. 2017, 71, 1061–1067. [Google Scholar] [CrossRef]
Variable | HIFT-P (n = 10) | Change % | HIFT-C (n = 10) | Change % | Time | Time x Group | Group |
---|---|---|---|---|---|---|---|
Muscle mass (kg) | |||||||
Before | 23.3 ± 5.6 | 23.6 ± 7.1 | |||||
After | 23.9 ± 5.3 | 2.57% | 23.4 ± 7.1 | −0.9% | 0.047 | 0.001 | 0.975 |
Body fat (%) | |||||||
Before | 23.6 ± 4.4 | 22.5 ± 6.7 | |||||
After | 22.3 ± 4.8 | −5.5% | 21.9 ± 5.6 | −2.7% | 0.037 | 0.496 | 0.652 |
Body mass (kg) | |||||||
Before | 65.8 ± 12.7 | 64.5 ± 12.8 | |||||
After | 65.6 ± 12.3 | −0.3% | 63.7 ± 12.6 | −1.2% | 0.274 | 0.395 | 0.801 |
BMI (kg m−2) | |||||||
Before | 23.5 ± 3.4 | 23.1 ± 2.7 | |||||
After | 23.4 ± 3.3 | −0.4% | 22.8 ± 2.6 | −1.3% | 0.160 | 0.305 | 0.653 |
Variable | HIFT-P (n = 10) | Change % | HIFT-C (n = 10) | Change % | Time | Time x Group | Group |
---|---|---|---|---|---|---|---|
VO2 max (mL·kg−1·min−1) | |||||||
Before | 47.0 ± 5.8 | 44.0 ± 9.2 | |||||
After | 49.1 ± 7.4 | 4.3% | 46.6 ± 9.2 | 5.9% | 0.003 | 0.487 | 0.450 |
Maximum aerobic speed (km·h−1) | |||||||
Before | 14.4 ± 1.8 | 13.4 ± 2.8 | |||||
After | 14.7 ± 1.8 | 2.1% | 14.3 ± 2.6 | 6.7% | 0.001 | 0.140 | 0.457 |
Speed at RC point (km·h−1) | |||||||
Before | 11.6 ± 1 | 10.6 ± 2 | |||||
After | 12.1 ± 1 | 4.3% | 11.2 ± 2 | 5.7% | 0.003 | 0.899 | 0.164 |
HR at RC point (b·min) | |||||||
Before | 173 ± 6 | 175 ± 7 | |||||
After | 169 ± 6 | −2.3% | 171 ± 7 | −2.3% | 0.004 | 1.000 | 0.400 |
Variables | HIFT-P (n = 10) | Change % | HIFT-C (n = 10) | Change % | Time | Time x Group | Group |
---|---|---|---|---|---|---|---|
SJ (cm) | |||||||
Before | 30.1 ± 8.3 | 27.3 ± 7.5 | |||||
After | 33.8 ± 7.9 | 12.3% | 29.4 ± 7.6 | 7.7% | <0.001 | 0.192 | 0.187 |
CMJ (cm) | |||||||
Before | 35.4 ± 8.9 | 32 ± 9.3 | |||||
After | 38.2 ± 7.8 | 7.9% | 34.1 ± 9.7 | 6.6% | <0.001 | 0.337 | 0.236 |
Bench press 1 RM (kg) | |||||||
Before | 52 ± 18 | 46.3 ±24.2 | |||||
After | 62 ±20 | 19.2% | 51.1 ±24.4 | 10.4% | <0.001 | 0.076 | 0.372 |
Peak torque, right leg extension, 60°·s−1 (Nm) | |||||||
Before | 170.6 ± 44.6 | 156.1 ± 66.4 | |||||
After | 166 ± 49.4 | −2.7% | 155 ± 64 | −0.7% | 0.467 | 0.694 | 0.603 |
Peak torque, left leg extension, 60°·s−1 (Nm) | |||||||
Before | 173.7 ± 47.6 | 154.2 ± 55.3 | |||||
After | 170.8 ± 57.4 | −1.7% | 153.9 ± 58.2 | −0.2% | 0.636 | 0.825 | 0.471 |
Variables | HIFT-P (n = 10) | Change % | HIFT-C (n = 10) | Change % | Time | Time x Group | Group |
---|---|---|---|---|---|---|---|
Bench press, 65% 1 RM (reps) | |||||||
Before | 21 ± 5 | 21 ± 5 | |||||
After | 22 ± 6 | 4.8% | 23 ± 3 | 9.5% | 0.089 | 0.289 | 0.790 |
Sit-ups in 1 min (reps) | |||||||
Before | 42 ± 7 | 40 ± 10 | |||||
After | 44 ± 7 | 4.8% | 46 ± 9 | 15% | 0.003 | 0.023 | 0.956 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posnakidis, G.; Aphamis, G.; Giannaki, C.D.; Mougios, V.; Bogdanis, G.C. The Addition of High-Load Resistance Exercises to a High-Intensity Functional Training Program Elicits Further Improvements in Body Composition and Strength: A Randomized Trial. Sports 2022, 10, 207. https://doi.org/10.3390/sports10120207
Posnakidis G, Aphamis G, Giannaki CD, Mougios V, Bogdanis GC. The Addition of High-Load Resistance Exercises to a High-Intensity Functional Training Program Elicits Further Improvements in Body Composition and Strength: A Randomized Trial. Sports. 2022; 10(12):207. https://doi.org/10.3390/sports10120207
Chicago/Turabian StylePosnakidis, Georgios, George Aphamis, Christoforos D. Giannaki, Vassilis Mougios, and Gregory C. Bogdanis. 2022. "The Addition of High-Load Resistance Exercises to a High-Intensity Functional Training Program Elicits Further Improvements in Body Composition and Strength: A Randomized Trial" Sports 10, no. 12: 207. https://doi.org/10.3390/sports10120207
APA StylePosnakidis, G., Aphamis, G., Giannaki, C. D., Mougios, V., & Bogdanis, G. C. (2022). The Addition of High-Load Resistance Exercises to a High-Intensity Functional Training Program Elicits Further Improvements in Body Composition and Strength: A Randomized Trial. Sports, 10(12), 207. https://doi.org/10.3390/sports10120207