Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Organochlorine Extraction
2.4. Chemicals
2.5. Gas Chromatography Analysis
2.6. Hazard Characterization and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Klein, A.-M.; Vaissiére, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 2007, 271, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Winston, M.L. The Biology of the Honey Bee; Harvard University Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Wilms, W.; Wiechers, B. Floral resource partitioning between native Melipona bees and the introduced Africanized honey bee in the Brazilian Atlantic rain forest. Apidologie 1997, 28, 339–355. [Google Scholar] [CrossRef]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Chauzat, A.M.; Carpentier, P.; Martel, A.; Cougoule, N.; Porta, P.; Lachaize, J.; Madec, F.; Faucon, J.; Chauzat, M. Influence of Pesticide Residues on Honey Bee (Hymenoptera: Apidae) Colony Health in France. Environ. Entomol. 2009, 38, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Wilms, W.; Imperatriz-Fonseca, V.L.; Engels, W. Resource Partitioning between Highly Eusocial Bees and Possible Impact of the Introduced Africanized Honey Bee on Native Stingless Bees in the Brazilian Atlantic Rainforest. Stud. Neotrop. Fauna Environ. 2010, 31, 137–151. [Google Scholar] [CrossRef]
- Mitchell, E.A.D.; Mulhauser, B.; Mulot, M.; Mutabazi, A.; Glauser, G.; Aebi, A. A worldwide survey of neonicotinoids in honey. Science 2017, 358, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Tosi, S.; Costa, C.; Vesco, U.; Quaglia, G.; Guido, G. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ. 2018, 615, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Efficiency of QuEChERS approach for determining 52 pesticide residues in honey and honey bees. MethodsX 2016, 3, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Dornhaus, A.; Chittka, L. Why do honey bees dance? Behav. Ecol. Sociobiol. 2004, 55, 395–401. [Google Scholar] [CrossRef]
- Singaravelan, N.; Inbar, M.; Ne’eman, G.; Distl, M.; Wink, M.; Izhaki, I. The effects of nectar-nicotine on colony fitness of caged honeybees. J. Chem. Ecol. 2006, 32, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Aliouane, Y.; El Hassani, A.K.; Gary, V.; Armengaud, C.; Lambin, M.; Gauthier, M. Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environ. Toxicol. Chem. 2009, 28, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Belzunces, L.P.; Tchamitchian, S.; Brunet, J.-L. Neural effects of insecticides in the honey bee. Apidologie 2012, 43, 348–370. [Google Scholar] [CrossRef]
- Pettis, J.S.; VanEngelsdorp, D.; Johnson, J.; Dively, G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 2012, 99, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Peshin, R.; Dhawan, A.K. Integrated Pest Management: Volume 1: Innovation-Development Process; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar]
- Williamson, S.M.; Wright, G.A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 2013, 216, 1799–1807. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Su, S. Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana. Pestic. Biochem. Physiol. 2017, 140, 1–8. [Google Scholar] [CrossRef]
- Carrillo, M.P.; Bovi, T.D.S.; Negrão, A.F.; Orsi, R.D.O. Influence of agrochemicals fipronil and imidacloprid on the learning behavior of Apis mellifera L. honeybees. Acta Sci. Anim. Sci. 2013, 35, 431–434. [Google Scholar] [CrossRef]
- Wu, J.Y.; Anelli, C.M.; Sheppard, W.S. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS ONE 2011, 6, e14720. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Cerrutti, N.; Aupinel, P.; Decourtye, A.; Gayrard, M.; Odoux, J.-F.; Pissard, A.; Rüger, C.; Bretagnolle, V. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. Proc. R. Soc. B 2015, 282, 20152110. [Google Scholar] [CrossRef] [PubMed]
- Tosi, S.; Burgio, G.; Nieh, J.C. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci. Rep. 2017, 7, 1201. [Google Scholar] [CrossRef] [PubMed]
- Vandame, R.; Meled, M.; Colin, M.E.; Belzunces, L.P. Alteration of the homing-flight in the honey bee Apis mellifera L. exposed to sublethal dose of Deltamethrin. Environ. Toxicol. Chem. 1995, 14, 855–860. [Google Scholar] [CrossRef]
- Bee, H.; Science, G. Reduction in homing flights in the honey bee Apis mellifera after a sublethal dose of neonicotinoid insecticides. Bull. Insectol. 2013, 66, 1–9. [Google Scholar]
- Bortolotti, L.; Montanari, R.; Marcelino, J.; Medrzycki, P.; Maini, S.; Porrini, C. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectol. 2003, 56, 63–67. [Google Scholar]
- Tosi, S.; Nieh, J.C. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Sci. Rep. 2017, 7, 15132. [Google Scholar] [CrossRef] [PubMed]
- Charreton, M.; Decourtye, A.; Henry, M.; Rodet, G.; Sandoz, J.C.; Charnet, P.; Collet, C. A locomotor deficit induced by sublethal doses of pyrethroid and neonicotinoid insecticides in the honeybee Apis mellifera. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Chen, W.; Dong, S.; Liu, X.; Wang, Y.; Nieh, J.C. Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS ONE 2014, 9, e102725. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Leung, D. Analyses of macrolide antibiotic residues in eggs, raw milk, and honey using both ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry and high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3213–3222. [Google Scholar] [CrossRef] [PubMed]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating Pesticide Degradation in Emerging Opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Malhat, F.M.; Haggag, M.N.; Loutfy, N.M.; Osman, M.A.M.; Ahmed, M.T. Residues of organochlorine and synthetic pyrethroid pesticides in honey, an indicator of ambient environment, a pilot study. Chemosphere 2015, 120, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Calva, L.G.; Torres, M. Plaguicidas Organoclorados. ContactoS 1998, 30, 35–46. Available online: http://docplayer.es/208714-Plaguicidas-organoclorados.html (accessed on 10 January 2018).
- Gallardo Díaz, E.G.; Borja Aburto, V.H.; Méndez Galván, J.; Sánchez Tejeda, G. Situación Actual de la Malaria y el uso del DDT en México; UNEP: Nairobi, Kenya, 2000. [Google Scholar]
- Albert, A.; Benítez, A. Contaminación e Impacto Ambiental: Diagnóstico y Tendencias. In Golfo de México Contaminación e Impacto Ambiental: Diagnóstico y Tendencias; Botello, J.A.V., Osten, R., Gold-Bouchot, G., Agraz-Hernández, C., Eds.; Universidad Autónoma de Campeche, Universidad Nacional: Campeche, Mexico, 2005; pp. 237–248. [Google Scholar]
- Ritter, L.; Solomon, K.R.; Forget, J.; Stemeroff, M.; O’Leary, C. Persistent Organic Pollutants: An Assessment Report on: DDT, Aldrin, Dieldrin, Endrin, Chlordane, Heptachlor, Hexachlorobenzene, Mirex, Toxaphene, Polychlorinated Biphenyls, Dioxins and Furans. For: The International Programme on Chemical Safety (IPCS). 1995. Available online: http://cdrwww.who.int/ipcs/assessment/en/pcs_95_39_2004_05_13.pdf (accessed on 10 January 2018).
- González-Farias, F.; Cisneros Estrada, X.; Fuentes Ruíz, C.; Díaz González, G.; Botello, A.V. Pesticides distribution in sediments of a tropical coastal lagoon adjacent to an irrigation district in northwest mexico. Environ. Technol. 2002, 23, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Albert, L. Panorama de los plaguicidas en México. Rev. Toxicol. Línea 2005, 8, 1–17. [Google Scholar]
- Lyall, K.; Croen, L.A.; Sjodin, A.; Yoshida, C.K.; Zerbo, O.; Kharrazi, M.; Windham, G. Polychlorinated Biphenyl and Organochlorine Pesticide Concentrations in\nMaternal Mid-Pregnancy Serum Samples: Association with Autism Spectrum\nDisorder and Intellectual Disability. Environ. Health Perspect. 2017, 125, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Castro-Castro, V.; Siu-Rodas, Y.; González-Huerta, L.V.; Sokolov, M.Y. Efecto tóxico de DDT y endosulfan en postlarvas de camarón blanco, Litopenaeus vannamei (Decapoda: Penaeidae) de Chiapas, México. Rev. Biol. Trop. 2005, 53, 141–151. [Google Scholar] [PubMed]
- Alegria, H.A.; Wong, F.; Jantunen, L.M.; Bidleman, T.F.; Figueroa, M.S.; Bouchot, G.G.; Moreno, V.C.; Waliszewski, S.M.; Infanzon, R. Organochlorine pesticides and PCBs in air of southern Mexico (2002–2004). Atmos. Environ. 2008, 42, 8810–8818. [Google Scholar] [CrossRef]
- Catalán, T.F. La Crisis de la Producción de Algodón y la Expansión de la Soya en la Región del Soconusco, Chiapas 1970–1988; Cuadernos del CIHMECH, Universidad Nacional Autónoma de México: Mexico City, Mexico, 1995. [Google Scholar]
- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). Cultivo el Algodonero, ciclo P.V. 95/95. Chiapas, México. 1995. Available online: https://www.gob.mx/sagarpa (accessed on 9 March 2018).
- Herrera-Portugal, C.; Franco, G.; Reyes, K.; Rodríguez, M.Á.; Schlottfeldt, Y. Niveles sanguíneos de DDT y DDE en mujeres en edad reproductiva de Tapachula, Chiapas (Mexico). Hig. Sanid. Ambient. 2008, 319, 315–319. [Google Scholar]
- Pérez-Maldonado, I.N.; Trejo, A.; Ruepert, C.; del Carmen Jovel, R.; Méndez, M.P.; Ferrari, M.; Saballos-Sobalvarro, E.; Alexander, C.; Yáñez-Estrada, L.; Lopez, D.; et al. Assessment of DDT levels in selected environmental media and biological samples from Mexico and Central America. Chemosphere 2010, 78, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- ISAT. Diagnóstico situacional del uso de DDT y el control de la malaria. Informe Regional Para México y Centroamérica. Instituto de Salud Ambiente y Trabajo de México (ISAT), 2001. Available online: http://www3.cec.org/islandora/es/item/1755-diagnostico-situacional-del-uso-de-ddt-y-el-control-de-la-malaria (accessed on 10 January 2018).
- Helm, P.A.; Bidleman, T.F.; Li, H.H.; Fellin, P. Seasonal and Spatial Variation of Polychlorinated Naphthalenes and Non-/Mono-Ortho-Substituted Polychlorinated Biphenyls in Arctic Air. Environ. Sci. Technol. 2004, 38, 5514–5521. [Google Scholar] [CrossRef] [PubMed]
- Eqani, S.A.; Naseem, R.; Cincinelli, A.; Zhang, G.; Mohammad, A.; Qadir, A.; Rashid, A.; Bokhari, H.; Jones, K.C.; Katsoyiannis, A. Uptake of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) by river water fish: The case of River Chenab. Sci. Total Environ. 2013, 450–451, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Romero, A.H.; Tovilla-Hernández, C.; Malo, E.A.; Bello-Mendoza, R. Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Mar. Pollut. Bull. 2004, 48, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.; Alegria, H.A.; Bidleman, T.F. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange. Environ. Pollut. 2010, 158, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Portugal, C.; Franco, G.; Bermudez, G.; Schottfeldt, Y.; Barrientos, H. Niveles de DDT y metabolitos (DDE y DDD) en peces de consumo humano. Hig. Sanid. Ambient. 2013, 13, 1080–1085. [Google Scholar]
- Herrera-Portugal, C.; Franco, G.; Barrientos, H.; Rodríguez, M.A. La contaminación por DDT en quesos de la Costa de Chiapas, México. Hig. Sanid. Ambient. 2017, 17, 1519–1522. [Google Scholar]
- Barraza-Villarreal, A.; Farías, P.; Díaz Sánchez, V.; Bailey, J.L.; De Jager, T.; Ayotte, P.; Hernández-Ávila, M.; Dewailly, E. Nonoccupational determinants of plasma DDT and p,p′-DDE in men from Chiapas, Mexico. Arch. Environ. Health 2004, 59, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Portugal, C.; Franco-Sánchez, G.; Zelada-Castillo, V.; Schlottfeldt-Trujillo, Y.; Rodríguez-Feliciano, M.A.; Barrientos-Becerra, H. Niveles de plaguicidas organoclorados (DDT y DDE) en niños de comunidades endémicas de paludismo en Chiapas, México. Rev. Latinoam. Recur. Nat. 2008, 4, 349–356. [Google Scholar]
- Trejo-Acevedo, A.; Rivero-Pérez, N.E.; Flores-Ramírez, R.; Orta-García, S.T.; Varela-Silva, J.A.; Pérez-Maldonado, I.N. Assessment of the levels of persistent organic pollutants and 1-hydroxypyrene in blood and urine samples from Mexican children living in an endemic malaria area in Mexico. Bull. Environ. Contam. Toxicol. 2012, 88, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Pérez, N.E.; Trejo-Acevedo, A.; Herrera-Portugal, C. Exposición a plaguicidas en niños de la zona platanera del Soconusco, Chiapas. Rev. AIDIS Ing. Cienc. Ambient. 2014, 7, 179–188. [Google Scholar]
- Ruiz-Suárez, L.E.; Castro-Chan, R.A.; Rivero-Pérez, N.E.; Trejo-Acevedo, A.; Guillén-Navarro, G.K.; Geissen, V.; Bello-Mendoza, R. Levels of organochlorine pesticides in blood plasma from residents of malaria-endemic communities in Chiapas, Mexico. Int. J. Environ. Res. Public Health 2014, 11, 10444–10460. [Google Scholar] [CrossRef] [PubMed]
- Wille, A. Biology of the Stingless Bees. Annu. Rev. Entomol. 1983, 28, 41–64. [Google Scholar] [CrossRef]
- Ayala Barajas, R. Revision de las abejas sin aguijon de Mexico (Hymenoptera: Apidae: Meliponini). Folia Entomol. Mex. 1999, 123, 1–123. [Google Scholar]
- Chauzat, A.M.; Faucon, J.; Martel, A.; Cougoule, N.; Aubert, M.; Chauzat, M.; Lachaize, J. A Survey of Pesticide Residues in Pollen Loads Collected by Honey Bees in France. J. Econ. Entomol. 2006, 99, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, D.L.; Ahumada, D.A.; Díaz, A.C.; Guerrero, J.A. Evaluation of pesticide residues in honey from different geographic regions of Colombia. Food Control 2014, 37, 33–40. [Google Scholar] [CrossRef]
- Wiest, L.; Buleté, A.; Giroud, B.; Fratta, C.; Amic, S.; Lambert, O.; Pouliquen, H.; Arnaudguilhem, C. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J. Chromatogr. A 2011, 1218, 5743–5756. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; R Development Core Team: Vienna, Austria, 2012. [Google Scholar]
- Stoner, K.A.; Eitzer, B.D. Using a Hazard Quotient to Evaluate Pesticide Residues Detected in Pollen Trapped from Honey Bees (Apis mellifera) in Connecticut. PLoS ONE 2013, 8, e0159696. [Google Scholar] [CrossRef] [PubMed]
- Traynor, K.S.; Pettis, J.S.; Tarpy, D.R.; Mullin, C.A.; Frazier, J.L.; Frazier, M. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Nature 2016, 33207. [Google Scholar] [CrossRef] [PubMed]
- Crailsheim, K.; Schneider, L.H.W.; Hrassnigg, N.; Bühlmann, G.; Brosch, U.; Gmeinbauer, R.; Schöffmann, B. Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function. J. Insect Physiol. 1992, 38, 409–419. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- USEPA. White Paper in Support of the Proposed Risk Assessment Process for Bees Submitted to the FIFRA Scientific Advisory Panel for Review and Comment Office of Chemical Safety and Pollution Prevention Office of Pesticide Programs Environmental Fate and Effects; USEPA: Washington, DC, USA, 2012. Available online: http://www.cdpr.ca.gov/docs/emon/surfwtr/presentations/epa_whitepaper.pdf (accessed on 10 January 2018).
- European Commission. EU Pesticides Database. 2016. Available online: http:// ec.europa.eu/food/plant/pesticides/eu-pesticides-database (accessed on 20 April 2018).
- Renwick, A.G. Pesticide residue analysis and its relationship to hazard characterisation (ADI/ARfD) and intake estimations (NEDI/NESTI). Pest. Manag. Sci. 2002, 58, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). The 2015 European Union report on pesticide residues in food. EFSA J. 2017, 15, 4791. [Google Scholar] [CrossRef]
- Bogdanov, S. Contaminants of bee products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef]
- Johnson, R.M.; Dahlgren, L.; Siegfried, B.D.; Ellis, M.D. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera). PLoS ONE 2013, 8, e54092. [Google Scholar] [CrossRef] [PubMed]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; Vanengelsdorp, D.; Pettis, J.S. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.R.; Camargo, A.B.; Altamirano, J.C. Coacervative microextraction ultrasound-assisted back-extraction technique for determination of organophosphates pesticides in honey samples by gas chromatography-mass spectrometry. J. Chromatogr. A 2010, 1217, 6334–6341. [Google Scholar] [CrossRef] [PubMed]
- Pirard, C.; Widart, J.; Nguyen, B.; Deleuze, C.; Heudt, L.; Haubruge, E.; De Pauw, E.; Focant, J. Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid–liquid extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2007, 1152, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Rissato, S.R.; Galhiane, M.S.; de Almeida, M.V.; Gerenutti, M.; Apon, B.M. Multiresidue determination of pesticides in honey samples by gas chromatography-mass spectrometry and application in environmental contamination. Food Chem. 2007, 101, 1719–1726. [Google Scholar] [CrossRef]
- Jin, Z.; Lin, Z.; Chen, M.; Ma, Y.; Tan, J.; Fan, Y.; Wen, J.; Chen, Z.; Tu, F. Determination of Multiple Pesticide Residues in Honey Using Gas Chromatography-Electron Impact Ionization-Mass Spectrometry. Chin. J. Chromatogr. 2006, 24, 440–447. [Google Scholar] [CrossRef]
- Al Naggar, Y.; Codling, G.; Vogt, A.; Naiem, E.; Mona, M.; Seif, A.; Giesy, J.P. Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt. Ecotoxicol. Environ. Saf. 2015, 114, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wallner, K. Varroacides and their residues in bee products. Apidologie 1999, 30, 235–248. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: Reported death incidents in honeybees. Sci. Total Environ. 2014, 485–486, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Sharma, D.C. Pesticide Residues in Honey Samples from Himachal Pradesh (India). Bull. Environ. Contam. Toxicol. 2008, 80, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Valdovinos-Flores, C.; Alcantar-Rosales, V.M.; Gaspar-Ramírez, O.; Saldaña-Loza, L.M.; Dorantes-Ugalde, J.A. Agricultural pesticide residues in honey and wax combs from Southeastern, Central and Northeastern Mexico. J. Apic. Res. 2017, 56, 667–679. [Google Scholar] [CrossRef]
- Bargańska, Ż.; Ślebioda, M.; Namieśnik, J. Pesticide residues levels in honey from apiaries located of Northern Poland. Food Control 2013, 31, 196–201. [Google Scholar] [CrossRef]
- Blasco, C.; Fernández, M.; Pena, A.; Lino, C.; Silveira, M.I.; Font, G.; Picó, Y. Assessment of Pesticide Residues in Honey Samples from Portugal and Spain. J. Agric. Food Chem. 2003, 51, 8132–8138. [Google Scholar] [CrossRef] [PubMed]
- Erdoğrul, Ö. Levels of selected pesticides in honey samples from Kahramanmaraş, Turkey. Food Control 2007, 18, 866–871. [Google Scholar] [CrossRef]
- Balayiannis, G.; Balayiannis, P. Bee honey as an environmental bioindicator of pesticides’ occurrence in six agricultural areas of Greece. Arch. Environ. Contam. Toxicol. 2008, 55, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Pohorecka, K.; Skubida, P.; Miszczak, A.; Semkiw, P.; Sikorski, P.; Zagibajło, K.; Teper, D.; Kołtowski, Z.; Skubida, M.; Zdańska, D.; et al. Residues of Neonicotinoid Insecticides in Bee Collected Plant Materials from Oilseed Rape Crops and their Effect on Bee Colonies. J. Apic. Sci. 2012, 56, 115–134. [Google Scholar] [CrossRef]
- Panseri, S.; Catalano, A.; Giorgi, A.; Arioli, F.; Procopio, A.; Britti, D.; Chiesa, L.M. Occurrence of pesticide residues in Italian honey from different areas in relation to its potential contamination sources. Food Control 2014, 38, 150–156. [Google Scholar] [CrossRef]
- De Oliveira, R.C.; do Nascimento Queiroz, S.C.; da Luz, C.F.P.; Porto, R.S.; Rath, S. Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere 2016, 163, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Chauzat, M.-P.; Martel, A.-C.; Cougoule, N.; Porta, P.; Lachaize, J.; Zeggane, S.; Aubert, M.; Carpentier, P.; Faucon, J.-P. An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presence in continental France. Environ. Toxicol. Chem. 2011, 30, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.K.; Saegerman, C.; Pirard, C.; Mignon, J.; Widart, J.; Thirionet, B.; Verheggen, F.J.; Berkvens, D.; De Pauw, E.; Hubruge, E. Does Imidacloprid Seed-Treated Maize Have an Impact on Honey Bee Mortality? Entomol. Soc. Am. 2009, 102, 616–623. [Google Scholar] [CrossRef]
- García-Chao, M.; Agruña, M.J.; Calvete, G.F.; Sakkas, V.; Llompart, M.; Dagnac, T. Validation of an off line solid phase extraction liquid chromatography–tandem mass spectrometry method for the determination of systemic insecticide residues in honey and pollen samples collected in apiaries from NW Spain. Anal. Chim. Acta 2010, 672, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.; Garrido-Bailon, E.; Del Nozal, M.J.; Gonzalez-Porto, A.V.; Martin-Hernandez, R.; Diego, J.C.; Jimenez, J.J.; Bernal, J.L.; Higes, M. Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J. Econ. Entomol. 2010, 103, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Chauzat, A.M.; Carpentier, P.; Martel, A.; Bougeard, S.; Cougoule, N.; Porta, P.; Lachaize, J.; Aubert, M.; Faucon, J.; Chauzat, M. Influence of Pesticide Residues on Honey Bee (Hymenoptera: Apidae) Colony Health in France. Environ. Entomol. 2009, 38, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Genersch, E.; Von Der Ohe, W.; Kaats, H.; Schroeder, A.; Otten, C.; Buchler, R.; Berg, S.; Ritter, W.; Muhlen, W.; Gisder, S.; et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–352. [Google Scholar] [CrossRef]
- Higes, M.; Martín-Hernández, R.; Martínez-Salvador, A.; Garrido-Bailón, E.; González-Porto, A.V.; Meana, A.; Bernal, J.L.; Del Nozal, M.J.; Bernal, J. A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ. Microbiol. Rep. 2010, 2, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Santos de Azevedo, L. Polen Coletado por Apis Mellifera no Diagnóstico da Poluição Ambiental Causada por Praguicidas e Metais no Brasil; Universidade Estadual Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia. 2005. Available online: http://hdl.handle.net/11449/104135 (accessed on 10 January 2018).
- Devillers, J.; Pham-Delegue, M. Honey Bees: Estimating the Environmental Impact of Chemicals; Devillers, J., Pham-Delegue, M., Eds.; Taylor & Francis: Bologna, Italy, 2002; ISBN 0203218655. [Google Scholar]
- Bordajandi, L.R.; Gómez, G.; Fernández, M.A.; Abad, E.; Rivera, J.; González, M.J. Study on PCBs, PCDD/Fs, organochlorine pesticides, heavy metals and arsenic content in freshwater fish species from the River Turia (Spain). Chemosphere 2003, 53, 163–171. [Google Scholar] [CrossRef]
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA). Manual de Buenas Prácticas Pecuarias en la Producción de Miel. 2008. Available online: http://www.sagarpa.gob.mx/ganaderia/Publicaciones/Lists/Manuales%20de%20Buenas%20Prcticas/Attachments/1/mbpp.pdf (accessed on 10 January 2018).
- Ratnieks, F.; Visscher, K. Agricultural impact of Afrincanized Honey bees in Sinaloa, Mexico. Calif. Agric. 1996, 50, 24–28. [Google Scholar] [CrossRef]
- Sherry, D.; Mitchell, J. Neuroethology of foraging. In Foraging Behaviour and Ecology; Stephens, D., Brown, J., Ydenberg, R., Eds.; EUA: Washington, DC, USA, 2007; pp. 61–104. [Google Scholar]
- Krupke, C.H.; Hunt, G.J.; Eitzer, B.D.; Andino, G.; Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 2012, 7, e29268. [Google Scholar] [CrossRef] [PubMed]
- Roubik, D.W. Ecology and Natural History of Tropical Bees; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Blasco, C.; Lino, C.M.; Picó, Y.; Pena, A.; Font, G.; Silveira, M.I.N. Determination of organochlorine pesticide residues in honey from the central zone of Portugal and the Valencian community of Spain. J. Chromatogr. A 2004, 1049, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Rogan, W.J.; Gladen, B.C.; McKinney, J.D.; Carreras, N.; Hardy, P.; Thullen, J.; Tinglestad, J.; Tully, M. Neonatal effects of transplacental exposure to PCBs and DDE. J. Pediatr. 1986, 109, 335–341. [Google Scholar] [CrossRef]
- Chang, E.S.; Stokstad, E.L. Effect of chlorinated hydrocarbons on shell gland carbonic anhydrase and egg shell thickness in Japanese quail. Poult. Sci. 1975, 54, 3–10. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monograph on the Evaluation of Carcinogenic Risk of Chemicals to Man, Some Organochlorine Pesticide Volume 5s; International Agency for Research on Cancer: Lyon, France, 1974. [Google Scholar]
- Rivera-luna, R.; Shalkow-klincovstein, J.; Velasco-hidalgo, L.; Cárdenas-cardós, R.; Zapata-tarrés, M.; Olaya-vargas, A.; Aguilar-ortiz, M.R.; Altamirano-alvarez, E.; Correa-gonzalez, C.; Sánchez-zubieta, F.; et al. Descriptive Epidemiology in Mexican children with cancer under an open national public health insurance program. BMC Cancer 2014, 14, 790. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Bayo, F.; Goka, K. Pesticide residues and bees—A risk assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef] [PubMed]
- Long, E.Y.; Krupke, C.H. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 2016, 7, 11629. [Google Scholar] [CrossRef] [PubMed]
- Botías, C.; David, A.; Hill, E.M.; Goulson, D. Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environ. Pollut. 2017, 222, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Hladik, M.L.; Vandever, M.; Smalling, K.L. Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Sci. Total Environ. 2016, 542, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Lambert, O.; Piroux, M.; Puyo, S.; Thorin, C.; L’Hostis, M.; Wiest, L.; Buleté, A.; Delbac, F.; Pouliquen, H. Widespread Occurrence of Chemical Residues in Beehive Matrices from Apiaries Located in Different Landscapes of Western France. PLoS ONE 2013, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, M.R. Does the Honey Bee “risk Cup” Runneth Over? Estimating Aggregate Exposures for Assessing Pesticide Risks to Honey Bees in Agroecosystems. J. Agric. Food Chem. 2016, 64, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Pilling, E.; Bromley-Challoner, K.; Walker, C.; Jepson, P. Mechanism of synergism between the pyrethroid lambda-cyhalothrin and the imidazole fungicide prochloraz in honeybee (Apis mellifera). Pestic. Biochem. Physiol. 1995, 51, 1–11. [Google Scholar] [CrossRef]
- Pilling, E.D.; Jepson, P.C. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 1993, 39, 293–297. [Google Scholar] [CrossRef]
- Iwasa, T.; Motoyama, N.; Ambrose, J.T.; Roe, R.M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 2004, 23, 371–378. [Google Scholar] [CrossRef]
- Schmuck, R.; Stadler, T.; Schmidt, H.W. Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L., Hymenoptera). Pest. Manag. Sci. 2003, 59, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Schmehl, D.R.; Mullin, C.A.; Frazier, J.L. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 2014, 9, e77547. [Google Scholar] [CrossRef] [PubMed]
- Al Naggar, Y.; Codling, G.; Giesy, J.P. Human dietary intake and hazard characterization for residues of neonicotinoides and organophosphorus pesticides in Egyptian honey. Toxicol. Environ. Chem. 2017, 99, 1397–1408. [Google Scholar] [CrossRef]
- Juan-Borrás, M.; Domenech, E.; Escriche, I. Mixture-risk-assessment of pesticide residues in retail polyfloral honey. Food Control 2016, 67, 127–134. [Google Scholar] [CrossRef]
Sample | Organochlorine Pesticide | Concentration | Reference |
---|---|---|---|
Water | DDD * | 2 μg/L | Hernández-Romero et al. [48] |
Sediments (lagoon system) | DDE ** | 247 ng/L | Hernández-Romero et al. [48] |
Endosulfan | 814 ng/L | ||
Air | Chlordane | 5.8–12 pg/m3 | Alegría et al. [40] |
Toxaphene | 6.2–229 pg/m3 | ||
Dieldrin | 0.9–11 pg/m3 | ||
Endosulfan | 92–341 pg/m3 | ||
DDT | 239–2360 pg/m3 | ||
Soil | Chlordane | <0.0033–2.7 ng/g | Wong et al. [49] |
Toxaphene | <LD—334 ng/g | ||
Endosulfan | <LD—909 ng/g | ||
DDT | <LD—360 ng/g | ||
Fish | DDT | 373.67–1937.90 ng/g lipids | Herrera-Portugal et al. [50] |
Cheese | DDT | 7.0–10.87 ng/g lipids | Herrera-Portugal et al. [51] |
DDD | 1.11–3.71 ng/g lipids | ||
DDE | 17.0–38.52 ng/g lipids | ||
Blood plasma | DDT | 67.4 μg/L | Barraza-Villareal et al. [52] |
nd—46.76 μg/L | Herrera-Portugal et al. [43] | ||
12.08 ± 8.58 μg/L | Herrera-Portugal et al. [53] | ||
50.2 ng/mL | Pérez-Maldonado et al. [44] | ||
15.4–17,886.5 ng/g lipid | Trejo-Acevedo et al. [54] | ||
1596.4 ng/g Lipid | Rivero-Pérez et al. [55] | ||
6.37–29.66 μg/L | Ruiz-Suárez et al. [56] | ||
DDE | nd—68.09 μg/L | Herrera-Portugal et al. [43] | |
53.32 ± 35.61 μg/L | Herrera-Portugal et al. [53] | ||
203.5 μg/L | Barraza-Villareal et al. [52] | ||
3213.8 ng/g Lipid | Trejo-Acevedo et al. [54] | ||
15,457 ng/g Lipid | Rivero-Pérez et al. [55] | ||
1.1–222.6 μg/L | Ruiz-Suárez et al. [56] | ||
γ-HCH | 351.1–6153.8 ng/g lipid | Trejo-Acevedo et al. [54] | |
1596.4 ng/g Lipid | Rivero-Pérez et al. [55] | ||
γ-HCH | 0.77–6.25 μg/L | Ruiz-Suárez et al. [56] | |
β-HCH | 2.03–8.74 μg/L | ||
Heptachlor | 1.74–4.40 μg/L | ||
β-endosulfan | 0.70–43.90 μg/L | ||
Endrin aldehyde | 0.51–6.76 μg/L |
Analyte | N | % ≥ DL a | GM b | Median | SD | Minimum | Maximum | HQ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | ||
α-HCH | 18 | 11.11 | 11.11 | 0.51 | 0.48 | 6.54 | 4.28 | 0.51 | 0.33 | 5.46 | 3.8 | 7.63 | 4.79 | N/C | N/C |
γ-HCH | 18 | 61.11 | 50 | 9.95 | 37.36 | 30.18 | 52.22 | 9.95 | 14.29 | 5.43 | 8.8 | 143.14 | 207.15 | 35.56 | N/C |
β-HCH | 18 | 16.67 | 22.22 | 3.83 | 9.55 | 43.87 | 38.69 | 3.83 | 4.71 | 22.57 | 26.1 | 53.3 | 68.41 | nc | N/C |
Heptachlor | 18 | 83.33 | 44.44 | 199.54 | 106.53 | 117.79 | 131.73 | 199.54 | 45.03 | 24.35 | 96.4 | 2570.32 | 645.08 | 178.71 | N/C |
δ-HCH | 18 | 0 | 0 | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | - | - |
Aldrin | 18 | 0 | 0 | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | - | - |
Heptachlor epoxide | 18 | 38.89 | 16.67 | 80.401 | 3.37 | 52.06 | 20.83 | 47.27 | 1.83 | 13.89 | 18.1 | 699.26 | 21.68 | N/C | N/C |
α-Endosulfan | 18 | 33.33 | 11.11 | 16.27 | 6.12 | 18.01 | 55.05 | 11.32 | 4.21 | 4.77 | 51 | 204.27 | 59.12 | 21.88 | N/C |
p,p′-DDE | 18 | 22.22 | 11.11 | 370.56 | 3.29 | 1543.58 | 29.6 | 187.05 | 2.29 | 885.98 | 25.1 | 2696.98 | 34.1 | N/C | N/C |
Dieldrin | 18 | 11.11 | 0 | 3.488 | N/D | 31.4 | N/D | 2.71 | N/D | 15.72 | N/D | 47.06 | N/D | 27.21 | N/D |
Endrin | 18 | 0 | 0 | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | - | - |
p,p′-DDD | 18 | 0 | 0 | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | - | - |
β-Endosulfan | 18 | 11.11 | 0 | 1.12 | N/D | 10.13 | N/D | 0.85 | N/D | 5.78 | N/D | 14.4753 | N/D | 9.15 | - |
p,p-DDT | 18 | 0 | 16.67 | N/D | 44.09 | N/D | 253.82 | N/D | 27.62 | N/D | 99 | N/D | 440.78 | - | N/C |
Endrin aldehyde | 18 | 0 | 16.67 | N/D | 6.49 | N/D | 35.64 | N/D | 3.58 | N/D | 33.2 | N/D | 47.96 | - | N/C |
Endosulfan sulfate | 18 | 0 | 0 | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | - | N/D |
Analyte | N | % ≥ DL a | GM b | Median | SD | Minimun | Maximun | HQ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | ||
α-HCH | 18 | 16.67 | 0 | 2.9 | nd | 14.08 | nd | 1.93 | nd | 5.44 | nd | 32.61 | N/D | N/C | - |
γ-HCH | 18 | 11.11 | 22.22 | 2.19 | 4.45 | 19.71 | 17.92 | 1.81 | 2.24 | 7.31 | 11.8 | 32.11 | 32.49 | 27.26 | N/C |
β-HCH | 18 | 0 | 0 | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | - | - |
Heptachlor | 18 | 38.89 | 11.11 | 140.65 | 1.75 | 415.48 | 15.72 | 60.95 | 1.45 | 35.9 | 5.7 | 794.83 | 25.77 | 386.53 | N/C |
δ-HCH | 18 | 0 | 0 | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | - | - |
Aldrin | 18 | 5.56 | 0 | 0.71 | N/D | 12.69 | N/D | 0.71 | N/D | 12.69 | N/D | 12.69 | N/D | N/C | - |
Heptachlor epoxide | 18 | 44.44 | 0 | 17.35 | N/D | 19.48 | N/D | 7.08 | N/D | 10.33 | N/D | 92.22 | N/D | N/C | - |
α-Endosulfan | 18 | 5.56 | 0 | 2.16 | N/D | 38.93 | N/D | 2.16 | N/D | 38.93 | N/D | 38.93 | N/D | 4.98 | - |
p,p′-DDE | 18 | 11.11 | 0 | 2.32 | N/D | 20.85 | N/D | 1.79 | N/D | 10.61 | N/D | 31.09 | N/D | N/C | - |
Dieldrin | 18 | 5.56 | 0 | 1.49 | N/D | 26.85 | N/D | 1.49 | N/D | 26.85 | N/D | 26.85 | N/D | 193.17 | - |
Endrin | 18 | 72.22 | 0 | 1393.01 | N/D | 116.79 | N/D | 653.23 | N/D | 29.83 | N/D | 10,032.14 | N/D | 768.85 | - |
p,p′-DDD | 18 | 5.56 | 0 | 4.37 | N/D | 78.73 | N/D | 4.37 | N/D | 78.73 | N/D | 78.73 | N/D | N/C | - |
β-Endosulfan | 18 | 5.56 | 0 | 2.6 | N/D | 46.83 | N/D | 2.6 | N/D | 46.83 | N/D | 46.83 | N/D | 57.11 | - |
p,p-DDT | 18 | 50 | 11.11 | 74.18 | 5.2 | 143.85 | 46.82 | 19.17 | 3.89 | 124.87 | 27.7 | 219.35 | 65.96 | 265.44 | N/C |
Endrin aldehyde | 18 | 16.67 | 0 | 8.67 | N/D | 56.695 | N/D | 5.07 | N/D | 34.77 | N/D | 78.62 | N/D | N/C | - |
Endosulfan sulfate | 18 | 5.56 | 0 | 2.47 | N/D | 44.45 | N/D | 2.47 | N/D | 44.45 | N/D | 44.45 | N/D | N/C | - |
Date | Honey | Pollen | ||
---|---|---|---|---|
S. mexicana | A. mellifera | S. mexicana | A. mellifera | |
1 June 2015 | 6 (100%) | 2 (33%) | 2 (33%) | 6 (100%) |
1 November 2015 | 6 (100%) | 2 (33%) | 6 (100%) | 4 (67%) |
1 May 2016 | 6 (100%) | 0 (0%) | 6 (100%) | 6 (100%) |
Analyte | ARfD | ADI | MRL | Pollen | Honey | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exceeding ARfD | Exceeding ADI | Exceeding MRL | Exceeding ARfD | Exceeding ADI | Exceeding MRL | ||||||||||
Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | Amell | Smex | ||||
α-HCH | N/R | N/R | 0.01 | - | - | - | - | 100% | N/D | - | - | - | - | 100% | 100% |
γ-HCH | 60 | 5 | 8 | 0% | 0% | 100% | 100% | 50% | 100% | 54% | 100% | 100% | 100% | 91% | 100% |
Heptachlor | N/R | 0.1 | 0.01 | - | - | 100% | 100% | 100% | 50% | - | - | 100% | 100% | 100% | 100% |
δ-HCH | N/R | N/R | 0.01 | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D |
Aldrin | N/R | 0.1 | 0.01 | - | - | 100% | N/D | 100% | N/D | - | - | - | - | N/D | N/D |
Heptachlor epoxide | N/R | N/R | 0.01 | - | - | - | - | 100% | N/D | - | - | - | - | 100% | 100% |
α-Endosulfan | 6 | 20 | 50 | 100% | N/D | 100% | N/D | 0% | N/D | 84% | 100% | N/D | 100% | 16% | 100% |
p,p′-DDE | N/R | N/R | 0.05 | - | - | - | - | 0% | N/D | - | - | - | - | 100% | 100% |
Dieldrin | N/R | 0.1 | 0.01 | - | - | 100% | N/D | 100% | N/D | - | - | 100% | N/D | 100% | N/D |
Endrin | N/R | 0.2 | 0.01 | - | - | 100% | N/D | 100% | N/D | - | - | - | - | N/D | N/D |
p,p′-DDD | N/R | N/R | 0.05 | - | - | - | - | 100% | N/D | - | - | - | - | N/D | N/D |
DDT | N/R | 10 | 10 | - | - | 100% | 100% | 100% | 100% | - | - | N/D | 100% | N/D | 100% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Toledo, J.; Vandame, R.; Castro-Chan, R.A.; Penilla-Navarro, R.P.; Gómez, J.; Sánchez, D. Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico. Insects 2018, 9, 54. https://doi.org/10.3390/insects9020054
Ruiz-Toledo J, Vandame R, Castro-Chan RA, Penilla-Navarro RP, Gómez J, Sánchez D. Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico. Insects. 2018; 9(2):54. https://doi.org/10.3390/insects9020054
Chicago/Turabian StyleRuiz-Toledo, Jovani, Rémy Vandame, Ricardo Alberto Castro-Chan, Rosa Patricia Penilla-Navarro, Jaime Gómez, and Daniel Sánchez. 2018. "Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico" Insects 9, no. 2: 54. https://doi.org/10.3390/insects9020054
APA StyleRuiz-Toledo, J., Vandame, R., Castro-Chan, R. A., Penilla-Navarro, R. P., Gómez, J., & Sánchez, D. (2018). Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico. Insects, 9(2), 54. https://doi.org/10.3390/insects9020054