Thermal Adaptation in Liriomyza trifolii (Diptera: Agromyzidae): From Interspecific Competition to Mechanisms
Simple Summary
Abstract
1. Introduction
2. Thermal Adaptation Advantage Serves as a Key Competitive Determinant in L. trifolii
3. Physiological and Biochemical Mechanisms of Thermal Tolerance in L. trifolii
4. Molecular Mechanisms of Thermal Tolerance in L. trifolii
5. Future Challenges and Opportunities
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, C.S.; Wang, B.X.; Wang, X.J.; Lin, Q.C.; Zhang, W.; Yang, X.F.; van Baaren, J.; Bebber, D.P.; Eigenbrode, S.D.; Zalucki, M.P.; et al. Crop pest responses to global changes in climate and land management. Nat. Rev. Earth Environ. 2025, 6, 264–283. [Google Scholar] [CrossRef]
- Hoffmann, A.A. Physiological climatic limits in Drosophila: Patterns and implications. J. Exp. Biol. 2010, 213, 870–880. [Google Scholar] [CrossRef]
- Kellermann, V.; Overgaard, J.; Hoffmann, A.A.; Fløjgaard, C.; Svenning, J.; Loeschcke, V. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl. Acad. Sci. USA 2012, 109, 16228–16233. [Google Scholar] [CrossRef]
- Chen, B.; Kang, L. Adaptation to environmental temperature stress and population differentiation in insects. Prog. Nat. Sci. 2005, 15, 265–271. [Google Scholar]
- Reitz, S.R.; Trumble, J.T. Competitive displacement among insects and arachnids. Annu. Rev. Entomol. 2002, 47, 435–465. [Google Scholar] [CrossRef] [PubMed]
- Taylor, F. Ecology and evolution of physiological time in insects. Am. Nat. 1981, 117, 1–23. [Google Scholar] [CrossRef]
- Chown, S.L.; Nicolson, S.W. Insect Physiological Ecology: Mechanisms and Patterns; Oxford Biology: Oxford, UK, 2004; pp. 1–256. [Google Scholar]
- Spencer, K.A. Agromyzidae (Diptera) of Economic Importance; Pitman Press: London, UK, 1973; pp. 219–225. [Google Scholar]
- Wan, F.H.; Yang, N.W. Invasion and management of agricultural alien insects in China. Annu. Rev. Entomol. 2016, 61, 77–98. [Google Scholar] [CrossRef]
- Kang, L. Ecology and Sustainable Control of Serpentine Leafminers; Science Press: Beijing, China, 1996; pp. 86–90. [Google Scholar]
- Lei, Z.R.; Yao, J.M.; Zhu, C.J.; Wang, H.H. Prediction of suitable areas for Liriomyza trifolii (Burgess) in China. Plant Prot. 2007, 33, 100–103. [Google Scholar]
- Wang, K.G.; Yi, H.; Lei, Z.R.; Xiang, J.C.; Lin, Z.M. Surveys and analysis of competition and displacement between two invasive species of leafminer fly in Hainan Province. Sci. Agric. Sin. 2013, 46, 4842–4848. [Google Scholar]
- Chang, Y.W.; Shen, Y.; Dong, C.S.; Gong, W.R.; Tian, Z.H.; Du, Y.Z. Population dynamics of Liriomyza trifolii and Liriomyza sativae in Jiangsu. Chin. J. Appl. Entomol. 2016, 53, 884–891. [Google Scholar]
- Gao, Y.L.; Reitz, S.R.; Wei, Q.B.; Yu, W.Y.; Lei, Z.R. Insecticide-mediated apparent displacement between two invasive species of leafminer fly. PLoS ONE 2012, 7, e36622. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gao, Y.L.; Reitz, S.R.; Wei, Q.B.; Yu, W.Y.; Zhang, Z.; Lei, Z.R. Local crop planting systems enhance insecticide-mediated displacement of two invasive leafminer fly. PLoS ONE 2014, 9, e92625. [Google Scholar] [CrossRef]
- Wang, H.H.; Reitz, S.R.; Xiang, J.C.; Smagghe, G.; Lei, Z.R. Does temperature-mediated reproductive success drive the direction of species displacement in two invasive species of leafminer fly? PLoS ONE 2014, 9, e98761. [Google Scholar] [CrossRef]
- Gao, Y.L.; Reitz, S.R. Emerging themes in our understanding of species displacements. Annu. Rev. Entomol. 2016, 62, 163–183. [Google Scholar] [CrossRef]
- Gao, Y.L.; Lei, Z.R.; Abe, Y.; Reitz, S.R. Species displacements are common to two invasive species of leafminer fly in China, Japan, and the United States. J. Econ. Entomol. 2011, 104, 1771–1773. [Google Scholar] [CrossRef]
- Cerdá, X.; Retana, J.; Manzaneda, A. The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 1998, 117, 404–412. [Google Scholar] [CrossRef]
- Fox, B.J.; Fox, M.D.; Archer, E. Experimental confirmation of competition between two dominant species of Iridomyrmex (Hymenoptera: Formicidae). Aust. J. Ecol. 2010, 10, 105–110. [Google Scholar] [CrossRef]
- Kang, L.; Chen, B.; Wei, J.N.; Liu, T.X. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annu. Rev. Entomol. 2009, 54, 127–145. [Google Scholar] [CrossRef]
- Xiang, J.C.; Lei, Z.R.; Wang, H.H.; Gao, Y.L.; Luo, H.W. Influences of temperature on interspecific competition between Liriomyza sativae and L. huidobrensis. Plant Prot. 2012, 38, 50–53. [Google Scholar]
- Zhou, Y.H.; Jiang, W.H.; Zhao, Z.M.; Deng, X.P. Effect of temperature on the population increase of Liriomyza sativae and Liriomyza huidobrensis (Diptera: Agromyzidae). Acta Ecol. Sin. 2001, 21, 1276–1284. [Google Scholar]
- Zeng, L.; Wu, J.J.; Liang, G.W. Effects of temperature on the development of Liriomyza sativae (Diptera: Agromyzidae). J. South China Agric. Univ. 1998, 19, 21–25. [Google Scholar]
- Wang, Y.; Lei, Z.R.; Wen, J.Z.; Sun, F.Z.; Wu, K.M. On the overwintering and cold-hardiness of the vegetable leafminer Liriomyza sativae Blanchard. J. Plant Prot. 2000, 27, 32–36. [Google Scholar]
- Xiao, T.; Chen, X.Y.; Yang, H.T.; Guo, J.; Yang, J.H.; Pan, Y.L. Study on the developmental zero and effective accumulative temperature of Liriomyza trifolii (Burgess). J. Environ. Entomol. 2011, 33, 8–12. [Google Scholar]
- Qian, J.Q.; Gu, X.Z. Morphology, life history, and fecundity of Liriomyza trifolii (Burgess). J. Agric. Res. China 1996, 45, 69–88. [Google Scholar]
- Chen, S.J.; Sun, J.D.; Wu, C.Q. Study on starting point temperature and effective accumulative temperature for development of Liriomyza sativae. Jiangsu Agric. Sci. 2000, 28, 44–45. [Google Scholar]
- Luo, J.C.; Liu, Y.Y.; Wei, Y.H. Threshold temperature and effective temperature sum of Liriomyza huidobrensis. Chin. Bull. Entomol. 2002, 39, 136–137. [Google Scholar]
- Chen, B.; Kang, L. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis. Cryo Lett. 2002, 23, 173–182. [Google Scholar]
- Zhao, Y.X.; Kang, L. Cold tolerance of the leafminer Liriomyza sativae (Dipt, Agromyzidae). J. Appl. Entomol. 2000, 124, 185–189. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Wu, S.Y.; Wang, H.H.; Xing, Z.L.; Lei, Z.R. Overwintering, cold tolerance and supercooling capacity comparison between Liriomyza sativae and L. trifolii, two invasive leafminers in China. J. Pest Sci. 2022, 95, 881–888. [Google Scholar] [CrossRef]
- Chang, Y.W.; Chen, J.Y.; Zheng, S.Z.; Gao, Y.; Chen, Y.F.; Deng, Y.F.; Du, Y.Z. Revalidation of morphological characteristics and multiplex PCR for the identification of three congener invasive Liriomyza species (Diptera: Agromyzidae) in China. PeerJ 2020, 8, e10138. [Google Scholar] [CrossRef] [PubMed]
- Teets, N.M.; Gantz, J.; Kawarasaki, Y. Rapid cold hardening: Ecological relevance, physiological mechanisms and new perspectives. J. Exp. Biol. 2020, 223, jeb203448. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.E.; Chen, C.P.; Denlinger, D.L. A rapid cold-hardening process in insects. Science 1987, 238, 1415–1417. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Zhang, X.X.; Chang, Y.W.; Du, Y.Z. Differential Response of Leafminer Flies Liriomyza trifolii (Burgess) and Liriomyza sativae (Blanchard) to Rapid Cold Hardening. Insects 2021, 12, 1041. [Google Scholar] [CrossRef]
- Zhang, X.X.; Iqbal, J.; Wang, Y.C.; Chang, Y.W.; Hu, J.; Du, Y.Z. Integrated transcriptional and biochemical profiling suggests mechanisms associated with rapid cold hardening in adult Liriomyza trifolii (Burgess). Sci. Rep. 2024, 14, 24033. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhang, X.X.; Song, Y.; Chang, Y.W.; Du, Y.Z. Physiological and biochemical effects of rapid cold hardening in Liriomyza huidobrensis. Chin. J. Appl. Entomol. 2021, 58, 1376–1384. [Google Scholar]
- Chang, Y.W.; Zhong, L.; Yan, Y.Q.; Zhao, J.Y.; Gong, W.R.; Du, Y.Z. Differences in thermal tolerance and the expression of Hsp64.9 between geographical populations of Liriomyza trifolii. Chin. J. Appl. Entomol. 2024, 61, 944–958. [Google Scholar]
- Belinda, V.H.; Sgrò, C.M. Male fertility thermal limits predict vulnerability to climate warming. Nat. Commun. 2021, 12, 2214. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chang, Y.W.; Yang, F.; Gong, W.R.; Hu, J.; Du, Y.Z. A potential trade-off between reproduction and enhancement of thermotolerance in Liriomyza trifolii populations driven by thermal acclimation. J. Therm. Biol. 2024, 125, 103988. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.H.; Chen, B.; Kang, L. Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis. J. Insect Physiol. 2007, 53, 1199–1205. [Google Scholar] [CrossRef]
- Chang, Y.W.; Chen, J.Y.; Lu, M.X.; Gao, Y.; Tian, Z.H.; Gong, W.R.; Dong, C.S.; Du, Y.Z. Cloning and expression of genes encoding heat shock proteins in Liriomyza trifolii and comparison with two congener leafminer species. PLoS ONE 2017, 12, e0181355. [Google Scholar] [CrossRef]
- Huang, L.H.; Kang, L. Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress. Insect Mol. Biol. 2007, 16, 491–500. [Google Scholar] [CrossRef]
- Kregel, K.C. Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 2002, 92, 2177–2186. [Google Scholar] [CrossRef]
- Lindquist, S. The heat-shock response. Annu. Rev. Biochem. 1986, 55, 1151–1191. [Google Scholar] [CrossRef]
- Sørensen, J.G.; Kristensen, T.N.; Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 2003, 6, 1025–1037. [Google Scholar] [CrossRef]
- Johnston, J.A.; Ward, C.L.; Kopito, R.R. Aggresomes: A cellular response to misfolded proteins. J. Cell Biol. 1998, 143, 1883–1898. [Google Scholar] [CrossRef] [PubMed]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef]
- Chang, Y.W.; Wang, Y.C.; Gong, W.R.; Du, Y.Z. Research progress in the molecular mechanism of interspecific competition and substitution of leaf miner flies Liriomyza species under the influence of temperature. J. Plant Prot. 2021, 48, 1199–1207. [Google Scholar]
- Chang, Y.W.; Zhang, X.X.; Chen, J.Y.; Lu, M.X.; Gong, W.R.; Du, Y.Z. Characterization of three heat shock protein 70 genes from Liriomyza trifolii and expression during thermal stress and insect development. Bull. Entomol. Res. 2019, 109, 150–159. [Google Scholar] [CrossRef]
- Chang, Y.W.; Zhang, X.X.; Lu, M.X.; Du, Y.Z.; Zhu-Salzman, K. Molecular cloning and characterization of small heat shock protein genes in the invasive leaf miner fly, Liriomyza trifolii. Genes 2019, 10, 775. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, Y.W.; Wang, Y.C.; Yan, Y.Q.; Du, Y.Z. The small heat shock protein Hsp20.8 imparts tolerance to high temperatures in the leafminer fly, Liriomyza trifolii (Diptera: Agromyzidae). Bull. Entomol. Res. 2024, 114, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Wang, Y.C.; Zhang, X.X.; Iqbal, J.; Lu, M.X.; Du, Y.Z. Transcriptional regulation of small heat shock protein genes by heat shock factor 1 (HSF1) in Liriomyza trifolii under heat stress. Cell Stress Chaperones 2021, 26, 835–843. [Google Scholar] [CrossRef]
- Chang, Y.W.; Wang, Y.C.; Zhang, X.X.; Iqbal, J.; Lu, M.X.; Gong, H.X.; Du, Y.Z. Comparative transcriptome analysis of three invasive leafminer flies provides insights into interspecific competition. Int. J. Biol. Macromol. 2020, 165, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Zhang, X.X.; Lu, M.X.; Gong, W.R.; Du, Y.Z. Transcriptome analysis of Liriomyza trifolii (Diptera: Agromyzidae) in response to temperature stress. Comp. Biochem. Physiol. D 2020, 34, 100677. [Google Scholar] [CrossRef]
- Iqbal, J.; Zhang, X.X.; Chang, Y.W.; Du, Y.Z. Comparative transcriptome analysis of Liriomyza trifolii (Burgess) and Liriomyza sativae (Blanchard) (Diptera: Agromyzidae) in response to rapid cold hardening. PLoS ONE 2022, 17, e0279254. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Yan, Y.Q.; Hu, J.; Du, Y.Z. Characterization of genes encoding heat shock proteins reveals a differential response to temperature in two geographic populations of Liriomyza trifolii (Diptera: Agromyzidae). Comp. Biochem. Physiol. D 2024, 49, 101156. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Coello Alvarado, L.E.; Ferguson, L.V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 2015, 53, 180–197. [Google Scholar] [CrossRef]
- Duman, J.G. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu. Rev. Physiol. 2001, 63, 327–357. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.A.; Panhuis, T.M.; Stoehr, A.M. Phenotypic plasticity: Molecular mechanisms and adaptive significance. Compr. Physiol. 2012, 2, 1417–1439. [Google Scholar] [CrossRef]
- González-Tokman, D.; Córdoba-Aguilar, A.; Dáttilo, W.; Lira-Noriega, A.; Sánchez-Guillén, R.A.; Villalobos, F. Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 2020, 95, 802–821. [Google Scholar] [CrossRef]
- Ørsted, M.; Willot, Q.; Olsen, A.K.; Kongsgaard, V.; Overgaard, J. Thermal limits of survival and reproduction depend on stress duration: A case study of Drosophila suzukii. Ecol. Lett. 2024, 27, e14421. [Google Scholar] [CrossRef]
- Rosenzweig, M.; Kang, K.; Garrity, P.A. Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2008, 105, 14668–14673. [Google Scholar] [PubMed]
- Dai, T.M.; Wang, Y.S.; Shen, X.N.; Lü, Z.C.; Wan, F.H.; Liu, W.X. DNA methylation-associated epigenetic changes in thermotolerance of Bemisia tabaci during biological invasions. Int. J. Mol. Sci. 2025, 26, 7466. [Google Scholar] [CrossRef]
- Guo, P.L.; Guo, Z.Q.; Liu, X.D. Cuticular protein genes involve heat acclimation of insect larvae under global warming. Insect Mol. Biol. 2022, 31, 519–532. [Google Scholar] [CrossRef]
- Peng, X.Y.; Jin, H.F.; Yan, W.Q.; Xian, L.M.; Xi, Y.; Zhang, B.Q. Molecular cloning, expression pattern of catalase gene in Liriomyza trifolii and its response to temperature stress. J. Trop. Biol. 2025, 16, 570–579. [Google Scholar]
- Wang, Y.C.; Chang, Y.W.; Bai, J.; Zhang, X.X.; Iqbal, J.; Lu, M.X.; Hu, J.; Du, Y.Z. High temperature stress induces expression of CYP450 genes and contributes to insecticide tolerance in Liriomyza trifolii. Pestic. Biochem. Physiol. 2021, 174, 104826. [Google Scholar] [CrossRef]
- Chang, Y.W.; Wang, Y.C.; Du, Y.Z. Chromosome-level genome assembly of the invasive leafminer fly, Liriomyza trifolii (Diptera: Agromyzidae). Sci. Data 2024, 11, 1326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Chang, Y.W.; Gong, W.R.; Du, Y.Z. Life Table study of Liriomyza trifolii and its contribution to thermotolerance: Responding to long-term selection pressure for abamectin resistance. Insects 2024, 15, 462. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chang, Y.W.; Gong, W.R.; Hu, J.; Du, Y.Z. The development of abamectin resistance in Liriomyza trifolii and its contribution to thermotolerance. Pest Manag. Sci. 2024, 80, 2053–2060. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Zhang, Y.Y.; Wang, X.Y.; Yin, Y.; Du, Y.Z. Wolbachia modify host cell metabolite profiles in response to short-term temperature stress. Environ. Microbiol. Rep. 2024, 16, e70013. [Google Scholar]
- Zhu, Y.X.; Chang, Y.W.; Wen, T.; Yang, R.; Wang, Y.C.; Wang, X.Y.; Lu, M.X.; Du, Y.Z. Species identity dominates over environment in driving bacterial community assembly in wild invasive leaf miners. Microbiol. Spectr. 2022, 10, e0026622. [Google Scholar] [CrossRef]
- Shu, L.; Li, H.B.; Chang, Y.W.; Du, Y.Z. Does temperature tolerance increase in long-term domesticated Frankliniella occidentalis under constant temperature? Insects 2025, 16, 557. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, P.G. Growth chamber data should not be used to predict invasive Liriomyza huidobrensis (Diptera: Agromyzidae) establishment. Environ. Entomol. 2019, 48, 271–273. [Google Scholar] [CrossRef] [PubMed]
Species | Developmental Threshold Temperature (°C) | Effective Accumulated Temperature (°C.day) | Supercooling Point (°C) |
---|---|---|---|
L. trifolii | 8.40 [26] | 315.0 [26] | −22.56 [32] |
L. sativae | 9.57 [24] | 283.2 [24] | −11.79 [32] |
L. huidobrensis | 7.50 [29] | 279.9 [29] | −20.90 [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-W.; Zhao, J.-Y.; Wang, Y.-C.; Du, Y.-Z. Thermal Adaptation in Liriomyza trifolii (Diptera: Agromyzidae): From Interspecific Competition to Mechanisms. Insects 2025, 16, 957. https://doi.org/10.3390/insects16090957
Chang Y-W, Zhao J-Y, Wang Y-C, Du Y-Z. Thermal Adaptation in Liriomyza trifolii (Diptera: Agromyzidae): From Interspecific Competition to Mechanisms. Insects. 2025; 16(9):957. https://doi.org/10.3390/insects16090957
Chicago/Turabian StyleChang, Ya-Wen, Jing-Ya Zhao, Yu-Cheng Wang, and Yu-Zhou Du. 2025. "Thermal Adaptation in Liriomyza trifolii (Diptera: Agromyzidae): From Interspecific Competition to Mechanisms" Insects 16, no. 9: 957. https://doi.org/10.3390/insects16090957
APA StyleChang, Y.-W., Zhao, J.-Y., Wang, Y.-C., & Du, Y.-Z. (2025). Thermal Adaptation in Liriomyza trifolii (Diptera: Agromyzidae): From Interspecific Competition to Mechanisms. Insects, 16(9), 957. https://doi.org/10.3390/insects16090957