Association of Toll-Like Receptor Gene Polymorphisms with Tuberculosis in HIV-Positive Participants
Abstract
:1. Introduction
2. Results
2.1. The Demographic Characteristics of the Samples under Study
2.2. TLR Genes Polymorphisms Association with Tuberculosis Coinfection
2.3. TLR Gene Polymorphisms’ Association with Changes in CD4+ Cell Count in HIV-Positive Individuals
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. CD4+ T-Cell Counts, DNA Isolation and Genotyping
4.3. Statistical Analysis
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Tuberculosis Report. 2022. Available online: https://www.who.int/publications-detail-redirect/9789240061729 (accessed on 19 May 2023).
- Lawn, S.D.; Kranzer, K.; Wood, R. Antiretroviral Therapy for Control of the HIV-Associated Tuberculosis Epidemic in Resource-Limited Settings. Clin. Chest Med. 2009, 30, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Chaisson, R.E.; Golub, J.E. Preventing Tuberculosis in People with HIV—No More Excuses. Lancet Glob. Health 2017, 5, e1048–e1049. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Birch, S.; Newbold, K.B.; Essue, B.M. Barriers to Treatment Adherence for Individuals with Latent Tuberculosis Infection: A Systematic Search and Narrative Synthesis of the Literature. Int. J. Health Plann. Manag. 2018, 33, e416–e433. [Google Scholar] [CrossRef]
- Szakacs, T.A.; Wilson, D.; Cameron, D.W.; Clark, M.; Kocheleff, P.; Muller, F.J.; McCarthy, A.E. Adherence with Isoniazid for Prevention of Tuberculosis among HIV-Infected Adults in South Africa. BMC Infect. Dis. 2006, 6, 97. [Google Scholar] [CrossRef] [Green Version]
- Kendall, E.A.; Durovni, B.; Martinson, N.A.; Cavalacante, S.; Masonoke, K.; Saraceni, V.; Lebina, L.; Efron, A.; Cohn, S.; Chon, S.; et al. Adherence to Tuberculosis Preventive Therapy Measured by Urine Metabolite Testing among People with HIV. AIDS 2020, 34, 63–71. [Google Scholar] [CrossRef]
- Stuurman, A.L.; Vonk Noordegraaf-Schouten, M.; Van Kessel, F.; Oordt-Speets, A.M.; Sandgren, A.; Van Der Werf, M.J. Interventions for Improving Adherence to Treatment for Latent Tuberculosis Infection: A Systematic Review. BMC Infect. Dis. 2016, 16, 257. [Google Scholar] [CrossRef] [Green Version]
- Hirsch-Moverman, Y.; Shrestha-Kuwahara, R.; Bethel, J.; Blumberg, H.M.; Venkatappa, T.K.; Horsburgh, C.R.; Colson, P.W. For the Tuberculosis Epidemiologic Studies Consortium (TBESC) Latent Tuberculous Infection in the United States and Canada: Who Completes Treatment and Why? Int. J. Tuberc. Lung. Dis. 2015, 19, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Makanjuola, T.; Taddese, H.B.; Booth, A. Factors Associated with Adherence to Treatment with Isoniazid for the Prevention of Tuberculosis amongst People Living with HIV/AIDS: A Systematic Review of Qualitative Data. PLoS ONE 2014, 9, e87166. [Google Scholar] [CrossRef] [Green Version]
- Dubé, J.-Y.; Fava, V.M.; Schurr, E.; Behr, M.A. Underwhelming or Misunderstood? Genetic Variability of Pattern Recognition Receptors in Immune Responses and Resistance to Mycobacterium Tuberculosis. Front. Immunol. 2021, 12, 714808. [Google Scholar] [CrossRef]
- Cromarty, R.; Sigal, A.; Liebenberg, L.J.P.; McKinnon, L.R.; Abdool Karim, S.S.; Passmore, J.-A.S.; Archary, D. Diminished HIV Infection of Target CD4+ T Cells in a Toll-Like Receptor 4 Stimulated in Vitro Model. Front. Immunol. 2019, 10, 1705. [Google Scholar] [CrossRef] [Green Version]
- Siliciano, J.D.; Siliciano, R.F. Recent Developments in the Search for a Cure for HIV-1 Infection: Targeting the Latent Reservoir for HIV-1. J. Allergy Clin. Immunol. 2014, 134, 12–19. [Google Scholar] [CrossRef]
- Mbonye, U.; Karn, J. Control of HIV Latency by Epigenetic and Non-Epigenetic Mechanisms. Curr. HIV Res. 2011, 9, 554–567. [Google Scholar] [CrossRef]
- Devalraju, K.P.; Neela, V.S.K.; Gaddam, R.; Chaudhury, A.; Van, A.; Krovvidi, S.S.; Vankayalapati, R.; Valluri, V.L. Defective MyD88 and IRAK4 but Not TLR-2 Expression in HIV+ Individuals with Latent Tuberculosis Infection. Cytokine 2018, 110, 213–221. [Google Scholar] [CrossRef]
- Martinsen, J.T.; Gunst, J.D.; Højen, J.F.; Tolstrup, M.; Søgaard, O.S. The Use of Toll-Like Receptor Agonists in HIV-1 Cure Strategies. Front. Immunol. 2020, 11, 1112. [Google Scholar] [CrossRef]
- Macedo, A.B.; Novis, C.L.; De Assis, C.M.; Sorensen, E.S.; Moszczynski, P.; Huang, S.; Ren, Y.; Spivak, A.M.; Jones, R.B.; Planelles, V.; et al. Dual TLR2 and TLR7 Agonists as HIV Latency-Reversing Agents. JCI Insight 2018, 3, e122673. [Google Scholar] [CrossRef] [Green Version]
- Browne, E.P. The Role of Toll-Like Receptors in Retroviral Infection. Microorganisms 2020, 8, 1787. [Google Scholar] [CrossRef]
- Thada, S.; Horvath, G.L.; Müller, M.M.; Dittrich, N.; Conrad, M.L.; Sur, S.; Hussain, A.; Pelka, K.; Gaddam, S.L.; Latz, E.; et al. Interaction of TLR4 and TLR8 in the Innate Immune Response against Mycobacterium Tuberculosis. Int. J. Mol. Sci. 2021, 22, 1560. [Google Scholar] [CrossRef]
- Kaushik, G.; Vashishtha, R.; Tripathi, H.; Yadav, R. Genetic Polymorphism of Toll-like Receptors in HIV-I Infected Patients with and without Tuberculosis Co-Infection. Int. J. Mycobacteriol. 2022, 11, 95. [Google Scholar] [CrossRef]
- Ortega, E.; Hernández-Bazán, S.; Sánchez-Hernández, B.; Licona-Limón, I.; Fuentes-Dominguez, J. Single Nucleotide Polymorphisms in TLR4 Affect Susceptibility to Tuberculosis in Mexican Population from the State of Veracruz. J. Immunol. Res. 2020, 2020, 2965697. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, M.-M.; Huang, W.-W.; Wu, S.-Q.; Wang, M.-G.; Tang, X.-Y.; Sandford, A.J.; He, J.-Q. Polymorphisms in Toll-Like Receptor 10 and Tuberculosis Susceptibility: Evidence from Three Independent Series. Front. Immunol. 2018, 9, 309. [Google Scholar] [CrossRef]
- Kaushik, G.; Vashishtha, R. Influence of Genetic Variability in Toll-like Receptors (TLR 2, TLR 4, and TLR 9) on Human Immunodeficiency Virus-1 Disease Progression. Int. J. Mycobacteriol. 2023, 12, 10. [Google Scholar] [CrossRef]
- Azad, A.K.; Sadee, W.; Schlesinger, L.S. Innate Immune Gene Polymorphisms in Tuberculosis. Infect. Immun. 2012, 80, 3343–3359. [Google Scholar] [CrossRef] [Green Version]
- Ferwerda, B.; Kibiki, G.S.; Netea, M.G.; Dolmans, W.M.; Van Der Ven, A.J. The Toll-like Receptor 4 Asp299Gly Variant and Tuberculosis Susceptibility in HIV-Infected Patients in Tanzania. AIDS 2007, 21, 1375–1377. [Google Scholar] [CrossRef]
- Pulido, I.; Leal, M.; Genebat, M.; Pacheco, Y.M.; Sáez, M.E.; Soriano-Sarabia, N. The TLR4 ASP299GLY Polymorphism Is a Risk Factor for Active Tuberculosis in Caucasian HIV-Infected Patients. Curr. HIV Res. 2010, 8, 253–258. [Google Scholar] [CrossRef]
- Campbell, G.R.; Spector, S.A. Toll-Like Receptor 8 Ligands Activate a Vitamin D Mediated Autophagic Response That Inhibits Human Immunodeficiency Virus Type 1. PLoS Pathog. 2012, 8, e1003017. [Google Scholar] [CrossRef] [Green Version]
- Rozman, M.; Zidovec-Lepej, S.; Jambrosic, K.; Babić, M.; Drmić Hofman, I. Role of TLRs in HIV-1 Infection and Potential of TLR Agonists in HIV-1 Vaccine Development and Treatment Strategies. Pathogens 2023, 12, 92. [Google Scholar] [CrossRef]
- Khor, C.C.; Chapman, S.J.; Vannberg, F.O.; Dunne, A.; Murphy, C.; Ling, E.Y.; Frodsham, A.J.; Walley, A.J.; Kyrieleis, O.; Khan, A.; et al. A Mal Functional Variant Is Associated with Protection against Invasive Pneumococcal Disease, Bacteremia, Malaria and Tuberculosis. Nat. Genet. 2007, 39, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.D.; Varma, T.K.; Hobbs, J.B.; Reyes, A.; Driver, B.; Sherwood, E.R. The Toll-Like Receptor 4 Agonist Monophosphoryl Lipid A Augments Innate Host Resistance to Systemic Bacterial Infection. Infect. Immun. 2011, 79, 3576–3587. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; He, H.; Sun, C.; Fu, J.; Ghosh, D.; Deng, C.; Sheng, Y. Association of Toll-like Receptor Polymorphisms with Acquisition of HIV Infection and Clinical Findings: A Protocol for Systematic Review and Meta-Analysis. Medicine 2020, 99, e23663. [Google Scholar] [CrossRef]
- Nguyen, H.; Gazy, N.; Venketaraman, V. A Role of Intracellular Toll-like Receptors (3, 7, and 9) in Response to Mycobacterium Tuberculosis and Co-Infection with HIV. Int. J. Mol. Sci. 2020, 21, 6148. [Google Scholar] [CrossRef]
- Pine, S.O.; McElrath, M.J.; Bochud, P.-Y. Polymorphisms in Toll-like Receptor 4 and Toll-like Receptor 9 Influence Viral Load in a Seroincident Cohort of HIV-1-Infected Individuals. AIDS 2009, 23, 2387–2395. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Taube, S.; Hamouda, O.; Kücherer, C.; Poggensee, G.; Jessen, H.; Eckert, J.K.; Neumann, K.; Storek, A.; Pouliot, M.; et al. A Functional Toll-Like Receptor 8 Variant Is Associated with HIV Disease Restriction. J. Infect. Dis. 2008, 198, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-H.; Eng, H.-L.; Lin, K.-H.; Liu, H.-C.; Chang, C.-H.; Lin, T.-M. Functional Polymorphisms of TLR8 Are Associated with Hepatitis C Virus Infection. Immunology 2014, 141, 540–548. [Google Scholar] [CrossRef]
- El-Bendary, M.; Neamatallah, M.; Elalfy, H.; Besheer, T.; Elkholi, A.; El-Diasty, M.; Elsareef, M.; Zahran, M.; El-Aarag, B.; Gomaa, A.; et al. The Association of Single Nucleotide Polymorphisms of Toll-like Receptor 3, Toll-like Receptor 7 and Toll-like Receptor 8 Genes with the Susceptibility to HCV Infection. Br. J. Biomed. Sci. 2018, 75, 175–181. [Google Scholar] [CrossRef]
- Davila, S.; Hibberd, M.L.; Hari Dass, R.; Wong, H.E.E.; Sahiratmadja, E.; Bonnard, C.; Alisjahbana, B.; Szeszko, J.S.; Balabanova, Y.; Drobniewski, F.; et al. Genetic Association and Expression Studies Indicate a Role of Toll-Like Receptor 8 in Pulmonary Tuberculosis. PLoS Genet. 2008, 4, e1000218. [Google Scholar] [CrossRef] [Green Version]
- Varzari, A.; Deyneko, I.V.; Vladei, I.; Grallert, H.; Schieck, M.; Tudor, E.; Illig, T. Genetic Variation in TLR Pathway and the Risk of Pulmonary Tuberculosis in a Moldavian Population. Infect. Genet. Evol. 2019, 68, 84–90. [Google Scholar] [CrossRef]
- Dalgic, N.; Tekin, D.; Kayaalti, Z.; Cakir, E.; Soylemezoglu, T.; Sancar, M. Relationship between Toll-Like Receptor 8 Gene Polymorphisms and Pediatric Pulmonary Tuberculosis. Dis. Markers 2011, 31, 33–38. [Google Scholar] [CrossRef]
- Ugolini, M.; Gerhard, J.; Burkert, S.; Jensen, K.J.; Georg, P.; Ebner, F.; Volkers, S.M.; Thada, S.; Dietert, K.; Bauer, L.; et al. Recognition of Microbial Viability via TLR8 Drives TFH Cell Differentiation and Vaccine Responses. Nat. Immunol. 2018, 19, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, P.; Harishankar, M.; Singh, B.; Jawahar, M.S.; Banurekha, V.V. Toll-like Receptor and TIRAP Gene Polymorphisms in Pulmonary Tuberculosis Patients of South India. Tuberculosis 2010, 90, 306–310. [Google Scholar] [CrossRef]
- Harishankar, M.; Selvaraj, P.; Bethunaickan, R. Influence of Genetic Polymorphism Towards Pulmonary Tuberculosis Susceptibility. Front. Med. 2018, 5, 213. [Google Scholar] [CrossRef] [Green Version]
- Lipner, E.M.; Garcia, B.J.; Strong, M. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections. PLoS ONE 2016, 11, e0146585. [Google Scholar] [CrossRef] [Green Version]
- Velez, D.R.; Hulme, W.F.; Myers, J.L.; Weinberg, J.B.; Levesque, M.C.; Stryjewski, M.E.; Abbate, E.; Estevan, R.; Patillo, S.G.; Gilbert, J.R.; et al. NOS2A, TLR4, and IFNGR1 Interactions Influence Pulmonary Tuberculosis Susceptibility in African-Americans. Hum. Genet. 2009, 126, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Velez, D.R.; Wejse, C.; Stryjewski, M.E.; Abbate, E.; Hulme, W.F.; Myers, J.L.; Estevan, R.; Patillo, S.G.; Olesen, R.; Tacconelli, A.; et al. Variants in Toll-like Receptors 2 and 9 Influence Susceptibility to Pulmonary Tuberculosis in Caucasians, African-Americans, and West Africans. Hum. Genet. 2010, 127, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Skevaki, C.; Pararas, M.; Kostelidou, K.; Tsakris, A.; Routsias, J.G. Single Nucleotide Polymorphisms of Toll-like Receptors and Susceptibility to Infectious Diseases. Clin. Exp. Immunol. 2015, 180, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Tesse, R.; Pandey, R.C.; Kabesch, M. Genetic Variations in Toll-like Receptor Pathway Genes Influence Asthma and Atopy: TLR Variants, Asthma and Allergy. Allergy 2011, 66, 307–316. [Google Scholar] [CrossRef]
- Foster, S.L.; Hargreaves, D.C.; Medzhitov, R. Gene-Specific Control of Inflammation by TLR-Induced Chromatin Modifications. Nature 2007, 447, 972–978. [Google Scholar] [CrossRef]
- Kulabukhova, E.I.; Mironov, K.O.; Dunaeva, E.A.; Kireev, D.E.; Narkevich, A.N.; Zimina, V.N.; Kravchenko, A.V. The Association Between Genetic Polymorphisms of Toll-Like Receptors and Mannose-Binding Lectin and Active Tuberculosis in Hiv-Infected Patients. VIČ-Infekc. Immunosupr. 2020, 11, 61–69. [Google Scholar] [CrossRef] [Green Version]
- WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2008.
- Consolidated Guidelines on HIV Testing Services for a Changing Epidemic. Available online: https://www.who.int/publications-detail-redirect/WHO-CDS-HIV-19.31 (accessed on 13 March 2023).
- Karim, A.F.; Reba, S.M.; Li, Q.; Boom, W.H.; Rojas, R.E. Toll like Receptor 2 Engagement on CD4+ T Cells Promotes TH9 Differentiation and Function. Eur. J. Immunol. 2017, 47, 1513–1524. [Google Scholar] [CrossRef] [Green Version]
- Hernández, J.C.; Arteaga, J.; Paul, S.; Kumar, A.; Latz, E.; Urcuqui-Inchima, S. Up-Regulation of TLR2 and TLR4 in Dendritic Cells in Response to HIV Type 1 and Coinfection with Opportunistic Pathogens. AIDS Res. Hum. Retroviruses 2011, 27, 1099–1109. [Google Scholar] [CrossRef] [Green Version]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like Receptors Activation, Signaling, and Targeting: An Overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef] [Green Version]
- Henrick, B.M.; Yao, X.-D.; Rosenthal, K.L. The INFANT study team HIV-1 Structural Proteins Serve as PAMPs for TLR2 Heterodimers Significantly Increasing Infection and Innate Immune Activation. Front. Immunol. 2015, 6, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, G.; Navas-Martín, S.; Martín-García, J. Interplay Between MicroRNAs, Toll-like Receptors, and HIV-1: Potential Implications in HIV-1 Replication and Chronic Immune Activation. Discov. Med. 2014, 18, 15–27. [Google Scholar] [PubMed]
- Arbour, N.C.; Lorenz, E.; Schutte, B.C.; Zabner, J.; Kline, J.N.; Jones, M.; Frees, K.; Watt, J.L.; Schwartz, D.A. TLR4 Mutations Are Associated with Endotoxin Hyporesponsiveness in Humans. Nat. Genet. 2000, 25, 187–191. [Google Scholar] [CrossRef]
- Kiechl, S.; Lorenz, E.; Reindl, M.; Wiedermann, C.J.; Oberhollenzer, F.; Bonora, E.; Willeit, J.; Schwartz, D.A. Toll-like Receptor 4 Polymorphisms and Atherogenesis. N. Engl. J. Med. 2002, 347, 185–192. [Google Scholar] [CrossRef]
- Schröder, N.W.; Schumann, R.R. Single Nucleotide Polymorphisms of Toll-like Receptors and Susceptibility to Infectious Disease. Lancet Infect. Dis. 2005, 5, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Henrick, B.M.; Yao, X.-D.; Zahoor, M.A.; Abimiku, A.; Osawe, S.; Rosenthal, K.L. TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection. Front. Immunol. 2019, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Mhmoud, N.A. Association of Toll-like Receptors 1, 2, 4, 6, 8, 9 and 10 Genes Polymorphisms and Susceptibility to Pulmonary Tuberculosis in Sudanese Patients. Immunotargets Ther. 2023, 12, 47–75. [Google Scholar] [CrossRef]
- Yong, Y.K.; Shankar, E.M.; Solomon, A.; Spelman, T.; Fairley, C.K.; Elliott, J.H.; Hoy, J.; Cameron, P.U.; Kamarulzaman, A.; Lewin, S.R. Polymorphisms in the CD14 and TLR4 Genes Independently Predict CD4+ T-Cell Recovery in HIV-Infected Individuals on Antiretroviral Therapy. AIDS 2016, 30, 2159–2168. [Google Scholar] [CrossRef]
- Thobakgale, C.; Naidoo, K.; McKinnon, L.R.; Werner, L.; Samsunder, N.; Karim, S.A.; Ndungʼu, T.; Altfeld, M.; Naidoo, K. Interleukin 1-Beta (IL-1β) Production by Innate Cells Following TLR Stimulation Correlates With TB Recurrence in ART-Treated HIV-Infected Patients. JAIDS J. Acquir. Immune Defic. Syndr. 2017, 74, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.C.K.; Pollara, G.; Pascoe, M.; Tomlinson, G.S.; Lehloenya, R.J.; Roe, J.; Meldau, R.; Miller, R.F.; Ramsay, A.; Chain, B.M.; et al. In Vivo Molecular Dissection of the Effects of HIV-1 in Active Tuberculosis. PLoS Pathog. 2016, 12, e1005469. [Google Scholar] [CrossRef] [Green Version]
- Larson, E.C.; Novis, C.L.; Martins, L.J.; Macedo, A.B.; Kimball, K.E.; Bosque, A.; Planelles, V.; Barrows, L.R. Mycobacterium Tuberculosis Reactivates Latent HIV-1 in T Cells in Vitro. PLoS ONE 2017, 12, e0185162. [Google Scholar] [CrossRef] [Green Version]
- Novis, C.L.; Archin, N.M.; Buzon, M.J.; Verdin, E.; Round, J.L.; Lichterfeld, M.; Margolis, D.M.; Planelles, V.; Bosque, A. Reactivation of Latent HIV-1 in Central Memory CD4+ T Cells through TLR-1/2 Stimulation. Retrovirology 2013, 10, 119. [Google Scholar] [CrossRef] [Green Version]
- Namdev, P.; Patel, S.; Sparling, B.; Garg, A. Monocytic-Myeloid Derived Suppressor Cells of HIV-Infected Individuals With Viral Suppression Exhibit Suppressed Innate Immunity to Mycobacterium Tuberculosis. Front. Immunol. 2021, 12, 647019. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Hsiao, C.-C.; Chen, C.-J.; Chao, T.-Y.; Leung, S.-Y.; Liu, S.-F.; Wang, C.-C.; Wang, T.-Y.; Chang, J.-C.; Wu, C.-C.; et al. Aberrant Toll-like Receptor 2 Promoter Methylation in Blood Cells from Patients with Pulmonary Tuberculosis. J. Infect. 2014, 69, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Frantz, F.G.; Castro, R.C.; Fontanari, C.; Bollela, V.R.; Zambuzi, F.A. DNA Methylation Impairs Monocyte Function in Tuberculosis Leading to Disease Progression. J. Immunol. 2019, 202, 125.10. [Google Scholar] [CrossRef]
- Kulabukhova, E.I.; Kravchenko, A.V.; Zimina, V.N.; Pokrovskaya, A.V.; Suvorova, Z.K.; Khokhlova, O.N.; Vinokurova, O.O.; Kadyrova, A.A.K.; Rzaeva, A.M.; Sarkisyants, N.K.; et al. Risk Factors for Tuberculosis in Patients with HIV Infection. Èpidemiologiâ I Infekc. Bolezni. Aktual. Vopr. 2022, 12, 71–77. [Google Scholar] [CrossRef]
- DbSNP Summary. Available online: https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi (accessed on 19 May 2023).
- Design Options. Available online: http://www.qiagen.com/us/knowledge-and-support/knowledge-hub/technology-and-research/lna-technology/custom-lna-oligonucleotide-design-and-applications/design-guidelines/design-options (accessed on 19 May 2023).
- Salamaikina, S.; Karnaushkina, M.; Korchagin, V.; Litvinova, M.; Mironov, K.; Akimkin, V. TLRs Gene Polymorphisms Associated with Pneumonia before and during COVID-19 Pandemic. Diagnostics 2022, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- González, J.R.; Armengol, L.; Solé, X.; Guinó, E.; Mercader, J.M.; Estivill, X.; Moreno, V. SNPassoc: An R Package to Perform Whole Genome Association Studies. Bioinformatics 2007, 23, 654–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragon, T.J.; Fay, M.P.; Wollschlaeger, D.; Omidpanah, A. Epitools: Epidemiology Tools 2020. Available online: https://CRAN.Rproject.org/package=epitools (accessed on 24 July 2023).
- Lewis, C.M. Genetic Association Studies: Design, Analysis and Interpretation. Brief. Bioinform. 2002, 3, 146–153. [Google Scholar] [CrossRef]
- Lewis, C.M.; Knight, J. Introduction to Genetic Association Studies. Cold Spring Harb. Protoc. 2012, 3, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Graffelman, J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. J. Stat. Soft. 2015, 6, 1–23. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Use R!); Springer: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
- Patil, I. Visualizations with Statistical Details: The “ggstatsplot” Approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
Case, n (%) | Control, n (%) | Pearson’s Chi-Squared Test, Χ2 (p) | |
---|---|---|---|
Gender: | |||
Male | 179 (71.6) | 174 (69.6) | 0.24 (0.62) |
Female | 71 (28.4) | 76 (30.4) | |
Age: | |||
Under 35 | 55 (22) | 55 (22) | 0.09 (0.95) |
35–44 | 110 (44) | 107 (42.8) | |
44 and older | 85 (34) | 88 (35.2) |
SNP | Control, n (%) | Case, n (%) | OR (CI 95%) | p (pFDR-BH) |
---|---|---|---|---|
rs4986790 (TLR4) | ||||
A/A | 207 (84.1) | 223 (91.4) | 1.00 | 0.014 (0.067) |
A/G-G/G | 39 (15.9) | 21 (8.6) | 0.50 (0.28–0.88) | |
rs5743810 (TLR6) | ||||
G/G-A/G | 226 (91.9) | 236 (96.7) | 1.00 | 0.019 (0.067) |
A/A | 20 (8.1) | 8 (3.3) | 0.38 (0.17–0.89) |
SNP | «CD4 High», n (%) | «CD4 Low», n (%) | OR (CI 95%) | p (pFDR-BH) | pFDR-BH Adjusted by Tuberculosis Coinfection |
---|---|---|---|---|---|
rs4986790 (TLR4) | |||||
A/A | 265 (83.9) | 165 (94.8) | 1.00 | 0.00017 (0.00067) | 0.0044 |
A/G-G/G | 51 (16.1) | 9 (5.2) | 0.28 (0.14–0.59) | ||
rs5743551 (TLR1) | |||||
A/A | 158 (50.0) | 55 (31.6) | 1.00 | 7.35 × 10−5 (0.00059) | 0.0013 |
A/G-G/G | 158 (50.0) | 119 (68.4) | 2.16 (1.47–3.19) | ||
rs5743810 (TLR6) | |||||
G/G-A/G | 293 (92.7) | 169 (97.1) | 1.00 | 0.034 (0.068) | 0.2432 |
A/A | 23 (7.3) | 5 (2.9) | 0.38 (0.14–1.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamaikina, S.; Korchagin, V.; Kulabukhova, E.; Mironov, K.; Zimina, V.; Kravtchenko, A.; Akimkin, V. Association of Toll-Like Receptor Gene Polymorphisms with Tuberculosis in HIV-Positive Participants. Epigenomes 2023, 7, 15. https://doi.org/10.3390/epigenomes7030015
Salamaikina S, Korchagin V, Kulabukhova E, Mironov K, Zimina V, Kravtchenko A, Akimkin V. Association of Toll-Like Receptor Gene Polymorphisms with Tuberculosis in HIV-Positive Participants. Epigenomes. 2023; 7(3):15. https://doi.org/10.3390/epigenomes7030015
Chicago/Turabian StyleSalamaikina, Svetlana, Vitaly Korchagin, Ekaterina Kulabukhova, Konstantin Mironov, Vera Zimina, Alexey Kravtchenko, and Vasily Akimkin. 2023. "Association of Toll-Like Receptor Gene Polymorphisms with Tuberculosis in HIV-Positive Participants" Epigenomes 7, no. 3: 15. https://doi.org/10.3390/epigenomes7030015
APA StyleSalamaikina, S., Korchagin, V., Kulabukhova, E., Mironov, K., Zimina, V., Kravtchenko, A., & Akimkin, V. (2023). Association of Toll-Like Receptor Gene Polymorphisms with Tuberculosis in HIV-Positive Participants. Epigenomes, 7(3), 15. https://doi.org/10.3390/epigenomes7030015