Screening of Predatory Natural Enemies of Lygus pratensis in Cotton Fields and Evaluation of Their Predatory Effects
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Site and Sample Collection
2.2. Identification of Predatory Natural Enemies
2.3. Analysis of Molecular Intestinal Contents
2.4. Predatory Ability of Natural Enemies on L. pratensis
2.5. Data Analysis
3. Results
3.1. Identification of Predatory Natural Enemies in Cotton Fields
3.2. Determination of Predatory Natural Enemies of L. pratensis
3.3. The Predatory Effects of Four Species of Spiders on L. pratensis
3.3.1. The Predatory Function of Four Species of Spiders on L. pratensis
3.3.2. Searching Effects of Four Species of Spiders on L. pratensis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, L.; Wang, Q.; Hu, Y.; Jia, Y.H.; Chen, J.D.; Liu, B.L.; Zhang, Z.Y.; Guan, X.Y.; Chen, S.Q.; Zhou, B.L.; et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat. Genet. 2017, 49, 1089–1098. [Google Scholar] [CrossRef]
- Ridley, W.; Devadoss, S. Competition and trade policy in the world cotton market: Implications for us cotton exports. Am. J. Agric. Econ. 2023, 105, 1365–1387. [Google Scholar] [CrossRef]
- Hu, H.Y.; Ma, Y.J.; Shan, Y.P.; Song, X.P.; Wang, D.; Ren, X.L.; Li, J.; Niu, Y.B.; Wu, C.C.; Ma, X.Y.; et al. Effects of adjuvants on physicochemical properties of nanopesticide applied by plant protection unmanned aerial vehicles and control of aphids in cotton field. Cotton Sci. 2023, 35, 239–250. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.Q.; Ali, A.; Li, H.B.; Liu, J.; Yang, Y.Z.; Lu, Y.H. Effects of temperature and humidity on immature development of Lygus pratensis (L.) (Hemiptera: Miridae). J. Asia-Pac. Entomol. 2015, 18, 139–143. [Google Scholar] [CrossRef]
- Zhang, L.J.; Cai, W.Z.; Luo, J.Y.; Zhang, S.; Wang, C.Y.; Lv, L.M.; Zhu, X.Z.; Wang, L.; Cui, J.J. Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in Northwest China. PLoS ONE 2017, 12, e0174712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.F.; Wang, W.; Liu, H.Y.; Yao, J. Host plants species and seasonal succession host feeding of Lygus pratensis (Heteroptera: Miridae). Xinjiang Agric. Sci. 2022, 59, 707–715. [Google Scholar] [CrossRef]
- Fitt, G.P.; Mares, C.L.; Llewellyn, D.J. Field evaluation and potential ecological impact of transgenic cottons (Gossypium hirsutum) in Australia. Biocontrol Sci. Technol. 1994, 4, 535–548. [Google Scholar] [CrossRef]
- Tan, Y.; Ma, Y.; Jia, B.; Homem, R.A.; Williamson, M.S.; Gao, S.J.; Han, H.B.; Xiang, K.F.; Sun, X.T.; Gao, X.; et al. Laboratory selection, cross-resistance, risk assessment to lambda-cyhalothrin resistance, and monitoring of insecticide resistance for plant bug Lygus pratensis (Hemiptera: Miridae) in farming-pastoral ecotones of Northern China. J. Econ. Entomol. 2021, 114, 891–902. [Google Scholar] [CrossRef]
- Gou, C.Q.; Sun, P.; Liu, D.C.; Dilinuer, A.; Feng, H.Z. Effects of Lygus pratensis (Hemiptera: Miridae) infestation on the nutrient contents and protective enzyme activities in host plants. Acta Ecol. Sin. 2018, 61, 971–983. [Google Scholar]
- Liang, H.J.; Li, Y.; Sun, C.Y.; Feng, L.K.; Wang, P.L.; Lu, Y.H. The predation of Lygus pratensis (L.) to Aphis gossypii Glover. J. Environ. Entomol. 2013, 35, 317–321. [Google Scholar] [CrossRef]
- Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 1998, 43, 701–726. [Google Scholar] [CrossRef] [PubMed]
- Hardee, D.D.; Bryan, W.W. Influence of Bacillus thuringiensis transgenic and nectarless cotton on insect populations with emphasis on the tarnished plant bug (Heteroptera: Miridae). J. Econ. Entomol. 1997, 90, 663–668. [Google Scholar] [CrossRef]
- Greene, J.K.; Turnipseed, S.G.; Sullivan, M.J.; Herzog, G.A. Boll damage by southern green stink bug (Hemiptera: Pentatomidae) and tarnished plant bug (Hemiptera: Miridae) caged on transgenic Bacillus thuringiensis cotton. J. Econ. Entomol. 1999, 92, 941–944. [Google Scholar] [CrossRef]
- Wu, K.; Li, W.; Feng, H.; Guo, Y. Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in Northern China. Crop. Prot. 2002, 21, 997–1002. [Google Scholar] [CrossRef]
- Wu, K.M. Environmental impact and risk management strategies of Bt cotton commercialization in China. Chin. J. Agric. Biotechnol. 2007, 4, 93–97. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, K.M.; Li, H.B.; Liu, J.; Ding, R.F.; Wang, F.; Ahtam, U.; Li, H.Q.; Wang, D.M.; Chen, X.X. Effects of transgenic Bt+ CpTI cotton on field abundance of non-target pests and predators in Xinjiang, China. J. Integr. Agric. 2012, 11, 1493–1499. [Google Scholar] [CrossRef]
- Lu, Y.H.; Liang, G.M. Research advance on the succession of insect pest complex in Bt crop ecosystem. Plant Prot. 2016, 42, 7–11. [Google Scholar] [CrossRef]
- Lu, Y.H.; Liang, G.M.; Zhang, Y.J.; Yang, X.M. Advances in the management of insect pests of cotton in China since the 21st century. Chin. J. Appl. Entomol. 2020, 57, 477–490. [Google Scholar] [CrossRef]
- Ruberson, J.R.; Williams, L.I. Biological control of Lygus spp.: A component of areawide management. Southwest. Entomol. 2000, 23, 96–110. [Google Scholar]
- Lu, Y.H.; Wu, K.M.; Jiang, Y.Y.; Xia, B.; Li, P.; Feng, H.Q.; Wyckhuys, K.A.G.; Guo, Y.Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 2010, 328, 1151–1154. [Google Scholar] [CrossRef] [PubMed]
- Greene, J.K.; Bundy, C.S.; Roberts, P.M.; Leonard, B.R. Identification and management of common boll feeding bugs in cotton. In Clemson Extension Report; Clemson University: Clemson, SC, USA, 2006. [Google Scholar]
- Zhang, Q.; Liu, Y.Q.; Lu, Y.H.; Wu, K.M. Toxicity and persistence of four kinds of insecticides against Apolygus lucorum. China Cotton 2017, 44, 5–7+10. [Google Scholar]
- Wang, J.; Zhao, Y.; Ray, I.; Song, M. Transcriptome responses in alfalfa associated with tolerance to intensive animal grazing. Sci. Rep. 2016, 6, 19438. [Google Scholar] [CrossRef]
- Sosa-Gómez, D.R.; Corrêa-Ferreira, B.S.; Kraemer, B.; Pasini, A.; Husch, P.E.; Delfino Vieira, C.E.; Reis Martinez, C.B.; Negrão Lopes, I.O. Prevalence, damage, management and insecticide resistance of stink bug populations (Hemiptera: Pentatomidae) in commodity crops. Agric. For. Entomol. 2020, 22, 99–118. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Huang, J.M.; Ni, H.; Guo, D.; Yang, F.X.; Wang, X.; Wu, S.F.; Gao, C.F. Susceptibility of fall armyworm, Spodoptera frugiperda (J.E. Smith), to eight insecticides in China, with special reference to lambda-cyhalothrin. Pestic. Biochem. Physiol. 2020, 168, 104623. [Google Scholar] [CrossRef] [PubMed]
- Weisenburger, D.D. Human health effects of agrichemical use. Hum. Pathol. 1993, 24, 571–576. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Wan, N.F.; Fu, L.W.; Dainese, M.; Kiær, L.P.; Hu, Y.Q.; Xin, F.F.; Goulson, D.; Woodcock, B.A.; Vanbergen, A.J.; Spurgeon, D.J.; et al. Pesticides have negative effects on non-target organisms. Nat. Commun. 2025, 16, 1360. [Google Scholar] [CrossRef]
- Li, P.F.; Zhen, Y.X.; Gou, C.Q.; Wu, G.; Wang, L.; Feng, H.Z. Effect of five insecticides against Aphis gossypii and their safety evaluation on Hippodamia variegata. Cotton Sci. 2023, 35, 487–496. [Google Scholar] [CrossRef]
- Zhang, L.; Lyu, H.X.; Shi, D.D.; Li, X.C.; Ma, K.S. Effects of low doses of acetamiprid and afidopyropen on the parasitic function of Lysiphlebia japonica (Ashmead). Chin. J. Pestic. Sci. 2022, 24, 1417–1424. [Google Scholar] [CrossRef]
- Begg, G.S.; Cook, S.M.; Dye, R.; Ferrante, M.; Franck, P.; Lavigne, C.; Lövei, G.L.; Mansion-Vaquie, A.; Pell, J.K.; Petit, S.A.; et al. functional overview of conservation biological control. Crop Prot. 2017, 97, 145–158. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; Lu, Y.H.; Morales, H.; Vazquez, L.L.; Legaspi, J.C.; Eliopoulos, P.A.; Hernandez, L.M. Current status and potential of conservation biological control for agriculture in the developing world. Biol. Control. 2013, 65, 152–167. [Google Scholar] [CrossRef]
- Ge, F.; Ouyang, F.; Zhao, Z.H. Ecological management of insects based on ecological services at a landscape scale. Chin. J. Appl. Entomol. 2014, 51, 739–749. [Google Scholar] [CrossRef]
- Ju, Q.; Ouyang, F.; Qiao, F.; Ge, F. Quantitative evaluation of predation based on molecular analysis of gut-content. Chin. J. Appl. Entomol. 2020, 57, 218–225. [Google Scholar] [CrossRef]
- Zhang, G.F.; Zhu, H.K.; Huang, L.; Wang, Y.S.; Li, T.; Huang, C.; Xian, X.Q.; Xue, Y.T.; Gui, F.R.; Li, W.X.; et al. Investigation and molecular evaluation of the natural enemies of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato fields in Yunnan province. Chin. J. Biol. Control. 2024, 40, 739–749. [Google Scholar] [CrossRef]
- Wang, H.Q.; Li, J.; Luan, F.G.; Zeng, J.Y.; Ayi, B.T.; Ma, D.Y. Primary study on main natural enemy resources and control effects of Erythroneura Apicalis Nawa in Turpan. Xinjiang Agric. Sci. 2011, 48, 296–300. [Google Scholar]
- Zhang, Q.; Zhang, R.F.; Zhang, Q.Q.; Ji, D.Z.; Zhou, X.; Jin, L.H. Functional response and control potential of Orius sauteri (Hemiptera: Anthocoridae) on tea thrips (Dendrothrips minowai priesner). Insects 2021, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Kobelt, A.J.; Yen, A.L.; Kitching, M. Laboratory validation of rubidium marking of herbivorous insects and their predators. Aust. J. Entomol. 2009, 48, 204–209. [Google Scholar] [CrossRef]
- Stam, P.A.; Newsom, L.D.; Lambremont, E.N. Predation and food as factors affecting survival of Nezara viridula (L.) (Hemiptera: Pentatomidae) in a soybean ecosystem. Environ. Entomol. 1987, 16, 1211–1216. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Li, P.F.; Li, T.L.; Wang, K.Y.; Gou, C.Q.; Feng, H.Z. Studies on Lygus pratensis (Hemiptera: Miridae) flight ability. Insects 2024, 15, 762. [Google Scholar] [CrossRef]
- Furlong, M.J. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Insect Sci. 2015, 22, 6–19. [Google Scholar] [CrossRef]
- Jonsson, M.; Wratten, S.D.; Landis, D.A.; Gurr, G.M. Recent advances in conservation biological control of arthropods by arthropods. Biol. Control. 2008, 45, 172–175. [Google Scholar] [CrossRef]
- Pompanon, F.; Deagle, B.E.; Symondson, W.O.; Brown, D.S.; Jarman, S.N.; Taberlet, P. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 2012, 21, 1931–1950. [Google Scholar] [CrossRef] [PubMed]
- Galan, M.; Pons, J.B.; Tournayre, O.; Pierre, É.; Leuchtmann, M.; Pontier, D.; Charbonnel, N. Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Mol. Ecol. Resour. 2018, 18, 474–489. [Google Scholar] [CrossRef]
- Paula, D.P.; Linard, B.; Crampton-Platt, A.; Srivathsan, A.; Timmermans, M.J.N.; Sujii, E.R.; Pires, C.S.S.; Souza, L.M.; Andow, D.A.; Vogler, A.P. Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents. PLoS ONE 2016, 11, e0161841. [Google Scholar] [CrossRef]
- Bai, S.X.; Zhao, J.P.; Gou, C.Q.; Yao, C.C.; Feng, H.Z. Effects of farmland landscape pattern on adult population dynamics of Lygus pratensis in Aral Reclamation Area of Xinjiang. Cotton Sci. 2022, 34, 523–532. [Google Scholar] [CrossRef]
- Ganem, Z.; Ferrante, M.; Lubin, Y.; Armiach Steinpress, I.; Gish, M.; Sharon, R.; Harari, A.R.; Keasar, T.; Gavish-Regev, E. Effects of natural habitat and season on cursorial spider assemblages in Mediterranean vineyards. Insects 2023, 14, 782. [Google Scholar] [CrossRef]
- Waldner, T.; Traugott, M. DNA-based analysis of regurgitates: A noninvasive approach to examine the diet of invertebrate consumers. Mol. Ecol. Resour. 2012, 12, 669–675. [Google Scholar] [CrossRef]
- King, R.A.; Read, D.S.; Traugott, M.; Symondson, W.O. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 2008, 17, 947–963. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Mengual, X.; Bot, S.; Chkhartishvili, T.; Reimann, A.; Thormann, J.; Mark, L. Checklist of hover flies (Diptera, Syrphidae) of the Republic of Georgia. ZooKeys 2020, 916, 1–123. [Google Scholar] [CrossRef]
- Rome, Q.; Perrard, A.; Muller, F.; Fontaine, C.; Quilès, A.; Zuccon, D.; Villemant, C. Not just honeybees: Predatory habits of Vespa velutina (Hymenoptera: Vespidae) in France. Ann. Société Entomol. Fr. 2021, 57, 1–11. [Google Scholar] [CrossRef]
- Penney, H.D.; Hassall, C.; Skevington, J.H.; Abbott, K.R.; Sherratt, T.N. A comparative analysis of the evolution of imperfect mimicry. Nature 2012, 483, 461–464. [Google Scholar] [CrossRef]
- Wirta, H.; Várkonyi, G.; Rasmussen, C.; Kaartinen, R.; Schmidt, N.M.; Hebert, P.; Barták, M.; Blagoev, G.; Disney, H.; Ertl, S.; et al. Establishing a community-wide DNA barcode library as a new tool for arctic research. Mol. Ecol. Resour. 2016, 16, 809–822. [Google Scholar] [CrossRef]
- Roslin, T.; Somervuo, P.; Pentinsaari, M.; Hebert, P.D.N.; Agda, J.; Ahlroth, P.; Anttonen, P.; Aspi, J.; Blagoev, G.; Blanco, S.; et al. A molecular-based identification resource for the arthropods of Finland. Mol. Ecol. Resour. 2022, 22, 803–822. [Google Scholar] [CrossRef]
- Jiménez-García, E.; Andújar, C.; López, H.; Emerson, B.C. Towards understanding insect species introduction and establishment: A community-level barcoding approach using island beetles. Mol. Ecol. 2023, 32, 3778–3792. [Google Scholar] [CrossRef]
- Rulik, B.; Eberle, J.; Mark, L.; Thormann, J.; Jung, M.; Köhler, F.; Apfel, W.; Weigel, A.; Kopetz, A.; Köhler, J.; et al. Using taxonomic consistency with semi-automated data pre-processing for high-quality DNA barcodes. Methods. Ecol. Evol. 2017, 8, 1878–1887. [Google Scholar] [CrossRef]
- Pentinsaari, M.; Hebert, P.D.; Mutanen, M. Barcoding beetles: A regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS ONE 2014, 9, e108651. [Google Scholar] [CrossRef]
- Nattier, R.; Michel-Salzat, A.; Almeida, L.M.; Chifflet-Belle, P.; Magro, A.; Salazar, K.; Kergoat, G.J. Phylogeny and divergence dating of the ladybird beetle tribe Coccinellini Latreille (Coleoptera: Coccinellidae: Coccinellinae). Syst. Entomol. 2021, 46, 632–648. [Google Scholar] [CrossRef]
- Hendrich, L.; Morinière, J.; Haszprunar, G.; Hebert, P.D.; Hausmann, A.; Köhler, F.; Balke, M. A comprehensive DNA barcode database for central European beetles with a focus on Germany: Adding more than 3500 identified species to bold. Mol. Ecol. Resour. 2015, 15, 795–818. [Google Scholar] [CrossRef]
- Yi, P.; Yu, P.; Liu, J.; Xu, H.; Liu, X. A DNA barcode reference library of Neuroptera (Insecta, Neuropterida) from Beijing. ZooKeys 2018, 17, 127–147. [Google Scholar] [CrossRef]
- Rossmann, S.; Dees, M.W.; Perminow, J.; Meadow, R.; Brurberg, M.B. Soft rot Enterobacteriaceae are carried by a large range of insect species in potato fields. Appl. Environ. Microbiol. 2018, 84, e00281-18. [Google Scholar] [CrossRef]
- Blagoev, G.A.; Dewaard, J.R.; Ratnasingham, S.; Dewaard, S.L.; Lu, L.Q.; Robertson, J.; Telfer, A.C.; Hebert, P.D. Untangling taxonomy: A DNA barcode reference library for Canadian spiders. Mol. Ecol. Resour. 2016, 16, 325–341. [Google Scholar] [CrossRef]
- Astrin, J.J.; Höfer, H.; Spelda, J.; Holstein, J.; Bayer, S.; Hendrich, L.; Huber, B.A.; Kielhorn, K.H.; Krammer, H.J.; Lemke, M.; et al. Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS ONE 2016, 11, e0162624. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yang, X.Q.; Wang, T.Z.; Yu, X. Assessing the effectiveness of mitochondrial COI and 16S rRNA genes for DNA barcoding of farmland spiders in China. Mitochondrial DNA Part A. 2018, 29, 695–702. [Google Scholar] [CrossRef]
- Tanikawa, A.; Shinkai, A.; Tatsuta, H.; Miyashita, T. Highly diversified population structure of the spider Lycosa ishikariana inhabiting sandy beach habitats. Conserv. Genet. 2018, 19, 255–263. [Google Scholar] [CrossRef]
- Macías-Hernández, N.; Domènech, M.; Cardoso, P.; Emerson, B.C.; Borges, P.A.V.; Lozano-Fernandez, J.; Paulo, O.S.; Vieira, A.; Enguídanos, A.; Rigal, F.; et al. Building a robust, densely-sampled spider tree of life for ecosystem research. Diversity 2020, 12, 288. [Google Scholar] [CrossRef]
- Pan, W.J.; Fang, H.Y.; Zhang, P.; Pan, H.C. The complete mitochondrial genome of striped lynx spider Oxyopes sertatus (Araneae: Oxyopidae). Mitochondrial DNA Part A 2016, 27, 1616–1617. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q.; Li, D.Y.; Ye, H.; Liu, X.F.; Shi, W.; Cao, N.; Duan, Y.Q. Using COI gene sequence to barcode two morphologically alike species: The cotton bollworm and the oriental tobacco budworm (Lepidoptera: Noctuidae). Mol. Biol. Rep. 2011, 38, 5107–5113. [Google Scholar] [CrossRef]
- Jelaska, L.S.; Franjevic, D.; Jelaska, S.D.; Symondson, W.O.C. Prey detection in Carabid beetles (Coleoptera: Carabidae) in woodland ecosystems by PCR analysis of gut contents. Eur. J. Entomol. 2014, 111, 631–638. [Google Scholar] [CrossRef]
- Macías-Hernández, N.; Athey, K.; Tonzo, V.; Wangensteen, O.S.; Arnedo, M.; Harwood, J.D. Molecular gut content analysis of different spider body parts. PLoS ONE 2018, 13, e0196589. [Google Scholar] [CrossRef]
- Panni, S.; Pizzolotto, R. Fast molecular assay to detect the rate of decay of Bactrocera oleae (Diptera: Tephritidae) DNA in Pterostichus melas (Coleoptera: Carabidae) gut contents. Appl. Entomol. Zool. 2018, 53, 425–431. [Google Scholar] [CrossRef]
- Xiao, D.; Xu, Q.X.; Chen, X.; Du, X.Y.; Desneux, N.; Thomine, E.; Dai, H.J.; Harwood, J.D.; Wang, S. Development of a molecular gut-content identification system to identify aphids preyed upon by the natural enemy Coccinella septempunctata. Entomol. Gen. 2021, 41, 591–599. [Google Scholar] [CrossRef]
- Chapman, E.G.; Schmidt, J.M.; Welch, K.D.; Harwood, J.D. Molecular evidence for dietary selectivity and pest suppression potential in an epigeal spider community in winter wheat. Biol. Control. 2013, 65, 72–86. [Google Scholar] [CrossRef]
- Edgar, R.C. Muscle: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinf. 2004, 5, 113. [Google Scholar] [CrossRef]
- Rozen, S.; Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods. Mol. Biol. 2000, 132, 365–386. [Google Scholar] [CrossRef]
- Gou, C.Q.; Sun, P.; Liu, D.C.; Dilinuer, A.; Feng, H.Z. Effects of different host plants on the growth and development of Lygus pratensis. J. Envion. Entomol. 2019, 41, 1065–1069. [Google Scholar]
- Wang, G.C.; Sun, X.L.; Huang, W.X.; Cai, X.M.; Chen, Z.M. Predatory Response of Penultimate-instar Xysticus ephippiatus Simon on 3-day-old Larval of Tea Loopers under Different Temperatures. J. Tea Sci. 2010, 30, 173–176. [Google Scholar] [CrossRef]
- Holling, C.S. Some characteristics of simple types of predation and parasitism1. Can. entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Tang, Y.T. Study on Potential of a Novel Natural Enemy Insect Picromerus lewisi Scott in Biological Control. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2020. [Google Scholar]
- Sun, G.L.; Cai, H.S.; Yang, Y.; Jin, S.T.; Zhang, Q.J.; Tang, Y.; Chen, B. Predation by Sycanus croceovittatus on higher instar larvae of Spodoptera frugiperda and Helicoverpa armigera. Plant Prot. 2025, 51, 118–125. [Google Scholar] [CrossRef]
- Wang, S.J.; Wu, J.; Zhao, Y.N.; Li, R.X.; Zhao, D.X. Functional response of adult Hierodula patellifera (Serville, 1839) (Mantodea: Mantidae) to Tessaratoma papillosa (Drury) (Hemiptera: Tessaratomidae). Int. J. Trop. Insect Sci. 2020, 40, 1053–1058. [Google Scholar] [CrossRef]
- Tong, Y.J.; Wu, K.M.; Gao, X.W. Predation of Misumenopos tricuspidatus on Mirids, Apolygus lucorum and Adelphocoris lineolatus. Chin. J. Biol. Control. 2009, 25, 97–101. [Google Scholar] [CrossRef]
- Greenstone, M.H.; Payton, M.E.; Weber, D.C.; Simmons, A.M. The detectability half-life in arthropod predator–prey research: What it is, why we need it, how to measure it, and how to use it. Mol. Ecol. 2014, 23, 3799–3813. [Google Scholar] [CrossRef]
- Quan, X.Y.; Xia, W.S.; Liu, F.X.; Chen, J.; Peng, Y. Predation of spiders on a new invasive lace bug Corythucha ciliata (Say). J. Plant Prot. 2010, 37, 573–574. [Google Scholar] [CrossRef]
- Lazzerini, G.; Camera, A.; Benedettelli, S.; Vazzana, C. The role of field margins in agro-biodiversity management at the farm level. Ital. J. Agron. 2007, 2, 127–134. [Google Scholar] [CrossRef]
- Schneider, S.; Widmer, F.; Jacot, K.; Kölliker, R.; Enkerli, J. Spatial distribution of metarhizium clade 1 in agricultural landscapes with arable land and different semi-natural habitats. Appl. Soil Ecol. 2012, 52, 20–28. [Google Scholar] [CrossRef]
- Jia, J.J.; Chen, J.Y.; Zhang, F.P.; Niu, L.M.; Fu, Y.G. Function response of Neoseiuius californicus feeding on Eotetranychus sexmaculatus at different temperatures. J. Environ. Entomol. 2019, 41, 857–865. [Google Scholar]
- Xu, H.Y.; Yang, N.W.; Wang, F.H. Lethal interference between natural enemies in insect community. Acta Ecol. Sin. 2011, 54, 361–367. [Google Scholar] [CrossRef]
- Zang, L.S.; Liu, T.X. Intraguild interactions between an oligophagous predator, Delphastus catalinae (Coleoptera: Coccinellidae), and a parasitoid, Encarsia sophia (Hymenoptera: Aphelinidae), of Bemisia tabaci (Homoptera: Aleyrodidae). Biol. Control 2007, 41, 142–150. [Google Scholar] [CrossRef]
- Collier, T.R.; Hunter, M.S.; Kelly, S.E. Heterospecific ovicide influences the outcome of competition between two endoparasitoids, Encarsia formosa and Encarsia luteola. Ecol. Entomol. 2007, 32, 70–75. [Google Scholar] [CrossRef]
- Yin, Z.; Li, J.P.; Dong, M.; Hou, Z.R.; Sun, B.B.; Guo, X.H. Research on predation capacity and preference of Orius sauteri agains western flower thrips (Frankliniella occidentalis), two-spotted spider mite (Tetranychus urticae) and peach aphid (Myzus persicae). China Plant Prot. 2017, 37, 17–19. [Google Scholar]
- Chen, J.H.; Zhang, T.H.; Liu, H.M.; Yang, S.; Xu, M.F.; Guo, S.B. Predation ability and behavior of Eocanthecona furcellata to Ectropis grisescens larvae. Plant Prot. 2025, 51, 165–171. [Google Scholar] [CrossRef]
Natural Enemy Species | Genbank Accession Number | Homology (%) | References | ||
---|---|---|---|---|---|
Order | Family | Species * | |||
Diptera | Syrphidae | Sphaerophoria rueppeuii Wiedemann | MN622062 | 99.85 | [51] |
MW077833 | 99.70 | [52] | |||
Eupeodes luniger Meigen | JN991995 | 99.70 | [53] | ||
KT959887 | 99.54 | [54] | |||
Scaeva pyrastri Linnaeus | JN992029 | 99.85 | [53] | ||
OK065449 | 99.85 | [55] | |||
Coleoptera | Coccinellidae | Hippodamia variegata Goeze | OQ739389 | 100 | [56] |
KU906552 | 99.85 | [57] | |||
Coccinella undecimpunctata Linnaeus | KJ963757 | 99.70 | [58] | ||
MW551370 | 99.54 | [59] | |||
Oenopia conglobata Linnaeus | KM446481 | 99.85 | [60] | ||
KM444810 | 99.39 | [60] | |||
Neuroptera | Chrysopidae | Chrysoperla nipponensis Okamoto | MH388963 | 99.84 | [61] |
MH388965 | 99.84 | [61] | |||
Chrysoperla carnea Stephens | MG673916 | 99.30 | [62] | ||
MZ633311 | 99.30 | [55] | |||
Hemiptera | Miridae | Deraeocoris punctulatus Fallen | MZ657283 | 99.85 | [55] |
Araneae | Philodromidae | Thanatus vulgaris Simon | KP654542 | 100 | [63] |
KX537323 | 99.85 | [64] | |||
Philodromus alascensis Keyserling | JN309677 | 97.57 | [63] | ||
JF885568 | 96.66 | [63] | |||
Philodromus cespitum Walckenaer | KP657193 | 99.93 | [63] | ||
KP649148 | 99.93 | [63] | |||
Thomisidae | Ebrechtella tricuspidata Fabricius | KX537484 | 100 | [64] | |
KX537451 | 100 | [64] | |||
Xysticus ephippiatus Simon | KY467204 | 99.85 | [65] | ||
KY467205 | 99.39 | [65] | |||
Spiracme striatipes L.Koch | KX537061 | 100 | [64] | ||
KX537270 | 99.85 | [64] | |||
Lycosidae | Lycosa ishikariana Saito | LC222392 | 99.69 | [66] | |
LC222395 | 99.53 | [66] | |||
Pardosa astrigera L. Koch | KY467123 | 99.54 | [65] | ||
KY467125 | 98.63 | [65] | |||
Linyphiidae | Hylyphantes graminicola Sundevall | KY270332 | 99.68 | [64] | |
KY269850 | 99.68 | [64] | |||
Microlinyphia pusilla Sundevall | KX537085 | 99.85 | [64] | ||
KY269266 | 99.85 | [64] | |||
Theridiidae | Steatoda albomaculata De Geer | JF885423 | 99.85 | [63] | |
KP649784 | 99.70 | [63] | |||
Tetragnathidae | Tetragnatha extensa Linnaeus | MZ607432 | 98.33 | [55] | |
MT607911 | 98.33 | [67] | |||
Oxyopidae | Oxyopes sertatus L. Koch | KY467132 | 100 | [65] | |
NC025224 | 100 | [68] | |||
Araneidae | Neoscona adianta Walckenaer | KX537366 | 99.54 | [64] | |
KX537241 | 99.54 | [64] | |||
Araneae | Dictynidae | Dictyna brevitarsa Emerton | HQ928110 | [63] | |
Lepidoptera | Noctuidae | Helicoverpa armigera Hübner | GQ995232 | [69] |
Natural Enemy Species | Sample Number | GenBank Accession Number | ||
---|---|---|---|---|
Order | Family | Species | ||
Diptera | Syrphidae | Sphaerophoria rueppeuii Wiedemann | AMKC-211 | PV875959 |
Eupeodes luniger Meigen | AMKC-46 | PV875960 | ||
Scaeva pyrastri Linnaeus | AMKC-376 | PV875961 | ||
Coleoptera | Coccinellidae | Hippodamia variegata Goeze | AMKC-5 | PV875964 |
Coccinella undecimpunctata Linnaeus | AMKC-651 | PV875965 | ||
Oenopia conglobata Linnaeus | AMKC-668 | PV875966 | ||
Neuroptera | Chrysopidae | Chrysoperla nipponensis Okamoto | AMKC-285 | PV875962 |
Chrysoperla carnea Stephens | AMKC-705 | PV875963 | ||
Hemiptera | Miridae | Deraeocoris punctulatus Fallen | AMKC-288 | PV875967 |
Araneae | Philodromidae | Thanatus vulgaris Simon | AMZZ-7 | PV875979 |
Philodromus alascensis Keyserling | AMZZ-219 | PV875968 | ||
Philodromus cespitum Walckenaer | AMZZ-38 | PV875969 | ||
Thomisidae | Ebrechtella tricuspidata Fabricius | AMZZ-94 | PV875970 | |
Xysticus ephippiatus Simon | AMZZ-398 | PV875971 | ||
Spiracme striatipes L.Koch | AMZZ-68 | PV875981 | ||
Lycosidae | Lycosa ishikariana Saito | AMZZ-198 | PV875982 | |
Pardosa astrigera L. Koch | AMZZ-305 | PV875973 | ||
Linyphiidae | Hylyphantes graminicola Sundevall | AMZZ-368 | PV875974 | |
Microlinyphia pusilla Sundevall | AMZZ-178 | PV875975 | ||
Theridiidae | Steatoda albomaculata De Geer | AMZZ-328 | PV875976 | |
Tetragnathidae | Tetragnatha extensa Linnaeus | AMZZ-452 | PV875980 | |
Oxyopidae | Oxyopes sertatus L. Koch | AMZZ-522 | PV875972 | |
Araneidae | Neoscona adianta Walckenaer | AMZZ-28 | PV875977 |
Order | Family | Species |
---|---|---|
Hemiptera | Pentatomidae | Eurydema maracandica Oshanin |
Cicadellidae | Cicadella viridis Linnaeus | |
Miridae | Apolygus lucorum Meyer-Dür | |
Adelphocoris lineoatus Goeze | ||
Homoptera | Aleyrodidae | Trialeurodes vaporariorum Westwood |
Aphididae | Aphis gossypii Glover | |
Acyrthosiphon gossypii Mordvilko | ||
Aphis craccivora Koch | ||
Diptera | Chironomidae | Tanypus punctipennis Meigen |
Culicidae | Culex pipiens Linnaeus | |
Muscidae | Fannia canicularis Linnaeus | |
Lepidoptera | Noctuidae | Helicoverpa armigera Hübner |
Spodoptera exigua Hübner | ||
Agrotis segetum Denis et Schiffermüller | ||
Thysanoptera | Thripidae | Thrips tabaci Lindeman |
Acarina | Tetranychidae | Tetranychus dunhuangensis Wang |
Natural Enemy Species | Number of Collected | Number of Detected | Number of Positive | Positive of DNA Detection (%) * | ||
---|---|---|---|---|---|---|
Order | Family | Species | ||||
Diptera | Syrphidae | Sphaerophoria rueppeuii Wiedemann | 33 | 33 | 0 | 0 |
Eupeodes luniger Meigen | 17 | 16 | 0 | 0 | ||
Scaeva pyrastri Linnaeus | 29 | 29 | 0 | 0 | ||
Coleoptera | Coccinellidae | Hippodamia variegata Goeze | 113 | 109 | 0 | 0 |
Coccinella undecimpunctata Linnaeus | 30 | 28 | 0 | 0 | ||
Oenopia conglobata Linnaeus | 23 | 23 | 0 | 0 | ||
Neuroptera | Chrysopidae | Chrysoperla nipponensis Okamoto | 39 | 38 | 0 | 0 |
Chrysoperla carnea Stephens | 62 | 62 | 0 | 0 | ||
Hemiptera | Miridae | Deraeocoris punctulatus Fallen | 101 | 100 | 0 | 0 |
Araneae | Philodromidae | Thanatus vulgaris Simon | 17 | 16 | 0 | 0 |
Philodromus alascensis Keyserling | 21 | 19 | 0 | 0 | ||
Philodromus cespitum Walckenaer | 22 | 19 | 0 | 0 | ||
Thomisidae | Ebrechtella tricuspidata Fabricius | 69 | 66 | 28 | 42.42 | |
Xysticus ephippiatus Simon | 37 | 37 | 7 | 18.92 | ||
Spiracme striatipes L.Koch | 13 | 13 | 0 | 0 | ||
Lycosidae | Lycosa ishikariana Saito | 15 | 15 | 0 | 0 | |
Pardosa astrigera L. Koch | 14 | 14 | 0 | 0 | ||
Linyphiidae | Hylyphantes graminicola Sundevall | 51 | 51 | 6 | 11.76 | |
Microlinyphia pusilla Sundevall | 34 | 32 | 0 | 0 | ||
Theridiidae | Steatoda albomaculata De Geer | 18 | 18 | 0 | 0 | |
Tetragnathidae | Tetragnatha extensa Linnaeus | 29 | 29 | 0 | 0 | |
Oxyopidae | Oxyopes sertatus L. Koch | 11 | 11 | 4 | 36.37 | |
Araneidae | Neoscona adianta Walckenaer | 28 | 28 | 0 | 0 |
L. pratensis Stage | Natural Enemies | Parameters | R2 |
---|---|---|---|
Fourth to fifth instar nymphs | E. tricuspidata | Na/N = 0.961 − 0.008N + 0.0006N2 − 8.642 × 10−7N3 | 0.733 |
X. ephippiatus | Na/N = 1.321 − 0.029N + 0.002N2 − 3.901 × 10−5N3 | 0.774 | |
H. graminicola | Na/N = 0.884-0.019N + 0.0002N2 − 3.211 × 10−6N3 | 0.727 | |
O. sertatus | Na/N = 1.018 − 0.012N + 0.001N2 − 9.631 × 10−6N3 | 0.853 | |
Adults | E. tricuspidata | Na/N = 1.021 − 0.021N + 0.001N2 − 2.778 × 10−5N3 | 0.647 |
X. ephippiatus | Na/N = 1.056 − 0.027N + 0.0005N2 − 8.642 × 10−6N3 | 0.821 | |
H. graminicola | Na/N = 1.292 − 0.105N + 0.005N2 − 8.877 × 10−5N3 | 0.831 | |
O. sertatus | Na/N = 0.991 − 0.016N + 0.001N2 − 1.272 × 10−5N3 | 0.661 |
L. pratensis Stage | Natural Enemies | Holling Equation | R2 | Instantaneous Attack Rate (a′) | Handling Time (Th) | Daily Maximum Predation Rate (T/Th) | Theoretical Predation (a′/Th) |
---|---|---|---|---|---|---|---|
Fourth to fifth instar nymphs | E. tricuspidata | Na = 1.276N/(1 + 0.029N) | 0.975 | 1.276 | 0.023 | 43.48 | 55.48 |
X. ephippiatus | Na = 1.256N/(1 + 0.046N) | 0.961 | 1.256 | 0.037 | 27.03 | 33.95 | |
H. graminicola | Na = 1.067N/(1 + 0.048N) | 0.955 | 1.067 | 0.045 | 22.22 | 23.71 | |
O. sertatus | Na = 1.339N/(1 + 0.029N) | 0.976 | 1.339 | 0.022 | 45.45 | 60.86 | |
Adults | E. tricuspidata | Na = 1.231N/(1 + 0.031N) | 0.969 | 1.231 | 0.025 | 40.00 | 49.24 |
X. ephippiatus | Na = 1.290N/(1 + 0.053N) | 0.962 | 1.290 | 0.041 | 24.39 | 31.46 | |
H. graminicola | Na = 1.085N/(1 + 0.053N) | 0.951 | 1.085 | 0.049 | 20.41 | 22.14 | |
O. sertatus | Na = 1.206N/(1 + 0.029N) | 0.968 | 1.206 | 0.024 | 41.66 | 50.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Wang, K.; Li, T.; Ma, L.; Gou, C.; Feng, H. Screening of Predatory Natural Enemies of Lygus pratensis in Cotton Fields and Evaluation of Their Predatory Effects. Insects 2025, 16, 903. https://doi.org/10.3390/insects16090903
Li P, Wang K, Li T, Ma L, Gou C, Feng H. Screening of Predatory Natural Enemies of Lygus pratensis in Cotton Fields and Evaluation of Their Predatory Effects. Insects. 2025; 16(9):903. https://doi.org/10.3390/insects16090903
Chicago/Turabian StyleLi, Pengfei, Kunyan Wang, Tailong Li, Liqiang Ma, Changqing Gou, and Hongzu Feng. 2025. "Screening of Predatory Natural Enemies of Lygus pratensis in Cotton Fields and Evaluation of Their Predatory Effects" Insects 16, no. 9: 903. https://doi.org/10.3390/insects16090903
APA StyleLi, P., Wang, K., Li, T., Ma, L., Gou, C., & Feng, H. (2025). Screening of Predatory Natural Enemies of Lygus pratensis in Cotton Fields and Evaluation of Their Predatory Effects. Insects, 16(9), 903. https://doi.org/10.3390/insects16090903