Effect of Acheta domesticus Powder Incorporation on Nutritional Composition, Technological Properties, and Sensory Acceptance of Wheat Bread
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of the Binary Blends
2.3. Colorimetric Parameters
2.4. Granulometric Distribution
2.5. Assessment of Fermentative Properties
2.6. Analysis of the Baking Properties
2.6.1. Bread Preparation
2.6.2. Baking Loss
2.6.3. Crumb Hardness Assessment
2.7. Sensory Assessment
2.8. Nutritional Value
2.9. Nutritional Quality Index
2.10. Statistical Analysis
2.11. Ethical Statement
3. Results and Discussion
3.1. Color Parameters
3.2. Particle Size Distribution
3.3. Assessment of Fermentative Properties
3.4. Baking Loss and Crumb Hardness Assessment
3.4.1. Baking Loss
3.4.2. Crumb Hardness Assessment
3.4.3. Visual Appearance of Bread and Crumb
3.5. Sensory Assessment
3.6. Nutritional Value and Nutritional Quality Index
4. Conclusions
Practical Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpentieri, S.; Orkusz, A.; Ferrari, G.; Harasym, J. Effect of Replacing Durum Wheat Semolina with Tenebrio molitor Larvae Powder on the Techno-Functional Properties of the Binary Blends. Curr. Res. Food Sci. 2023, 8, 100672. [Google Scholar] [CrossRef]
- Carpentieri, S.; Orkusz, A.; Harasym, J.; Ferrari, G. Exploring the Use of Tenebrio molitor Larvae Proteins to Functionalize Durum Wheat Pasta. Foods 2025, 14, 1194. [Google Scholar] [CrossRef]
- Orkusz, A.; Wolańska, W.; Harasym, J.; Piwowar, A.; Kapelko, M. Consumers’ Attitudes Facing Entomophagy: Polish Case Perspectives. Int. J. Environ. Res. Public Health 2020, 17, 2427. [Google Scholar] [CrossRef] [PubMed]
- Cortazar-Moya, S.; Hernández-Figueroa, R.; Vera-Santander, V.; López-Malo, A.; Morales-Camacho, J. Exploring the Techno-Functional Potential of Arsenura armida and Acheta domesticus Flours in Wheat Bread Formulation. J. Insects Food Feed. 2025, 11, 1801–1813. [Google Scholar] [CrossRef]
- Gaglio, R.; Barbera, M.; Tesoriere, L.; Osimani, A.; Busetta, G.; Matraxia, M.; Attanzio, A.; Restivo, I.; Aquilanti, L.; Settanni, L. Sourdough “Ciabatta” Bread Enriched with Powdered Insects: Physicochemical, Microbiological, and Simulated Intestinal Digesta Functional Properties. Innov. Food Sci. Emerg. Technol. 2021, 72, 102755. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat Bread Supplementation with Various Edible Insect Flours: Influence of Chemical Composition on Nutritional and Technological Aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Bartkiene, E.; Zokaityte, E.; Starkute, V.; Zokaityte, G.; Kaminskaite, A.; Mockus, E.; Klupsaite, D.; Cernauskas, D.; Rocha, J.M.; Özogul, F.; et al. Crickets (Acheta domesticus) as Wheat Bread Ingredient: Influence on Bread Quality and Safety Characteristics. Foods 2023, 12, 325. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D. Food-to-Food Fortification of Breads and Biscuits with Herbs, Spices, Millets and Oilseeds on Bio-Accessibility of Calcium, Iron and Zinc and Impact of Proteins, Fat and Phenolics. LWT 2020, 130, 109703. [Google Scholar] [CrossRef]
- Li, M.; Mao, C.; Li, X.; Jiang, L.; Zhang, W.; Li, M.; Liu, H.; Fang, Y.; Liu, S.; Yang, G.; et al. Edible insects: A new sustainable nutritional resource worth promoting. Foods 2023, 12, 4073. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica, and T. molitor flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Orkusz, A.; Orkusz, M. Edible Insects: A Brief Guide for Polish Consumers. Eng. Sci. Technol. 2023, 39, 95–103. [Google Scholar] [CrossRef]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. COM/2020/381 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 10 September 2025).
- European Parliament and Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods. Off. J. Eur. Union. 2015, L 327, 1–22.
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Frozen and Dried Formulations from Whole House Cricket (Acheta domesticus) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06335. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2022/188 of 10 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Acheta domesticus as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union. 2022, L 30, 29–37. [Google Scholar]
- Akintayo, O.A.; Oyeyinka, S.A.; Aziz, A.O.; Olawuyi, I.F.; Kayode, R.M.O.; Karim, O.R. Quality Attributes of Breads from High Quality Cassava Flour Improved with Wet Gluten. J. Food Sci. 2020, 85, 2310–2316. [Google Scholar] [CrossRef] [PubMed]
- Popowska, O. Determination of Some Flour Characteristics. Eur. J. Agric. Food Sci. 2023, 5, 8–12. [Google Scholar] [CrossRef]
- Bodor, K.; Szilágyi, J.; Salamon, B.; Szakács, O.; Bodor, Z. Physical–Chemical Analysis of Different Types of Flours Available in the Romanian Market. Sci. Rep. 2024, 14, 881. [Google Scholar] [CrossRef] [PubMed]
- Radomski, G.; Bać, A.; Mierzejewska, S. A comparative assessment of baking value of wheat flour and German wheat flour. Inżynieria Rol. 2007, 5, 369–374. (In Polish) [Google Scholar]
- Różyło, R.; Laskowski, J.; Dziki, D. Physical Properties of Wheat Bread Baked from Dough with Different Parameters. Acta Agrophys. 2011, 18, 421–430. (In Polish) [Google Scholar]
- Wilkinson, K.; Muhlhausler, B.; Motley, C.; Crump, A.; Bray, H.; Ankeny, R. Australian consumers’ awareness and acceptance of insects as food. Insects 2018, 9, 44. [Google Scholar] [CrossRef]
- Gantner, M.; Sadowska, A.; Piotrowska, A.; Kulik, K.; Sionek, B.; Kostyra, E. Wheat Bread Enriched with House Cricket Powder (Acheta domesticus L.) as an Alternative Protein Source. Molecules 2024, 29, 711. [Google Scholar] [CrossRef] [PubMed]
- Mafu, A.; Ketnawa, S.; Phongthai, S.; Schönlechner, R.; Rawdkuen, S. Whole Wheat Bread Enriched with Cricket Powder as an Alternative Protein. Foods 2022, 11, 2142. [Google Scholar] [CrossRef] [PubMed]
- Perez-Fajardo, M.; Bean, S.R.; Dogan, H. Effect of cricket protein powders on dough functionality and bread quality. Cereal Chem. 2023, 100, 587–600. [Google Scholar] [CrossRef]
- Adamczyk, G.; Ivanišová, E.; Kaszuba, J.; Bobel, I.; Khvostenko, K.; Chmiel, M.; Falendysh, N. Quality Assessment of Wheat Bread Incorporating Chia Seeds. Foods 2021, 10, 2376. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Gałezewski, L.; Knapowski, T.; Kozera, W.; Wacławowicz, R. Mineral composition and baking value of the winter wheat grain under varied environmental and agronomic conditions. J. Chem. 2018, 2018, 5013825. [Google Scholar] [CrossRef]
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. ISO: Geneva, Switzerland, 2003.
- EN ISO 8589:2010; Sensory Analysis. General Guidance for the Design of Test Rooms, 2010. ISO: Geneva, Switzerland, 2010.
- Matos, M.E.; Rosell, C.M. Relationship between Instrumental Parameters and Sensory Characteristics in Gluten-Free Breads. Eur. Food Res. Technol. 2012, 235, 107–117. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and Challenges of Insects as an Innovative Source for Food and Feed Production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Computer program Diet 6D, Independent Laboratory of Epidemiology and Nutrition Standards; Institute of Food and Nutrition: Warsaw, Poland, 2018.
- Gawęcki, J. (Ed.) Human Nutrition. Fundamentals of the Science of Nutrition; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2022; Volume 1, ISBN 978-83-01-22116-4. (In Polish) [Google Scholar]
- Rychlik, E.; Stoś, K.; Woźniak, A.; Mojska, H. Dietary Reference Intakes for the Polish Population; National Institute of Public Health NIH—National Research Institute: Warsaw, Poland, 2024. (In Polish) [Google Scholar]
- Statsoft Inc. Statistica (Data Analysis Software System), version 13.1; Statsoft Inc.: Tulsa, OK, USA, 2013.
- Steiner, K.; Florack, A. The Influence of Packaging Color on Consumer Perceptions of Healthfulness: A Systematic Review and Theoretical Framework. Foods 2023, 12, 3911. [Google Scholar] [CrossRef]
- Spence, C. On the Relationship(s) Between Color and Taste/Flavor. Exp. Psychol. 2019, 66, 99–111. [Google Scholar] [CrossRef]
- Shamim, G.; Ranjan, S.K.; Pandey, D.M.; Ramani, R. Biochemistry and Biosynthesis of Insect Pigments. Eur. J. Entomol. 2014, 111, 149–164. [Google Scholar] [CrossRef]
- Valverde, J.P.; Schielzeth, H. What Triggers Colour Change? Effects of Background Colour and Temperature on the Development of an Alpine Grasshopper. BMC Evol. Biol. 2015, 15, 168. [Google Scholar] [CrossRef]
- Pasini, G.; Cullere, M.; Vegro, M.; Simonato, B.; Dalle Zotte, A. Potentiality of Protein Fractions from the House Cricket (Acheta domesticus) and Yellow Mealworm (Tenebrio molitor) for Pasta Formulation. LWT 2022, 164, 113638. [Google Scholar] [CrossRef]
- Barbana, C.; Boye, J. In Vitro Protein Digestibility and Physico-Chemical Properties of Flours and Protein Concentrates from Two Varieties of Lentil (Lens culinaris). Food Funct. 2013, 4, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Schuster, N.; Flynn, D.; Bechtel, R.; Bellumori, M.; Innocenti, M.; Mulinacci, N.; Guinard, J.X. Sensory Profiling and Consumer Acceptance of Pasta, Bread, and Granola Bar Fortified with Dried Olive Pomace (Pâté): A Byproduct from Virgin Olive Oil Production. J. Food Sci. 2019, 84, 2995–3008. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Guan, E.; Yang, Y.; Li, M.; Bian, K. Effects of Wheat Flour Particle Size on Flour Physicochemical Properties and Steamed Bread Quality. Food Sci. Nutr. 2021, 9, 4691–4700. [Google Scholar] [CrossRef]
- Han, H.; Lee, E.; Kweon, M. Predominant Factors in Milling and Wheat Variety Influence Particle Size and Whole Wheat Flour. J. Food Sci. 2025, 90, e70191. [Google Scholar] [CrossRef]
- Alizadeh, A.; Peivasteh-Roudsari, L.; Tajdar-Oranj, B.; Beikzadeh, S.; Barani-Bonab, H.; Jazaeri, S. Effect of Flour Particle Size on Chemical and Rheological Properties of Wheat Flour Dough. Iran. J. Chem. Chem. Eng. (Int. Engl. Ed.) 2020, 41, 682–694. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Wang, Q.; Liu, C.; Xiao, J.; Huang, D. Effects of Traditional Grinding and Superfine Grinding Technologies on the Properties and Volatile Components of Protaetia brevitarsis Larvae Powder. LWT 2022, 170, 114307. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Acheta domesticus Powder as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2024, 22, e8919. [Google Scholar] [CrossRef]
- Bieniek, A.; Buksa, K. The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method. Molecules 2024, 29, 904. [Google Scholar] [CrossRef]
- Waldert, K.; Bittermann, S.; Martinović, N.; Schottroff, F.; Jäger, H. Ohmic Baking of Wheat Bread—Effect of Process Parameters on Physico-Chemical Quality Attributes. J. Food Eng. 2025, 370, 112493. [Google Scholar] [CrossRef]
- Rumler, R.; Bender, D.; Schoenlechner, R. Mitigating the Effect of Climate Change within the Cereal Sector: Improving Rheological and Baking Properties of Strong Gluten Wheat Doughs by Blending with Specialty Grains. Plants 2023, 12, 492. [Google Scholar] [CrossRef]
- Silva, T.H.L.; Monteiro, R.L.; Salvador, A.A.; Laurindo, J.B.; Carciofi, B.A.M. Kinetics of Bread Physical Properties in Baking Depending on Actual Finely Controlled Temperature. Food Control 2022, 137, 108898. [Google Scholar] [CrossRef]
- Balestra, F.; Cocci, E.; Pinnavaia, G.; Romani, S. Evaluation of Antioxidant, Rheological and Sensorial Properties of Wheat Flour Dough and Bread Containing Ginger Powder. LWT–Food Sci. Technol. 2011, 44, 700–705. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, Y.; Zhou, W. Bread fortified with anthocyanin-rich black rice powder: Its quality properties and in vitro starch digestibility. LWT 2016, 68, 492–499. [Google Scholar] [CrossRef]
- Villarino, C.B.J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S.K. The effects of lupin (Lupinus angustifolius) flour incorporation into wheat bread on its nutritional, phytochemical and bioactive composition and protein quality. Food Res. Int. 2016, 89, 205–213. [Google Scholar] [CrossRef]
- García-Gómez, B.; Fernández-Canto, N.; Vázquez-Odériz, M.A.; Quiroga-García, M.; Muñoz-Ferreiro, N.; Romero-Rodríguez, M.A. Sensory Descriptive Analysis and Hedonic Consumer Test for Galician Type Breads. Food Control 2022, 134, 108765. [Google Scholar] [CrossRef]
- Andaregie, A.; Shimura, H.; Chikasada, M.; Sasaki, S.; Mulugeta, M.A.; Worku, A. Assessing Eating Habits and Preferences for Bakery Products among Urban Dwellers in Ethiopia. Cogent Food Agric. 2024, 10, 2375621. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Skotnicka, M.; Mickowska, B. Effect of the Addition of Edible Insect Flour from Yellow Mealworm (Tenebrio molitor) on the Sensory Acceptance, and the Physicochemical and Textural Properties of Sponge Cake. Pol. J. Food Nutr. Sci. 2022, 72, 393–405. [Google Scholar] [CrossRef]
- Ribeiro, J.; Pintado, M.; Cunha, L. Consumption of Edible Insects and Insect-Based Foods: A Systematic Review of Sensory Properties and Evoked Emotional Response. Compr. Rev. Food Sci. Food Saf. 2023, 23, e13247. [Google Scholar] [CrossRef]
- Ochieng, B.; Anyango, J.; Nduko, J.; Mudalungu, C.; Cheseto, X.; Tanga, C. Aroma Characterization and Consumer Acceptance of Four Cookie Products Enriched with Insect (Ruspolia differens) Meal. Sci. Rep. 2023, 13, 11145. [Google Scholar] [CrossRef] [PubMed]
- Barnabé, M.; Abrantes, L.; Fialho, T.; Oliveira, L.; Pereira, S.; Dias, K.; Vicente, L.; Martins, K.; Della Lucia, C. Effect of Edible Insect Powder Incorporation on Nutritional and Sensory Properties of Food Products: A Systematic Review. J. Insects Food Feed. 2024, 11, 1137–1167. [Google Scholar] [CrossRef]
- Großmann, K.; Merz, M.; Appel, D.; De Araujo, M.; Fischer, L. New Insights into the Flavoring Potential of Cricket (Acheta domesticus) and Mealworm (Tenebrio molitor) Protein Hydrolysates and Their Maillard Products. Food Chem. 2021, 364, 130336. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Ruschioni, S.; Riolo, P.; Isidoro, N.; Loreto, N.; et al. Bread Enriched with Cricket Powder (Acheta domesticus): A Technological, Microbiological and Nutritional Evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein Fortification with Mealworm (Tenebrio molitor L.) Powder: Effect on Textural, Microbiological, Nutritional and Sensory Features of Bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef] [PubMed]
- Pyo, S.; Moon, C.; Park, S.; Choi, J.; Park, J.; Sung, J.; Choi, E.; Son, Y. Quality and Staling Characteristics of White Bread Fortified with Lysozyme-Hydrolyzed Mealworm Powder (Tenebrio molitor L.). Curr. Res. Food Sci. 2024, 8, 100685. [Google Scholar] [CrossRef] [PubMed]
- Amoah, I.; Cobbinah, J.; Yeboah, J.; Essiam, F.; Lim, J.; Tandoh, M.; Rush, E. Edible Insect Powder for Enrichment of Bakery Products—A Review of Nutritional, Physical Characteristics and Acceptability of Bakery Products to Consumers. Future Foods 2023, 8, 100251. [Google Scholar] [CrossRef]
- Mazurek, A.; Pałka, A.; Skotnicka, M.; Kowalski, S. Consumer Attitudes and Acceptability of Wheat Pancakes with the Addition of Edible Insects: Mealworm (Tenebrio molitor), Buffalo Worm (Alphitobius diaperinus), and Cricket (Acheta domesticus). Foods 2022, 12, 1. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, E.; Ibarra-Herrera, C.C.; Pérez-Carrillo, E. Effect of Incorporation of Solid-State Fermented Edible Insects Tenebrio molitor and Sphenarium purpurascens with Aspergillus oryzae in the Elaboration of Bread. LWT–Food Sci. Technol. 2023, 184, 115003. [Google Scholar] [CrossRef]
- Sayadi, M.; Arianfar, A.; Mohamadi Sani, A.; Sheikholeslami, Z. Effect of Incorporating Oat Flour and Sourdough on the Sensory and Technological Characteristics of Bread. Food Sci. Nutr. 2025, 13, e4693. [Google Scholar] [CrossRef]
- Mishynaa, M.; Chena, J.; Benjamin, O. Sensory attributes of edible insects and insect-based foods—Future outlooks for enhancing consumer appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Bender, D.; Schönlechner, R. Innovative Approaches towards Improved Gluten-Free Bread Properties. J. Cereal Sci. 2020, 91, 102904. [Google Scholar] [CrossRef]
- Sarabhai, S.; Das, A.B.; Rajasheker, C.; Sharma, S. Role of Enzymes for Improvement in Gluten-Free Foxtail Millet Bread: Its Effect on Quality, Textural, Rheological and Pasting Properties. LWT 2021, 137, 110365. [Google Scholar] [CrossRef]
- Culetu, A.; Susman, I.E.; Duta, D.E.; Belc, N. Nutritional and Functional Properties of Gluten-Free Flours. Appl. Sci. 2021, 11, 6283. [Google Scholar] [CrossRef]
Ingredients | WF | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 | M13 | CP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WFr (%) | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 | 60 | 50 | 40 | 30 | 20 | 10 | - |
Yeast (g) | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Oil (g) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Sugar (g) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Salt (g) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Water (g) | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 300 |
CP (%) | - | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Scale Point | Meaning |
---|---|
1 | dislike extremely |
2 | dislike very much |
3 | dislike moderately |
4 | dislike slightly |
5 | neither like nor dislike |
6 | like slightly |
7 | like moderately |
8 | like very much |
9 | like extremely |
Sample Type | L* | a* | b* |
---|---|---|---|
100% WF | 96.83 a ± 0.23 | −0.07 a ± 0.03 | 2.13 a ± 0.10 |
95% WF/5% CP | 89.24 b ± 0.55 | −0.14 b± 0.02 | 8.10 b ± 0.09 |
90% WF/10% CP | 85.69 c ± 0.79 | −0.46 c ± 0.02 | 8.35 c ± 0.05 |
85% WF/15% CP | 84.52 c ± 0.81 | 0.07 d ± 0.03 | 8.32 c ± 0.12 |
80% WF/20% CP | 80.31 d ± 0.99 | 0.43 e ± 0.02 | 8.58 cd ± 0.05 |
75% WF/25% CP | 80.71 d ± 0.34 | 0.64 f ± 0.02 | 8.68 d ± 0.14 |
70% WF/30% CP | 74.90 e ± 0.43 | 1.13 g ± 0.01 | 9.17 e ± 0.05 |
65% WF/35% CP | 73.93 e ± 0.68 | 1.19 gh ± 0.02 | 9.16 e ± 0.10 |
60% WF/40% CP | 70.57 f ± 0.82 | 1.23 h ± 0.05 | 9.37 f ± 0.14 |
50% WF/50% CP | 65.76 g ± 0.46 | 1.43 i ± 0.02 | 9.65 g ± 0.03 |
40% WF/60% CP | 61.05 h ± 0.56 | 2.04 j ± 0.04 | 10.78 h ± 0.01 |
30% WF/70% CP | 58.46 i ± 0.34 | 2.22 k ± 0.05 | 11.26 i ± 0.09 |
20% WF/80% CP | 55.22 j ± 0.37 | 2.39 l ± 0.01 | 11.57 i ± 0.04 |
10% WF/90% CP | 52.31 k ± 0.20 | 2.38 l ± 0.07 | 11.44 i ± 0.14 |
100% CP | 51.92 k ± 0.25 | 2.60 m ± 0.03 | 9.88 g ± 0.06 |
Sample Type | 500 μm | 180 μm | 125 μm | <125 μm |
---|---|---|---|---|
100% WF | 10 a ± 1 | 65 a ± 1 | 20 a ± 1 | 5 ± 1 |
95% WF/5% CP | 12 a ± 1 | 65 a ± 1 | 22 ab ± 1 | 1 ± 1 |
90% WF/10% CP | 13 a ± 1 | 67 a ± 1 | 20 a ± 1 | 0 ± 0 |
85% WF/15% CP | 20 b ± 2 | 55 b ± 1 | 25 b ± 2 | 0 ± 0 |
80% WF/20% CP | 28 c ± 2 | 50 b ± 2 | 22 ab ± 2 | 0 ± 0 |
75% WF/25% CP | 30 c ± 2 | 51 b ± 2 | 18 a ± 2 | 1 ± 1 |
70% WF/30% CP | 38 d ± 2 | 36 c ± 2 | 24 b ± 2 | 2 ± 1 |
65% WF/35% CP | 40 d ± 2 | 35 c ± 2 | 25 b ± 2 | 0 ± 0 |
60% WF/40% CP | 56 e ± 3 | 21 d ± 2 | 23 ab ± 2 | 0 ± 0 |
50% WF/50% CP | 74 f ± 4 | 24 d ± 2 | 2 c ± 1 | 0 ± 0 |
40% WF/60% CP | 74 f ± 4 | 24 d ± 2 | 2 c ± 1 | 0 ± 0 |
30% WF/70% CP | 77 f ± 3 | 18 e ± 3 | 5 c ± 2 | 0 ± 0 |
20% WF/80% CP | 84 g ± 4 | 14 e ± 3 | 2 c ± 1 | 0 ± 0 |
10% WF/90% CP | 82 g ± 4 | 16 e ± 2 | 2 c ± 1 | 0 ± 0 |
100% CP | 84 g ± 4 | 14 e ± 3 | 2 c ± 1 | 0 ± 0 |
WF/CP [%] | Mean Maximum Volume [mL] ± SD | Formation and Distribution of CO2 Bubbles | Collapse Time After Reaching Maximum Volume [min.] | Uniformity of Growth |
---|---|---|---|---|
100/0 | 250.0 a ± 4.2 | Numerous, similar-sized, progressively enlarging during fermentation, evenly distributed throughout the sample volume | ~70–80 | Uniform |
95/5 | 205.0 b ± 7.7 | Fewer in number, similar-sized, evenly distributed throughout the sample volume | ~70 | Uniform |
90/10 | 200.0 b ± 6.4 | Fewer in number, more variable in size, tending to accumulate in the upper layers of the sample | ~65–70 | Less uniform |
85/15 | 202.5 b ± 5.6 | Fewer in number, more variable in size, tending to accumulate in the upper layers of the sample | ~60–65 | Less uniform |
80/20 | 180.5 c ± 2.9 | Smaller CO2 bubbles, irregular distribution; in the lower layers, noticeably fewer and a dense, non-porous structure, while the upper part showed a concentration of larger bubbles | ~50–55 | Clearly irregular |
75/25 | 170.0 c ± 2.9 | Smaller bubbles, irregular distribution; lower layers with fewer gas bubbles, dense crumb, upper part with larger bubbles | ~50–55 | Clearly irregular |
70/30 | 170.0 c ± 2.3 | Small, single CO2 bubbles concentrated in the upper part of the sample | ~45–50 | Highly irregular |
65/35 | 172.5 c ± 7.2 | Fewer CO2 bubbles, mainly in the upper part of the sample | ~50 | Highly irregular |
60/40 | 175.0 c± 5.6 | Small, sparse, irregularly distributed CO2 bubbles, mainly in the upper part of the sample | ~50 | Highly irregular |
50/50 | 147.5 d ± 2.1 | Small CO2 bubbles, irregular distribution | ~40–45 | Highly irregular |
40/60 | 135.5 e ± 6.6 | Single, irregular CO2 bubbles in the upper part of the sample | ~30–35 | No uniformity |
30/70 | 115.0 f ± 7.8 | Single, irregular CO2 bubbles, mainly in the upper part of the sample | ~25–30 | No uniformity |
20/80 | 110.0 f ± 7.0 | Single, irregular CO2 bubbles, mainly in the upper part of the sample | ~20–25 | No uniformity |
10/90 | 110.0 f ± 3.3 | Single, irregular CO2 bubbles, mainly in the upper part of the sample | ~20 | No uniformity |
0/100 | 105.0 f ± 3.1 | Single, irregular CO2 bubbles | ~20 | No uniformity |
Flours and Flour Blends | Baking Loss [%] | Hardness [mm] |
---|---|---|
100%WF | 13.75 a ± 0.11 | 18.30 a ± 1.50 |
95%WF/5%CP | 14.03 a ± 0.12 | 18.10 a ± 0.42 |
90%WF/10%CP | 13.89 a ± 0.28 | 17.70 a ± 0.28 |
85%WF/15%CP | 14.04 a ±0.11 | 11.45 b ± 0.35 |
80%WF/20%CP | 16.32 b ± 0.15 | 11.85 b ± 0.10 |
75%WF/25%CP | 17.25 c ± 0.60 | 11.95 b ± 0.21 |
70%WF/30%CP | 17.70 cd ± 0.50 | 10.90 b ± 0.14 |
65%WF/35%CP | 18.15 de ± 0.26 | 10.20 b ± 0.28 |
60%WF/40%CP | 18.58 e ± 0.62 | 11.00 b ± 0.28 |
50%WF/50%CP | 19.94 f ± 0.40 | 10.70 b ± 0.26 |
40%WF/60%CP | 20.00 f ± 0.17 | 10.15 b ± 0.10 |
30%WF/70%CP | 20.11 f ± 0.15 | ✕ |
20%WF/80%CP | 20.30 f ±0.36 | ✕ |
10%WF/90%CP | 20.22 f ± 0.22 | ✕ |
100%CP | 22.34 g ± 0.12 | ✕ |
100% WF | 95%WF/ 5%CP | 90%WF/ 10%CP | 85%WF/ 15%CP | 80%WF/ 20%CP | 75%WF/ 25%CP | 70%WF 30%CP | 65%WF/ 35%CP | |
Bred | ||||||||
Crumb | ||||||||
60%WF/ 40%CP | 50%WF/ 50%CP | 40%WF/ 60%CP | 30%WF/ 70%CP | 20%WF/ 80%CP | 10%WF/ 90%CP | 100%CP | ||
Bred | ||||||||
Crumb |
Sample Type | Taste | Flavor | Hardness | Chewing | Gumminess | Overall Assessment |
---|---|---|---|---|---|---|
100%WF | 7.67 a ± 0.72 | 7.73 a ± 1.39 | 6.47 a ± 1.96 | 6.53 a ± 2.10 | 6.00 a ± 1.93 | 7.67 a ± 0.82 |
95%WF/5%CP | 7.67 a ± 0.72 | 6.87 ab ± 1.36 | 5.60 ab ± 1.88 | 6.27 ab ± 1.44 | 5.73 ab ± 1.67 | 6.73 ab ± 1.22 |
90%WF/10%CP | 7.40 a ± 1.12 | 6.40 b ± 1.35 | 5.47 ab ± 1.77 | 6.13 ab ± 1.73 | 5.60 ab ± 1.35 | 6.47 bc ± 1.30 |
85%WF/15%CP | 6.73 ab ± 1.16 | 6.20 b ± 1.42 | 5.40 ab ± 1.72 | 5.67 abc ± 1.84 | 5.40 ab ± 1.64 | 6.27 bcd ± 1.44 |
80%WF/20%CP | 6.40 bc ± 0.99 | 6.07 bc ± 1.03 | 5.40 ab ± 0.99 | 5.60 abc ± 1.64 | 5.40 ab ± 1.30 | 5.73 bcde ± 1.16 |
75%WF/25%CP | 6.20 bc ± 0.86 | 6.07 bc ± 1.87 | 5.13 b ± 1.06 | 5.53 abc ± 1.30 | 5.33 ab ± 1.45 | 5.67 cde ± 1.23 |
70%WF/30%CP | 6.13 bc ± 1.30 | 6.00 bc ± 1.85 | 5.13 b ± 1.73 | 5.53 abc ± 1.82 | 5.00 ab ± 1.36 | 5.33 def ± 1.63 |
65%WF/35%CP | 5.60 cd ± 0.99 | 6.00 bc ± 1.00 | 5.07 b ± 0.96 | 5.00 bcd ± 1.20 | 4.80 ab ± 1.37 | 5.00 efg ± 1.00 |
60%WF/40%CP | 5.47 cd ± 1.30 | 5.93 bc ± 1.79 | 4.87 b ± 1.30 | 5.00 bcd ± 1.20 | 4.73 b ± 1.03 | 4.93 efg ± 0.88 |
50%WF/50%CP | 4.73 de ±1.49 | 4.80 cde ± 1.82 | 4.73 bc ± 1.58 | 4.40 cd ± 1.70 | 4.67 b ± 1.18 | 4.60 fgh ± 1.50 |
40%WF/60%CP | 4.33 ef ± 1.80 | 4.33 ed ± 1.95 | 4.60 bc ± 2.03 | 4.27 de ± 1.45 | 4.47 b ± 1.77 | 4.27 gh ± 1.87 |
30%WF/70%CP | 3.47 fg ± 1.36 | 4.13 ed ± 1.60 | 4.60 bc ± 2.06 | 4.27 de ± 1.71 | 4.47 b ± 1.41 | 3.67 hi ± 1.35 |
20%WF/80%CP | 2.87 gh ± 1.51 | 3.47 df ± 2.17 | 3.53 cd ± 1.77 | 3.47 e ± 1.58 | 3.33 c ± 1.40 | 3.20 i ± 1.21 |
10%WF/90%CP | 2.67 gh ± 1.45 | 3.67 df ± 2.13 | 2.67 de ± 1.63 | 3.40 e ± 1.55 | 3.27 c ± 2.02 | 3.13 i ± 1.46 |
100%CP | 2.00 h ± 1.25 | 2.73 f ± 1.94 | 1.87 e ± 1.19 | 1.93 f ± 1.42 | 1.73 d ± 1.16 | 1.67 j ± 0.98 |
Taste | Flavor | Hardness | Chewiness | Gumminess | Overall Assessment | |
---|---|---|---|---|---|---|
Taste | 1.00 | 0.74 *** | 0.63 *** | 0.72 *** | 0.67 *** | 0.87 *** |
Flavor | 1.00 | 0.68 *** | 0.74 *** | 0.66 *** | 0.82 *** | |
Hardness | 1.00 | 0.73 *** | 0.73 *** | 0.71 *** | ||
Chewiness | 1.00 | 0.74 *** | 0.81 *** | |||
Gumminess | 1.00 | 0.72 *** | ||||
Overall assessment | 1.00 |
Flours and Flour Blends | Energy [kcal/100 g] | Protein [g/100 g] | Fat [g/100 g] | Carbohydrates [g/100 g] | Fiber [g/100 g] | Starch [g/100 g] | INQ Values for Protein |
---|---|---|---|---|---|---|---|
100%WF | 342.00 | 11.60 | 1.80 | 68.00 | 2.90 | 66.60 | 1.42 |
95%WF/5%CP | 347.68 | 14.52 | 2.64 | 64.63 | 3.23 | 63.27 | 1.75 |
90%WF/10%CP | 353.35 | 17.44 | 3.48 | 61.25 | 3.56 | 59.94 | 2.06 |
85%WF/15%CP | 359.03 | 20.36 | 4.31 | 57.88 | 3.89 | 56.61 | 2.37 |
80%WF/20%CP | 364.70 | 23.28 | 5.15 | 54.50 | 4.22 | 53.28 | 2.67 |
75%WF/25%CP | 370.38 | 26.20 | 5.99 | 51.13 | 4.55 | 49.95 | 2.96 |
70%WF/30%CP | 376.05 | 29.12 | 6.83 | 47.75 | 4.88 | 46.62 | 3.24 |
65%WF/35%CP | 381.73 | 32.04 | 7.66 | 44.38 | 5.21 | 43.29 | 3.51 |
60%WF/40%CP | 387.40 | 34.96 | 8.50 | 41.00 | 5.54 | 39.96 | 3.77 |
50%WF/50%CP | 398.75 | 40.80 | 10.18 | 34.25 | 6.20 | 33.30 | 4.28 |
40%WF/60%CP | 410.10 | 46.64 | 11.85 | 27.50 | 6.86 | 26.64 | 4.75 |
30%WF/70%CP | 421.45 | 52.48 | 13.53 | 20.75 | 7.52 | 19.98 | 5.21 |
20%WF/80%CP | 432.80 | 58.32 | 15.20 | 14.00 | 8.18 | 13.32 | 5.63 |
10%WF/90%CP | 444.15 | 64.16 | 16.88 | 7.25 | 8.84 | 6.66 | 6.04 |
100%CP | 463.00 | 70.00 | 22.80 | 0.50 | 9.50 | 0.00 | 6.32 |
Flours and Flour Blends | Na | K | Ca | P | Mg | Fe | Zn | Cu | Mn |
---|---|---|---|---|---|---|---|---|---|
100%WF | 3.00 | 165.00 | 20.00 | 122.00 | 31.00 | 1.60 | 1.36 | 0.15 | 0.62 |
95%WF/5%CP | 24.63 | 213.08 | 25.61 | 154.90 | 33.45 | 1.83 | 2.22 | 0.19 | 0.74 |
90%WF/10%CP | 46.26 | 261.16 | 31.21 | 187.80 | 35.90 | 2.07 | 3.09 | 0.22 | 0.86 |
85%WF/15%CP | 67.89 | 309.24 | 36.82 | 220.70 | 38.35 | 2.30 | 3.95 | 0.26 | 0.97 |
80%WF/20%CP | 89.52 | 357.32 | 42.43 | 253.60 | 40.80 | 2.53 | 4.82 | 0.29 | 1.09 |
75%WF/25%CP | 111.15 | 405.41 | 48.04 | 286.50 | 43.25 | 2.77 | 5.68 | 0.33 | 1.21 |
70%WF/30%CP | 132.78 | 453.49 | 53.64 | 319.40 | 45.70 | 3.00 | 6.54 | 0.36 | 1.33 |
65%WF/35%CP | 154.41 | 501.57 | 59.25 | 352.30 | 48.15 | 3.23 | 7.41 | 0.40 | 1.44 |
60%WF/40%CP | 176.04 | 549.65 | 64.86 | 385.20 | 50.60 | 3.47 | 8.27 | 0.43 | 1.56 |
50%WF/50%CP | 219.30 | 645.81 | 76.07 | 451.00 | 55.50 | 3.94 | 10.00 | 0.50 | 1.80 |
40%WF/60%CP | 262.56 | 741.97 | 87.28 | 516.80 | 60.40 | 4.40 | 11.73 | 0.57 | 2.03 |
30%WF/70%CP | 305.82 | 838.13 | 98.50 | 582.60 | 65.30 | 4.87 | 13.46 | 0.64 | 2.27 |
20%WF/80%CP | 349.08 | 934.30 | 109.71 | 648.40 | 70.20 | 5.34 | 15.18 | 0.71 | 2.50 |
10%WF/90%CP | 392.34 | 1030.46 | 120.93 | 714.20 | 75.10 | 5.80 | 16.91 | 0.78 | 2.74 |
100%CP | 435.60 | 1126.62 | 132.14 | 780.00 | 80.00 | 6.27 | 18.64 | 0.85 | 2.97 |
Flours and Flour Blends | Vit. A [µg] | Vit. B1 [mg] | Vit. B2 [mg] | Vit PP [mg] | Vit. C [mg] | Vit. E [mg] |
---|---|---|---|---|---|---|
100%WF | 0.00 | 0.32 | 0.08 | 2.29 | 0.00 | 0.74 |
95%WF/5%CP | 1.22 | 0.31 | 0.63 | 2.81 | 0.49 | 0.92 |
90%WF/10%CP | 2.43 | 0.30 | 1.18 | 3.32 | 0.97 | 1.10 |
85%WF/15%CP | 3.65 | 0.29 | 1.73 | 3.84 | 1.46 | 1.27 |
80%WF/20%CP | 4.87 | 0.29 | 2.28 | 4.35 | 1.95 | 1.45 |
75%WF/25%CP | 6.08 | 0.28 | 2.83 | 4.87 | 2.44 | 1.63 |
70%WF/30%CP | 7.30 | 0.27 | 3.38 | 5.38 | 2.92 | 1.81 |
65%WF/35%CP | 8.52 | 0.26 | 3.93 | 5.90 | 3.41 | 1.98 |
60%WF/40%CP | 9.73 | 0.25 | 4.48 | 6.41 | 3.90 | 2.16 |
50%WF/50%CP | 12.17 | 0.23 | 5.58 | 7.44 | 4.87 | 2.52 |
40%WF/60%CP | 14.60 | 0.21 | 6.67 | 8.47 | 5.84 | 2.87 |
30%WF/70%CP | 17.03 | 0.19 | 7.77 | 9.50 | 6.82 | 3.23 |
20%WF/80%CP | 19.46 | 0.17 | 8.87 | 10.53 | 7.79 | 3.58 |
10%WF/90%CP | 21.90 | 0.15 | 9.97 | 11.56 | 8.77 | 3.94 |
100%CP | 24.33 | 0.13 | 11.07 | 12.59 | 9.74 | 4.29 |
Flours and Flour Blends | INQ Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na [mg] | K [mg] | Ca [mg] | P [mg] | Mg [mg] | Fe [mg] | Zn [mg] | Cu [mg] | Mn [mg] | |
100%WF | 0.01 | 0.29 | 0.12 | 1.07 | 0.59 | 0.54 | 1.04 | 1.02 | 2.10 |
95%WF/5%CP | 0.10 | 0.37 | 0.15 | 1.33 | 0.63 | 0.61 | 1.67 | 1.24 | 2.46 |
90%WF/10%CP | 0.18 | 0.44 | 0.18 | 1.59 | 0.66 | 0.68 | 2.28 | 1.45 | 2.81 |
85%WF/15%CP | 0.26 | 0.51 | 0.21 | 1.84 | 0.70 | 0.74 | 2.88 | 1.65 | 3.15 |
80%WF/20%CP | 0.34 | 0.59 | 0.24 | 2.08 | 0.73 | 0.81 | 3.45 | 1.85 | 3.47 |
75%WF/25%CP | 0.42 | 0.65 | 0.27 | 2.31 | 0.76 | 0.87 | 4.01 | 2.04 | 3.79 |
70%WF/30%CP | 0.49 | 0.72 | 0.30 | 2.54 | 0.79 | 0.93 | 4.55 | 2.22 | 4.09 |
65%WF/35%CP | 0.56 | 0.78 | 0.32 | 2.76 | 0.82 | 0.98 | 5.07 | 2.40 | 4.39 |
60%WF/40%CP | 0.63 | 0.85 | 0.35 | 2.97 | 0.85 | 1.04 | 5.58 | 2.58 | 4.68 |
50%WF/50%CP | 0.77 | 0.97 | 0.40 | 3.38 | 0.91 | 1.15 | 6.55 | 2.91 | 5.23 |
40%WF/60%CP | 0.89 | 1.08 | 0.44 | 3.76 | 0.96 | 1.25 | 7.47 | 3.23 | 5.75 |
30%WF/70%CP | 1.01 | 1.19 | 0.49 | 4.13 | 1.01 | 1.34 | 8.34 | 3.53 | 6.24 |
20%WF/80%CP | 1.12 | 1.29 | 0.53 | 4.47 | 1.06 | 1.43 | 9.17 | 3.81 | 6.71 |
10%WF/90%CP | 1.23 | 1.39 | 0.57 | 4.80 | 1.10 | 1.52 | 9.95 | 4.08 | 7.15 |
100%CP | 1.31 | 1.45 | 0.60 | 5.03 | 1.13 | 1.57 | 10.52 | 4.26 | 7.45 |
Flours and Flour Blends | INQ Values | |||||
---|---|---|---|---|---|---|
Vit. A [µg] | Vit. B1 [mg] | Vit. B2 [mg] | Vit PP [mg] | Vit. C [mg] | Vit. E [mg] | |
100%WF | 0.00 | 1.80 | 0.45 | 1.00 | 0.00 | 0.57 |
95%WF/5%CP | 0.01 | 1.72 | 3.45 | 1.20 | 0.04 | 0.69 |
90%WF/10%CP | 0.02 | 1.64 | 6.34 | 1.40 | 0.08 | 0.81 |
85%WF/15%CP | 0.03 | 1.56 | 9.15 | 1.59 | 0.11 | 0.93 |
80%WF/20%CP | 0.04 | 1.49 | 11.87 | 1.78 | 0.15 | 1.04 |
75%WF/25%CP | 0.05 | 1.41 | 14.51 | 1.96 | 0.18 | 1.15 |
70%WF/30%CP | 0.06 | 1.34 | 17.07 | 2.14 | 0.22 | 1.25 |
65%WF/35%CP | 0.07 | 1.27 | 19.55 | 2.31 | 0.25 | 1.36 |
60%WF/40%CP | 0.08 | 1.21 | 21.96 | 2.47 | 0.28 | 1.46 |
50%WF/50%CP | 0.09 | 1.08 | 26.57 | 2.79 | 0.34 | 1.65 |
40%WF/60%CP | 0.11 | 0.96 | 30.92 | 3.08 | 0.40 | 1.83 |
30%WF/70%CP | 0.12 | 0.85 | 35.04 | 3.37 | 0.45 | 2.00 |
20%WF/80%CP | 0.13 | 0.74 | 38.95 | 3.63 | 0.50 | 2.16 |
10%WF/90%CP | 0.15 | 0.64 | 42.65 | 3.89 | 0.55 | 2.31 |
100%CP | 0.16 | 0.53 | 45.43 | 4.06 | 0.59 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orkusz, A.; Orkusz, M. Effect of Acheta domesticus Powder Incorporation on Nutritional Composition, Technological Properties, and Sensory Acceptance of Wheat Bread. Insects 2025, 16, 972. https://doi.org/10.3390/insects16090972
Orkusz A, Orkusz M. Effect of Acheta domesticus Powder Incorporation on Nutritional Composition, Technological Properties, and Sensory Acceptance of Wheat Bread. Insects. 2025; 16(9):972. https://doi.org/10.3390/insects16090972
Chicago/Turabian StyleOrkusz, Agnieszka, and Martyna Orkusz. 2025. "Effect of Acheta domesticus Powder Incorporation on Nutritional Composition, Technological Properties, and Sensory Acceptance of Wheat Bread" Insects 16, no. 9: 972. https://doi.org/10.3390/insects16090972
APA StyleOrkusz, A., & Orkusz, M. (2025). Effect of Acheta domesticus Powder Incorporation on Nutritional Composition, Technological Properties, and Sensory Acceptance of Wheat Bread. Insects, 16(9), 972. https://doi.org/10.3390/insects16090972