Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores
Abstract
:1. Introduction
2. Evolution of Herbivore Diet Breadth and the Potential Role of Parasites and Pathogens
3. Assays for Measuring Immune Responses in Herbivorous Insects
3.1. The Prophenol Oxidase Pathway
3.2. Simulation of Solitary Endoparasitoids
3.3. Simulation of Gregarious Endoparasitoids
4. Host Plant Traits and the Herbivore Immune Response
4.1. Plant Identity, Plant Quality and Immune Responses of Generalist and Specialist Herbivores
Herbivore Species | Diet Breadth | Plants Used | Measurement | Immune Response | Citation |
---|---|---|---|---|---|
Epirrita autumnata | generalist | Betula pubescens and alternate tree hosts | implants | varied among cultivars and species, higher in induced and low-quality trees | [65,70,87] |
higher in high-quality trees | [61] | ||||
high and low quality Betula pubescens | PO activity | no effect | [65] | ||
Eupoecilia ambiguella | specialist | Vitis vinifera cultivars | PPO activity | varied among cultivars | [56] |
Grammia incorrupta | generalist | three forb species | beads | no difference among plants | [73] |
Junonia coenia | specialist | Plantago lanceolata, P. major | beads | higher when fed P. major | [90] |
Manduca sexta | specialist | Nicotiana tabacum and Proboscidea louisianica | beads | higher on N. tabacum | [91] |
Orgyia antiqua | specialist | two Salix spp. | implants | no effect | [92] |
Parasemia plantaginis | generalist | four forb species | implants | higher on Lactuga and Rumex | [84] |
Pieris rapae | specialist | wild and cultivated Brassica | egg encapsulation | reduced on induced plants, highest on Brussels sprouts | [93] |
Plutella xylostella | specialist | four Brassica cultivars | PO activity | varied among cultivars, no relation to quality | [94] |
Trichoplusia ni | generalist | Brassica oleracea and Cucumis sativa | PO activity, hemocyte # | no effect on PO, higher hemocytes on B. oleracea | [66] |
4.2. Plant Nutritional Resources and Antioxidants May Enhance Melanization
4.3. Plant Defensive Chemistry and Herbivore Immune Response
Herbivore species | Diet Breadth | Plant Compound | Immune Response | Citation |
---|---|---|---|---|
Parasemia plantaginis | generalist | antioxidants | strengthened with increasing amounts consumed | [84] |
Epirrita autumnata | generalist | flavonoids | no effect | [86] |
hydrolyzable tannins | weakened with increasing amounts consumed | [86] | ||
Pieris rapae | specialist | glucosinolates | weakened in induced plants | [93] |
Junonia coenia | specialist | iridoid glycosides | negatively correlated with amount consumed and sequestered | [90] |
Melitaea cinxia | specialist | iridoid glycosides | positively correlated with amount consumed | [109] |
Grammia incorrupta | generalist | iridoid glycosides | no effect | [73] |
Ceratomia catalpae | specialist | iridoid glycosides | negatively correlated with amount sequestered | [75] |
Ceratomia undulosa | specialist | iridoid glycosides | weakened with increasing amount consumed | [75] |
Grammia incorrupta | generalist | pyrrolizidine alkaloids | no effect | [47] |
4.4. Tradeoffs between Defensive Compound Sequestration and Herbivore Immune Response
5. Future Directions
6. Conclusions
Acknowledgments
References
- Martin, L.B.; Hawley, D.M.; Ardia, D.R. An introduction to ecological immunology. Funct. Ecol. 2011, 25, 1–4. [Google Scholar] [CrossRef]
- Schulenburg, H.; Kurtz, J.; Moret, Y.; Siva-Jothy, M.T. Ecological immunology. Philos. Trans. R. Soc. B-Biol. Sci. 2009, 364, 3–14. [Google Scholar] [CrossRef]
- Sheldon, B.C.; Verhulst, S. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 1996, 11, 317–321. [Google Scholar] [CrossRef]
- Siva-Jothy, M.T.; Thompson, J.J.W. Short-term nutrient deprivation affects immune function. Physiol. Entomol. 2002, 27, 206–212. [Google Scholar] [CrossRef]
- Siva-Jothy, M.T.; Tsubaki, Y.; Hooper, R.E. Decreased immune response as a proximate cost of copulation and oviposition in a damselfly. Physiol. Entomol. 1998, 23, 274–277. [Google Scholar]
- Rolff, J.; Siva-Jothy, M.T. Invertebrate ecological immunology. Science 2003, 301, 472–475. [Google Scholar]
- Gillespie, J.P.; Kanost, M.R.; Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol. 1997, 42, 611–643. [Google Scholar] [CrossRef]
- Strand, M.R. The insect cellular immune response. Insect Sci. 2008, 15, 1–14. [Google Scholar] [CrossRef]
- Hughes, T.T.; Allen, A.L.; Bardin, J.E.; Christian, M.N.; Daimon, K.; Dozier, K.D.; Hansen, C.L.; Holcomb, L.M.; Ahlander, J. Drosophila as a genetic model for studying pathogenic human viruses. Virology 2012, 423, 1–5. [Google Scholar] [CrossRef]
- Chamilos, G.; Samonis, G.; Kontoyiannis, D.P. Drosophila melanogaster as a model host for the study of microbial pathogenicity and the discovery of novel antimicrobial compounds. Curr. Pharm. Design 2011, 17, 1246–1253. [Google Scholar]
- Tang, H.P. Regulation and function of the melanization reaction in Drosophila. Fly 2009, 3, 105–111. [Google Scholar] [CrossRef]
- Gonzalez-Santoyo, I.; Cordoba-Aguilar, A. Phenoloxidase: A key component of the insect immune system. Entomol. Exp. Appl. 2012, 142, 1–16. [Google Scholar] [CrossRef]
- Belden, L.K.; Harris, R.N. Infectious diseases in wildlife: The community ecology context. Front. Ecol. Environ. 2007, 5, 533–539. [Google Scholar] [CrossRef]
- Torchin, M.E.; Mitchell, C.E. Parasites, pathogens, and invasions by plants and animals. Front. Ecol. Environ. 2004, 2, 183–190. [Google Scholar] [CrossRef]
- McCallum, H.; Dobson, A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 1995, 10, 190–194. [Google Scholar] [CrossRef]
- Rodriguez, M.A.; Hawkins, B.A. Diversity, function and stability in parasitoid communities. Ecol. Lett. 2000, 3, 35–40. [Google Scholar] [CrossRef]
- Pedigo, L.; Rice, M. Entomology and Pest Management, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Hajek, A.E.; Delalibera, I. Fungal pathogens as classical biological control agents against arthropods. Biocontrol 2010, 55, 147–158. [Google Scholar] [CrossRef]
- Hajek, A.E.; McManus, M.L.; Delalibera, I. A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol. Control 2007, 41, 1–13. [Google Scholar] [CrossRef]
- Schoonhoven, L.; van Loon, J.J.A.; Dicke, M. Insect-Plant Biology; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Mechaber, W.L.; Hildebrand, J.G. Novel, non-solanaceous hostplant record for Manduca sexta (Lepidoptera : Sphingidae) in the southwestern United States. Ann. Entomol. Soc. Am. 2000, 93, 447–451. [Google Scholar] [CrossRef]
- Fox, L.R.; Morrow, P.A. Specialization—Species property or local phenomenon. Science 1981, 211, 887–893. [Google Scholar]
- Bernays, E.A.; Minkenberg, O. Insect herbivores: Different reasons for being a generalist. Ecology 1997, 78, 1157–1169. [Google Scholar] [CrossRef]
- Bernays, E.A.; Singer, M. Contrasted foraging tactics in two species of polyphagous caterpillars. Acta Zool. Acad. Sci. Hung. 2002, 48, 117–135. [Google Scholar]
- Berenbaum, M.R.; Feeny, P. Chemical Mediation of Hostplant Specialization–the Papilio Paradigm. In Specialization, Speciation, and Radiation: The evolutionary Biology of Herbivorous Insects; Tilmon, K., Ed.; University of California Press: Berkeley, CA, USA, 2008; pp. 3–19. [Google Scholar]
- Strong, D.R. Insect host range. Ecology 1988, 69, 885–885. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Raven, P.H. Butterflies and plants - a study in coevolution. Evolution 1964, 18, 586–608. [Google Scholar] [CrossRef]
- Hairston, N.G.; Smith, F.E.; Slobodkin, L.B. Community structure, population control, and competition. Am. Nat. 1960, 94, 421–425. [Google Scholar]
- Thompson, J.N. Coevolution and alternative hypotheses on insect plant interactions. Ecology 1988, 69, 893–895. [Google Scholar] [CrossRef]
- Tosh, C.R.; Powell, G.; Hardie, J. Decision making by generalist and specialist aphids with the same genotype. J. Insect Physiol. 2003, 49, 659–669. [Google Scholar] [CrossRef]
- Bowers, M.D.; Puttick, G.M. Response of generalist and specialist insects to qualitative allelochemical variation. J. Chem. Ecol. 1988, 14, 319–334. [Google Scholar] [CrossRef]
- Johnson, K.S. Comparative detoxification of plant (Magnolia virginiana) allelochemicals by generalist and specialist saturniid silkmoths. J. Chem. Ecol. 1999, 25, 253–269. [Google Scholar] [CrossRef]
- Richards, L.A.; Dyer, L.A.; Smilanich, A.M.; Dodson, C.D. Synergistic effects of amides from two Piper species on generalist and specialist herbivores. J. Chem. Ecol. 2010, 36, 1105–1113. [Google Scholar] [CrossRef]
- Ballhorn, D.J.; Kautz, S.; Lieberei, R. Comparing responses of generalist and specialist herbivores to various cyanogenic plant features. Entomol. Exp. Appl. 2010, 134, 245–259. [Google Scholar] [CrossRef]
- Hagele, B.F.; Rowell-Rahier, M. Choice, performance and heritability of performance of specialist and generalist insect herbivores towards cacalol and seneciphylline, two allelochemicals of Adenostyles alpina (Asteraceae). J. Evol. Biol. 2000, 13, 131–142. [Google Scholar]
- Olivares-Donoso, R.; Troncoso, A.J.; Tapia, D.H.; Aguilera-Olivares, D.; Niemeyer, H.M. Contrasting performances of generalist and specialist Myzus persicae (Hemiptera : Aphididae) reveal differential prevalence of maternal effects after host transfer. Bull. Entomol. Res. 2007, 97, 61–67. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Gorski, P.M.; Tallamy, D.W. Polymorphism in plant defense against herbivory: Constitutive and induced resistance in Cucumis sativus. J. Chem. Ecol. 1999, 25, 2285–2304. [Google Scholar] [CrossRef]
- Reudler, J.H.; Biere, A.; Harvey, J.A.; van Nouhuys, S. Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. J. Chem. Ecol. 2011, 37, 765–778. [Google Scholar] [CrossRef]
- Lampert, E.C.; Zangerl, A.R.; Berenbaum, M.R.; Ode, P.J. Generalist and specialist host-parasitoid associations respond differently to wild parsnip (Pastinaca sativa) defensive chemistry. Ecol. Entomol. 2011, 36, 52–61. [Google Scholar] [CrossRef]
- Sznajder, B.; Harvey, J.A. Second and third trophic level effects of differences in plant species reflect dietary specialisation of herbivores and their endoparasitoids. Entomol. Exp. Appl. 2003, 109, 73–82. [Google Scholar] [CrossRef]
- Harvey, J.A.; Van Nouhuys, S.; Biere, A. Effects of quantitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids. J. Chem. Ecol. 2005, 31, 287–302. [Google Scholar] [CrossRef]
- Bernays, E.; Graham, M. On the evolution of host specificity in phytophagous arthropods. Ecology 1988, 69, 886–892. [Google Scholar] [CrossRef]
- Dyer, L.A. Tasty generalists and nasty specialists—Antipredator mechanisms in tropical lepidopteran larvae. Ecology 1995, 76, 1483–1496. [Google Scholar] [CrossRef]
- Hawkins, B.A.; Cornell, H.V.; Hochberg, M.E. Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 1997, 78, 2145–2152. [Google Scholar] [CrossRef]
- Singer, M.S.; Stireman, J.O. Does anti-parasitoid defense explain host-plant selection by a polyphagous caterpillar? Oikos 2003, 100, 554–562. [Google Scholar] [CrossRef]
- Singer, M.S.; Stireman, J.O. The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol. Lett. 2005, 8, 1247–1255. [Google Scholar] [CrossRef]
- Smilanich, A.M.; Mason, P.A.; Sprung, L.; Chase, T.R.; Singer, M.S. Complex effects of parasitoids on pharmacophagy and diet choice of a polyphagous caterpillar. Oecologia 2011, 165, 995–1005. [Google Scholar] [CrossRef]
- Singer, M.S.; Mace, K.C.; Bernays, E.A. Self-medication as adaptive plasticity: Increased ingestion of plant toxins by parasitized caterpillars. PLoS One 2009. [Google Scholar] [CrossRef]
- Lill, J.T.; Marquis, R.J.; Ricklefs, R.E. Host plants influence parasitism of forest caterpillars. Nature 2002, 417, 170–173. [Google Scholar] [CrossRef]
- Feder, J.L. The effects of parasitoids on sympatric host races of Rhagoletis-pomonella (Diptera, Tephritidae). Ecology 1995, 76, 801–813. [Google Scholar] [CrossRef]
- Mira, A.; Bernays, E.A. Trade-offs in host use by Manduca sexta: Plant characters vs natural enemies. Oikos 2002, 97, 387–397. [Google Scholar] [CrossRef]
- Dunn, P.E. Humoral immunity in insects. Bioscience 1990, 40, 738–744. [Google Scholar] [CrossRef]
- Gillespie, J.P.; Bailey, A.M.; Cobb, B.; Vilcinskas, A. Fungi as elicitors of insect immune responses. Arch. Insect Biochem. Physiol. 2000, 44, 49–68. [Google Scholar] [CrossRef]
- Lavine, M.D.; Strand, M.R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 2002, 32, 1295–1309. [Google Scholar] [CrossRef]
- Carton, Y.; Poirie, M.; Nappi, A.J. Insect immune resistance to parasitoids. Insect Sci. 2008, 15, 67–87. [Google Scholar] [CrossRef]
- Vogelweith, F.; Thiery, D.; Quaglietti, B.; Moret, Y.; Moreau, J. Host plant variation plastically impacts different traits of the immune system of a phytophagous insect. Funct. Ecol. 2011, 25, 1241–1247. [Google Scholar] [CrossRef]
- Myers, J.H.; Cory, J.S.; Ericsson, J.D.; Tseng, M.L. The effect of food limitation on immunity factors and disease resistance in the western tent caterpillar. Oecologia 2011, 167, 647–655. [Google Scholar] [CrossRef]
- Smilanich, A.M.; Dyer, L.A.; Gentry, G.L. The insect immune response and other putative defenses as effective predictors of parasitism. Ecology 2009, 90, 1434–1440. [Google Scholar] [CrossRef]
- Siva-Jothy, M.T.; Moret, Y.; Rolff, J. Insect Immunity: An Evolutionary Ecology Perspective. In Advances in Insect Physiology, vol 32; Elsevier Academic Press Inc: San Diego, CA, USA, 2005; Volume 32, pp. 1–48. [Google Scholar]
- Klemola, T.; Klemola, N.; Andersson, T.; Ruohomaki, K. Does immune function influence population fluctuations and level of parasitism in the cyclic geometrid moth? Popul. Ecol. 2007, 49, 165–178. [Google Scholar] [CrossRef]
- Klemola, N.; Kapari, L.; Klemola, T. Host plant quality and defence against parasitoids: No relationship between levels of parasitism and a geometrid defoliator immunoassay. Oikos 2008, 117, 926–934. [Google Scholar] [CrossRef]
- Nappi, A.J.; Christensen, B.M. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochem. Mol. Biol. 2005, 35, 443–459. [Google Scholar] [CrossRef]
- Marmaras, V.J.; Charalambidis, N.D.; Zervas, C.G. Immune response in insects: The role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch. Insect Biochem. Physiol. 1996, 31, 119–133. [Google Scholar] [CrossRef]
- Cornet, S.; Biard, C.; Moret, Y. Variation in immune defence among populations of Gammarus pulex (Crustacea: Amphipoda). Oecologia 2009, 159, 257–269. [Google Scholar] [CrossRef]
- Klemola, N.; Klemola, T.; Rantala, M.J.; Ruuhola, T. Natural host-plant quality affects immune defence of an insect herbivore. Entomol. Exp. Appl. 2007, 123, 167–176. [Google Scholar] [CrossRef]
- Shikano, I.; Ericsson, J.D.; Cory, J.S.; Myers, J.H. Indirect plant-mediated effects on insect immunity and disease resistance in a tritrophic system. Basic Appl. Ecol. 2010, 11, 15–22. [Google Scholar] [CrossRef]
- Godfray, H.C.J. Parasitoids: Behavioral and Evolutionary Ecology; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Quicke, D. Parasitic Wasps; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Mayhew, P.J. The evolution of gregariousness in parasitoid wasps. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1998, 265, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Kapari, L.; Haukioja, E.; Rantala, M.J.; Ruuhola, T. Defoliating insect immune defense interacts with induced plant defense during a population outbreak. Ecology 2006, 87, 291–296. [Google Scholar] [CrossRef]
- Lavine, M.D.; Beckage, N.E. Temporal pattern of parasitism-induced immunosuppression in Manduca sexta larvae parasitized by Cotesia congregata. J. Insect Physiol. 1996, 42, 41–51. [Google Scholar] [CrossRef]
- Lu, J.F.; Hu, J.; Fu, W.J. Levels of encapsulation and melanization in two larval instars of Ostrinia furnacalis Guenee (Lep. Pyralidae) during simulation of parasitization by Macrocentrus cingulum Brischke (Hym. Braconidae). J. Appl. Entomol. 2006, 130, 290–296. [Google Scholar] [CrossRef]
- Smilanich, A.M.; Vargas, J.; Dyer, L.A.; Bowers, M.D. Effects of ingested secondary metabolites on the immune response of a polyphagous caterpillar Grammia incorrupta. J. Chem. Ecol. 2011, 37, 239–245. [Google Scholar] [CrossRef]
- Whittaker, H.; Feeny, P.P. Allelochemics—Chemical interactions between species. Science 1971, 171, 757–770. [Google Scholar]
- Lampert, E.C. Gainesville State College: Oakwood, GA, USA, 2012; Unpublished work.
- Hare, J.D.; Luck, R.F. Plant Genetic Variation in Tritrophic. In teractions. In Multitrophic Level Interactions, 2nd ed.; Tscharntke, T.H.B., Ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Cory, J.S.; Hoover, K. Plant-mediated effects in insect-pathogen interactions. Trends Ecol. Evol. 2006, 21, 278–286. [Google Scholar] [CrossRef]
- Ode, P.J. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 2006, 51, 163–185. [Google Scholar] [CrossRef]
- Bernays, E.A.; Singer, M.S.; Rodrigues, D. Foraging in nature: Foraging efficiency and attentiveness in caterpillars with different diet breadths. Ecol. Entomol. 2004, 29, 389–397. [Google Scholar] [CrossRef]
- Chambers, P.; Sword, G.; Angel, J.E.; Behmer, S.; Bernays, E.A. Foraging by generalist grasshoppers: Two different strategies. Anim. Behav. 1996, 52, 155–165. [Google Scholar] [CrossRef]
- Howard, J.J.; Raubenheimer, D.; Bernays, E.A. Population and individual polyphagy in the grasshopper Taeniopoda eques during natural foraging. Entomol. Exp. Appl. 1994, 71, 167–176. [Google Scholar] [CrossRef]
- Miura, K.; Ohsaki, N. Diet mixing and its effect on polyphagous grasshopper nymphs. Ecol. Res. 2004, 19, 269–274. [Google Scholar] [CrossRef]
- Bernays, E.A.; Bright, K.L.; Gonzalez, N.; Angel, J. Dietary mixing in a generalist herbivore—Tests of 2 hypotheses. Ecology 1994, 75, 1997–2006. [Google Scholar] [CrossRef]
- Ojala, K.; Julkunen-Tiito, R.; Lindstrom, L.; Mappes, J. Diet affects the immune defence and life-history traits of an arctiid moth Parasemia plantaginis. Evol. Ecol. Res. 2005, 7, 1153–1170. [Google Scholar]
- Ruohomaki, K.; Tanhuanpaa, M.; Ayres, M.P.; Kaitaniemi, P.; Tammaru, T.; Haukioja, E. Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): Grandiose theory and tedious practice. Popul. Ecol. 2000, 42, 211–223. [Google Scholar] [CrossRef]
- Haviola, S.; Kapari, L.; Ossipov, V.; Rantala, M.J.; Ruuhola, T.; Haukioja, E. Foliar phenolics are differently associated with Epirrita autumnata growth and immunocompetence. J. Chem. Ecol. 2007, 33, 1013–1023. [Google Scholar] [CrossRef]
- Yang, S.Y.; Ruuhola, T.; Haviola, S.; Rantala, M.J. Effects of host-plant shift on immune and other key life-history traits of an eruptive geometrid, Epirritaautumnata (Borkhausen). Ecol. Entomol. 2008, 33, 510–516. [Google Scholar] [CrossRef]
- Schmid-Hempel, P. Variation in immune defence as a question of evolutionary ecology. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 2003, 270, 357–366. [Google Scholar] [CrossRef]
- Schmid-Hempel, P. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 2005, 50, 529–551. [Google Scholar] [CrossRef]
- Smilanich, A.M.; Dyer, L.A.; Chambers, J.Q.; Bowers, M.D. Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol. Lett. 2009, 12, 612–621. [Google Scholar] [CrossRef]
- Diamond, S.E.; Kingsolver, J.G. Host plant quality, selection history and trade-offs shape the immune responses of Manduca sexta. Proc. R. Soc. B-Biol. Sci. 2011, 278, 289–297. [Google Scholar] [CrossRef]
- Sandre, S.L.; Tammaru, T.; Hokkanen, H.M.T. Pathogen resistance in the moth Orgyia antiqua: Direct influence of host plant dominates over the effects of individual condition. Bull. Entomol. Res. 2011, 101, 107–114. [Google Scholar] [CrossRef]
- Bukovinszky, T.; Poelman, E.H.; Gols, R.; Prekatsakis, G.; Vet, L.E.M.; Harvey, J.A.; Dicke, M. Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia 2009, 160, 299–308. [Google Scholar] [CrossRef]
- Karimzadeh, J.; Wright, D.J. Bottom-up cascading effects in a tritrophic system: Interactions between plant quality and host-parasitoid immune responses. Ecol. Entomol. 2008, 33, 45–52. [Google Scholar]
- Lee, K.P.; Simpson, S.J.; Wilson, K. Dietary protein-quality influences melanization and immune function in an insect. Funct. Ecol. 2008, 22, 1052–1061. [Google Scholar] [CrossRef]
- Awmack, C.S.; Leather, S.R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 2002, 47, 817–844. [Google Scholar] [CrossRef]
- Nappi, A.J.; Vass, E.; Frey, F.; Carton, Y. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur. J. Cell Biol. 1995, 68, 450–456. [Google Scholar]
- von Schantz, T.; Bensch, S.; Grahn, M.; Hasselquist, D.; Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1999, 266, 1–12. [Google Scholar] [CrossRef]
- Sadd, B.M.; Siva-Jothy, M.T. Self-harm caused by an insect's innate immunity. Proc. R. Soc. B-Biol. Sci. 2006, 273, 2571–2574. [Google Scholar] [CrossRef]
- Johnson, K.S.; Felton, G.W. Plant phenolics as dietary antioxidants for herbivorous insects: A test with genetically modified tobacco. J. Chem. Ecol. 2001, 27, 2579–2597. [Google Scholar] [CrossRef]
- Babin, A.; Biard, C.; Moret, Y. Dietary supplementation with carotenoids improves immunity without increasing its cost in a crustacean. Am. Nat. 2010, 176, 234–241. [Google Scholar] [CrossRef]
- Schütz, K.; Carle, R.; Schieber, A. Taraxacum—A review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar] [CrossRef]
- Afolayan, A.J.; Aboyade, O.M.; Sofidiya, M.O. Total phenolic content and free radical scavenging activity of Malva parviflora L. (Malvaceae). J. Biol. Sci. 2008, 8, 945–949. [Google Scholar]
- Li, X.C.; Baudry, J.; Berenbaum, M.R.; Schuler, M.A. Structural and functional divergence of insect CYP6b proteins: From specialist to generalist cytochrome p450. Proc. Natl. Acad. Sci. USA 2004, 101, 2939–2944. [Google Scholar]
- Krieger, R.I.; Feeny, P.P.; Wilkinso, C.f. Detoxication enzymes in guts of caterpillars—evolutionary answer to plant defenses. Science 1971, 172, 579–581. [Google Scholar]
- Niu, G.D.; Rupasinghe, S.G.; Zangerl, A.R.; Siegel, J.P.; Schuler, M.A.; Berenbaum, M.R. A substrate-specific cytochrome p450 monooxygenase, CYP6ab11, from the polyphagous navel orangeworm (Amyelois transitella). Insect Biochem. Mol. Biol. 2011, 41, 244–253. [Google Scholar] [CrossRef]
- Hopkins, R.J.; van Dam, N.M.; van Loon, J.J.A. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 2009, 54, 57–83. [Google Scholar] [CrossRef]
- Camara, M.D. Physiological mechanisms underlying the costs of chemical defence in Junonia coenia Hübner (Nymphalidae): A gravimetric and quantitative genetic analysis. Evol. Ecol. 1997, 11, 451–469. [Google Scholar] [CrossRef]
- Laurentz, M.; Reudler, J.H.; Mappes, J.; Friman, V.; Ikonen, S.; Lindstedt, C. Diet quality can play a critical role in defense efficacy against parasitoids and pathogens in the glanville fritillary (Melitaea cinxia). J. Chem. Ecol. 2012, 38, 116–125. [Google Scholar] [CrossRef]
- Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 2002, 47, 57–92. [Google Scholar] [CrossRef]
- Opitz, S.E.W.; Muller, C. Plant chemistry and insect sequestration. Chemoecology 2009, 19, 117–154. [Google Scholar] [CrossRef]
- Lampert, E.C.; Bowers, M.D. Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars. J. Chem. Ecol. 2010, 36, 1101–1104. [Google Scholar] [CrossRef]
- Gentry, G.L.; Dyer, L.A. On the conditional, nature of neotropical caterpillar defenses against their natural enemies. Ecology 2002, 83, 3108–3119. [Google Scholar] [CrossRef]
- Lampert, E.C.; Dyer, L.A.; Bowers, M.D. Caterpillar chemical defense and parasitoid success: Cotesia congregata parasitism of Ceratomia catalpae. J. Chem. Ecol. 2010, 36, 992–998. [Google Scholar] [CrossRef]
- Le Guigo, P.; Qu, Y.; Le Corff, J. Plant-mediated effects on a toxin-sequestering aphid and its endoparasitoid. Basic Appl. Ecol. 2011, 12, 72–79. [Google Scholar] [CrossRef]
- Hartmann, T.; Theuring, C.; Beuerle, T.; Bernays, E.A.; Singer, M.S. Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect Biochem. Mol. Biol. 2005, 35, 1083–1099. [Google Scholar] [CrossRef]
- Narberhaus, I.; Papke, U.; Theuring, C.; Beuerle, T.; Hartmann, T.; Dobler, S. Direct evidence for membrane transport of host-plant-derived pyrrolizidine alkaloid n-oxides in two leaf beetle genera. J. Chem. Ecol. 2004, 30, 2003–2022. [Google Scholar] [CrossRef]
- Bowers, M.D. The Evolution of Unpalatability and the Cost of Chemical Defense insects. In Insect Chemical Ecology: An Evolutionary Approach; Roitberg, B.D., Isman, M.B., Eds.; Chapman & Hall: New York, NY, USA, 1992. [Google Scholar]
- Dobler, S.; Petschenka, G.; Pankoke, H. Coping with toxic plant compounds—The insect's perspective on iridoid glycosides and cardenolides. Phytochemistry 2011, 72, 1593–1604. [Google Scholar] [CrossRef]
- Dyer, L.A.; Bowers, M.D. The importance of sequestered iridoid glycosides as a defense against an ant predator. J. Chem. Ecol. 1996, 22, 1527–1539. [Google Scholar] [CrossRef]
- Camara, M.D. Predator responses to sequestered plant toxins in buckeye caterpillars: Are tritrophic interactions locally variable? J. Chem. Ecol. 1997, 23, 2093–2106. [Google Scholar] [CrossRef]
- Alaux, C.; Ducloz, F.; Crauser, D.; Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef]
- Anagnostou, C.; LeGrand, E.A.; Rohlfs, M. Friendly food for fitter flies?—Influence of dietary microbial species on food choice and parasitoid resistance in Drosophila. Oikos 2010, 119, 533–541. [Google Scholar] [CrossRef]
- Conner, W.E. Utetheisa ornatrix, the Ornate Arctiid. In Tiger Moths and Woolly Bears: Behavior, Ecology, and Evolution of the Arctiidae; Conner, W., Ed.; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Berenbaum, M.R. Evolution of specialization in insect-umbellifer associations. Annu. Rev. Entomol. 1990, 35, 319–343. [Google Scholar] [CrossRef]
- Gatehouse, A.M.R.; Ferry, N.; Edwards, M.G.; Bell, H.A. Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos. Trans. R. Soc. B-Biol. Sci. 2011, 366, 1438–1452. [Google Scholar] [CrossRef]
- Diamond, S.E.; Kingsolver, J.G. Fitness consequences of host plant choice: A field experiment. Oikos 119, 542–550.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lampert, E. Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores. Insects 2012, 3, 573-592. https://doi.org/10.3390/insects3020573
Lampert E. Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores. Insects. 2012; 3(2):573-592. https://doi.org/10.3390/insects3020573
Chicago/Turabian StyleLampert, Evan. 2012. "Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores" Insects 3, no. 2: 573-592. https://doi.org/10.3390/insects3020573
APA StyleLampert, E. (2012). Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores. Insects, 3(2), 573-592. https://doi.org/10.3390/insects3020573