A Synopsis of Two Decades of Arthropod Related Research at the Forensic Anthropology Research Facility (FARF), Texas State University (TXST), San Marcos, Texas, USA
Simple Summary
Abstract
1. Introduction
1.1. Introduction to Human Taphonomy Facilities (HTFs)
1.2. The Establishment and Global Expansion of HTFs
1.3. The Forensic Anthropology Research Facility (FARF) at TXST, San Marcos, TX, USA
1.4. Animal Analogs in Forensic Taphonomy
1.5. Arthropod-Related Studies in Forensic Science
2. Materials and Methods
2.1. Systematic Review Framework
2.2. Published Literature Search Strategy
2.3. Incorporation of Dissertations
2.4. Selection Criteria
2.4.1. Inclusion Criteria
2.4.2. Exclusion Criteria
2.4.3. Data Extraction and Thematic Classification
2.4.4. Screening and Selection Process
3. Results
3.1. Review of Literature
3.2. Published Research Involving Arthropods at the Forensic Anthropology Research Facility (FARF), TX, USA
3.2.1. Development and Validation of a New Technique for Estimating a Minimum Postmortem Interval Using Adult Blow Fly (Diptera: Calliphoridae) Carcass Attendance
3.2.2. Redescription of Myianoetus muscarum (Acari: Histiostomatidae) Associated with Human Remains in Texas, USA, with Designation of a Neotype from Western Europe
3.2.3. Field Documentation of Unusual Postmortem Arthropod Activity on Human Remains
3.2.4. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function
3.2.5. Evaluation of Development Datasets for Hermetia illucens (L.) (Diptera: Stratiomyidae) for Estimating the Time of Placement of Human and Swine Remains in Texas, USA
3.2.6. Developmental Variation Among Cochliomyia macellaria Fabricius (Diptera: Calliphoridae) Populations from Three Ecoregions of Texas, USA
3.2.7. Effect of Intraspecific Larval Aggregation and Diet Type on Life History Traits of Dermestes maculatus and Dermestes caninus (Coleoptera: Dermestidae): Species of Forensic Importance
3.2.8. Effect of Larval Secretions and Excretion on Selection of Food Source by Dermestes maculatus DeGeer
3.2.9. The Impact of Fat Mass on Decomposition Rate and Postmortem Interval Estimation
3.2.10. A Study on the Rate of Decomposition of Carrion in Closed Containers Placed in Shaded Areas Outdoors in Central Texas
3.2.11. Assessing the Effects of Clothing on Human Decomposition Rates in Central Texas
3.2.12. Examining the Effect of the Pre-Colonization Interval of Insect Scavengers on Human Decomposition Rates in Central Texas
3.2.13. Differential Decomposition of Human Remains in Shallow Burials in the Humid Subtropical Environment of Central Texas
3.2.14. The Use and Abuse of the Degree Day Concept in Forensic Entomology: Evaluation of Cochliomyia macelleria (Fabricius) (Diptera: Calliphoridae) Development Database
3.2.15. The Effect of Plastic Tarps on the Rate of Human Decomposition During the Spring/Summer in Central Texas
4. Discussion
Category | Published Records | Dissertations | Total | References | |
---|---|---|---|---|---|
No. | Theme | ||||
1 | Refining PMI estimations through arthropod dynamics | 2 | 2 | 4 | [100,102,107,110] |
2 | Developmental biology of forensically relevant insects | 2 | NA | 2 | [99,101] |
3 | Arthropod behavior and forensic implications | 1 | 1 | 2 | [40,106] |
4 | Taxonomy and systematics | 1 | NA | 1 | [41] |
5 | Microbial–arthropod interactions | 1 | NA | 1 | [45] |
6 | Forensic decomposition scenarios with arthropod involvement | NA | 5 | 5 | [103,104,105,108,109] |
Total | 7 | 8 | 15 |
4.1. Thematic Synthesis of Arthropod–Related Research
4.1.1. Forensic Decomposition Scenarios with Arthropod Involvement
4.1.2. Refining PMI Estimations Through Arthropod Dynamics
4.1.3. Developmental Biology of Forensically Relevant Insects
4.1.4. Arthropod Behavior and Forensic Implications
4.1.5. Taxonomy and Systematics
4.1.6. Microbial Insect Interactions
4.2. The Taxa Studied at FARF
4.3. Comparative Analysis: FARF and Other Human Taphonomy Facilities
4.4. Contributions and Limitations
4.5. Methodological Challenges
4.6. Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bytheway, J.P.; Carthey, A.J.; Banks, P.B. Risk vs. reward: How predators and prey respond to aging olfactory cues. Behav. Ecol. Sociobiol. 2013, 67, 715–725. [Google Scholar] [CrossRef]
- Wozniak, J.R.; Thies, M.L.; Bytheway, J.A.; Lutterschmidt, W.I. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: Concept and design. J. Forensic Sci. 2015, 60, 54–60. [Google Scholar] [CrossRef]
- Jeong, Y.; Weidner, L.M.; Pergande, S.; Gemmellaro, D.; Jennings, D.E.; Hans, K.R. Biodiversity of forensically relevant blowflies (Diptera: Calliphoridae) at the anthropology research facility in Knoxville, Tennessee, USA. Insects 2022, 13, 109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gill, J. Body farms. Forensic Sci. Med. Pathol. 2017, 13, 482–483. [Google Scholar] [CrossRef]
- Forbes, S. Body Farms. Forensic Sci. Med. Pathol. 2017, 13, 477–479. [Google Scholar] [CrossRef]
- Macho-Callejo, A.; Huidobro-Pasero, L.; Honrubia-Clemente, E.; Santos-González, J.; Fernández-Jalvo, Y.; Gutiérrez, A. Body farm time machine: Results from taphonomic study of burial and underwater contexts. Forensic Sci. Int. 2025, 367, 112313. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.A.; King, E.W.; Beinhart, G. Arthropod succession and decomposition of buried pigs. Nature 1968, 219, 1180–1181. [Google Scholar] [CrossRef] [PubMed]
- Hewadikaram, K.A.M.; Goff, M.L. Effect of carcass size on rate of decomposition and arthropod succession patterns. Am. J. Forensic Med. Pathol. 1991, 12, 235–240. [Google Scholar] [CrossRef]
- Shean, B.S.; Messinger, L.; Papworth, M. Observations of differential decomposition on sun exposed v. shaded pig carrion in coastal Washington State. J. Forensic Sci. 1993, 38, 938–949. [Google Scholar] [CrossRef]
- Wescott, D.J. Recent advances in forensic anthropology: Decomposition research. Forensic Sci. Res. 2018, 3, 278–293. [Google Scholar] [CrossRef]
- Roy, D.; Tomo, S.; Purohit, P.; Setia, P. Microbiome in death and beyond: Current vistas and future trends. Front. Ecol. Evol. 2021, 9, 630397. [Google Scholar] [CrossRef]
- Rodriguez, W.C.; Bass, W.M. Insect activity and its relationship to decay rates of human cadavers in East Tennessee. J. Forensic Sci. 1983, 28, 423–432. [Google Scholar] [CrossRef]
- Rodriguez, W.C., III; Bass, W.M. Decomposition of buried bodies and methods that may aid in their location. J. Forensic Sci. 1985, 30, 836–852. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.W.; Bass, W.M.; Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 1990, 35, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Vass, A.A.; Bass, W.M.; Wolt, J.D.; Foss, J.E.; Ammons, J.T. Time since death determinations of human cadavers using soil solution. J. Forensic Sci. 1992, 37, 1236–1253. [Google Scholar] [CrossRef] [PubMed]
- Marks, M.; William, M. Bass and the Development of Forensic Anthropology in Tennessee. J. Forensic Sci. 1995, 40, 15376J. [Google Scholar] [CrossRef]
- Shirley, N.R.; Wilson, R.J.; Jantz, L.M. Cadaver use at the University of Tennessee’s anthropological research facility. Clin. Anat. 2011, 24, 372–380. [Google Scholar] [CrossRef]
- Byard, R.W. Body farms—Characteristics and contributions. Forensic Sci. Med. Pathol. 2017, 13, 473–474. [Google Scholar] [CrossRef]
- Haglund, W.D.; Reay, D.T. Problems of recovering partial human remains at different times and locations: Concerns for death investigators. J. Forensic Sci. 1993, 38, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Haglund, W.D.; Sorg, M.H. Forensic Taphonomy: The Postmortem Fate of Human Remains; No. 22922; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar] [CrossRef]
- Scott, D.D.; Connor, M. Context delecti: Archaeological context in forensic work. In Forensic Taphonomy: The Postmortem Fate of Human Remains; Haglund, W.H., Sorg, M.H., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 27–38. [Google Scholar]
- Ubelaker, D.H. Taphonomic applications in forensic anthropology. In Forensic Taphonomy: The Postmortem Fate of Human Remains; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Moses, R.J. Experimental adipocere formation: Implications for adipocere formation on buried bone. J. Forensic Sci. 2012, 57, 589–595. [Google Scholar] [CrossRef]
- Rippley, A.; Larison, N.C.; Moss, K.E.; Kelly, J.D.; Bytheway, J.A. Scavenging behavior of Lynx rufus on human remains during the winter months of Southeast Texas. J. Forensic Sci. 2012, 57, 699–705. [Google Scholar] [CrossRef]
- Stokes, K.L.; Forbes, S.L.; Tibbett, M. Human versus animal: Contrasting decomposition dynamics of mammalian analogues in experimental taphonomy. J. Forensic Sci. 2013, 58, 583–591. [Google Scholar] [CrossRef]
- Williams, A.; Cassella, J.P.; Pringle, J.K. The Ethical Considerations for Creating a Human Taphonomy Facility in the United Kingdom. In Ethical Approaches to Human Remains; Squires, K., Errickson, D., Márquez-Grant, N., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Jantz, L.M.; Jantz, R.L. The anthropology research facility: The outdoor Laboratory of the Forensic Anthropology Center, University of Tennessee. In The Forensic Anthropology Laboratory; CRC Press: Boca Raton, FL, USA, 2008; pp. 23–38. [Google Scholar]
- Pecsi, E.L.; Bronchti, G.; Crispino, F.; Forbes, S.L. Perspectives on the establishment of a Canadian human taphonomic facility: The experience of REST [ES]. Forensic Sci. Int. 2020, 2, 287–292. [Google Scholar] [CrossRef]
- Enserink, M. Amsterdam to Host Europe’s First ‘Forensic Cemetery’. Science. 23 January 2017. Available online: http://www.sciencemag.org/news/2017/01/amsterdam-host-europes-first-forensic-cemetery (accessed on 12 July 2017).
- Tagliabue, G.; Masseroli, A.; Caccia, G.; Poppa, P.; Cattaneo, C.; Trombino, L. Overview of Geosciences Applied to Forensic Taphonomy: The Interdisciplinary Approach of the Italian Non-Human Research Facility (Ticino-LEAFs). Geosciences 2024, 14, 359. [Google Scholar] [CrossRef]
- Parks, C.L. A study of the human decomposition sequence in central Texas. J. Forensic Sci. 2011, 56, 19–22. [Google Scholar] [CrossRef]
- Reeves, N.M. Taphonomic effects of vulture scavenging. J. Forensic Sci. 2009, 54, 523–528. [Google Scholar] [CrossRef]
- Widya, M.; Moffatt, C.; Simmons, T. The formation of early stage adipocere in submerged remains: A preliminary experimental study. J. Forensic Sci. 2012, 57, 328–333. [Google Scholar] [CrossRef]
- Dabbs, G.R.; Martin, D.C. Geographic variation in the taphonomic effect of vulture scavenging: The case for Southern Illinois. J. Forensic Sci. 2013, 58, S20–S25. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.E.; Hooge, J.; Christmas, P. Annual Report to Texas State University, San Marcos, Hays County, Texas, for Texas Antiquities Permit No. 6775. Texas Historical Commission 2015. Available online: https://scholarworks.sfasu.edu/ita/vol2015/iss1/106/ (accessed on 1 December 2024).
- Klein, N.S. A Comparative Study of Human Decomposition Research Facilities in the United States: The Role of “Body Farms” in Forensic Applications. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2014. Available online: https://repository.lsu.edu/gradschool_theses/2487/#:~:text=Klein%2C%20Nicole%20Suzanne%2C%20%22A%20Comparative%20Study%20of%20Human,%282014%29.%20LSU%20Master%27s%20Theses.%202487.%20Listi%2C%20Ginesse%2010.31390%2Fgradschool_theses.2487 (accessed on 18 May 2025).
- Gocha, T.P.; Mavroudas, S.R.; Wescott, D.J. The Texas state donated skeletal collection at the forensic anthropology center at Texas state. Forensic Sci. 2021, 2, 7–19. [Google Scholar] [CrossRef]
- Dixson, R. Climatology of the Freeman Ranch, Hays County, Texas. Freeman Ranch Publ. Ser. 2000, 3, 1–9. Available online: https://docs.gato.txst.edu/146812/Climatology-of-Freeman-Ranch.pdf (accessed on 18 February 2025).
- Carson, D. Soils of the Freeman Ranch, Hays County, Texas. Freeman Ranch Publication Series No 4-2000. San Marcos, TX. 2000. Available online: https://gato-docs.its.txst.edu/jcr:406e74fb-bb76-448b-b87b-21b0a48478b1/Soils%20of%20Freeman%20Ranch.pdf (accessed on 18 February 2025).
- Pechal, J.L.; Benbow, M.E.; Tomberlin, J.K.; Crippen, T.L.; Tarone, A.M.; Singh, B.; Lenhart, P.A. Field documentation of unusual post-mortem arthropod activity on human remains. J. Med. Entomol. 2015, 52, 105–108. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, B.M.; Pimsler, M.; Owings, C.G.; Tomberlin, J.K. Redescription of Myianoetus muscarum (Acari: Histiostomatidae) associated with human remains in Texas, USA, with designation of a neotype from Western Europe. J. Med. Entomol. 2015, 52, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Doro, K.O.; Kolapkar, A.M.; Bank, C.G.; Wescott, D.J.; Mickleburgh, H.L. Geophysical imaging of buried human remains in simulated mass and single graves: Experiment design and results from pre-burial to six months after burial. Forensic Sci. Int. 2022, 335, 111289. [Google Scholar] [CrossRef] [PubMed]
- Finley, S.J.; Pechal, J.L.; Benbow, M.E.; Robertson, B.K.; Javan, G.T. Microbial Signatures of Cadaver Gravesoil During Decomposition. Microb. Ecol. 2016, 71, 524–529. [Google Scholar] [CrossRef]
- Bates, L.N.; Wescott, D.J. Variation in the rate of decomposition between autopsied and non-autopsied remains. Forensic Sci. Int. 2016, 261, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Minick, K.J.; Strickland, M.S.; Wickings, K.G.; Crippen, T.L.; Tarone, A.M.; Benbow, M.E.; Sufrin, N.; Tomberlin, J.K.; Pechal, J.L. Temporal and spatial impact of human cadaver decomposition on soil bacterial and arthropod community structure and function. Front. Microbiol. 2018, 8, 2616. [Google Scholar] [CrossRef] [PubMed]
- Callahan, C.A. Vegetation Colonization of Experimental Grave Sites in Central Texas. Master’s Thesis, Department of Anthropology, Texas State University, San Marcos, TX, USA, 2009. Available online: https://digital.library.txst.edu/items/49f487bd-3728-41b5-a998-6d7c5d423441 (accessed on 18 February 2025).
- Gordon, G.W.; Saul, T.; Wolfe Steadman, D.; Wescott, D.J.; Knudson, K. Preservation of hair sample isotope signatures during freezing and law enforcement evidence packaging. Forensic Chem. 2018, 11, 108–119. [Google Scholar] [CrossRef]
- Wolff, B.M. A Review of ‘Body Farm’ Research Facilities Across America with a Focus on Policy and the Impacts When Dealing with Decompositional Changes in Human Remains. Master’s Thesis, University of Texas at Arlington, Arlington, TX, USA, 2015. Available online: https://mavmatrix.uta.edu/crcj_theses/99 (accessed on 18 February 2025).
- Alexander, M.B.; Hodges, T.K.; Wescott, D.J.; Aitkenhead-Peterson, J.A. The effects of soil texture on the ability of human remains detection dogs to detect buried human remains. J. Forensic Sci. 2016, 61, 649–654. [Google Scholar] [CrossRef]
- Spradley, M.K.; Hamilton, M.D.; Giordano, A. Spatial patterning of vulture scavenged human remains. Forensic Sci. Int. 2012, 219, 57–63. [Google Scholar] [CrossRef]
- Suckling, J.K.; Spradley, M.K.; Godde, K. A Longitudinal Study on Human Outdoor Decomposition in Central Texas. J. Forensic Sci. 2016, 61, 19–25. [Google Scholar] [CrossRef]
- Miranker, M.; Giordano, A.; Spradley, K. Phase II spatial patterning of vulture scavenged human remains. Forensic Sci. Int. 2020, 314, 110392. [Google Scholar] [CrossRef]
- Anderson, B.E.; Spradley, M.K. The role of the anthropologist in the identification of migrant remains in the American Southwest. Acad. Forensic Pathol. 2016, 6, 432–438. [Google Scholar] [CrossRef]
- Bornemissza, G.F. An analysis of arthropod succession in carrion and the effects of its decomposition on the soil fauna. Aust. J. Zool. 1957, 5, 1–12. [Google Scholar] [CrossRef]
- Payne, J.A. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 1965, 46, 592–602. [Google Scholar] [CrossRef]
- Payne, J.A.; King, E.W. Insect succession and decomposition of pig carcasses in water. J. Ga. Entomol. Soc. 1972, 7, 153–162. [Google Scholar]
- Roberts, L.G.; Dabbs, G.R. A Taphonomic Study Exploring the Differences in Decomposition Rate and Manner between Frozen and Never Frozen Domestic Pigs (Sus scrofa). J. Forensic Sci. 2015, 60, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Sukchit, M.; Deowanish, S.; Butcher, B.A. Decomposition stages and carrion insect succession on dressed hanging pig carcasses in Nan Province, Northern Thailand. Trop. Nat. Hist. 2015, 15, 137–153. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Nystrom, P.; White, L. Experimental taphonomy: Post-mortem microstructural modifications in Sus scrofa domesticus bone. Forensic Sci. Int. 2016, 266, 320–328. [Google Scholar] [CrossRef]
- Knobel, Z.; Ueland, M.; Nizio, K.D.; Patel, D.; Forbes, S.L. A comparison of human and pig decomposition rates and odour profiles in an Australian environment. Aust. J. Forensic Sci. 2018, 51, 557–572. [Google Scholar] [CrossRef]
- Dawson, B.M.; Barton, P.S.; Wallman, J.F. Contrasting insect activity and decomposition of pigs and humans in an Australian environment: A preliminary study. Forensic Sci. Int. 2020, 316, 110515. [Google Scholar] [CrossRef]
- Matuszewski, S.; Hall, M.J.; Moreau, G.; Schoenly, K.G.; Tarone, A.M.; Villet, M.H. Pigs vs people: The use of pigs as analogues for humans in forensic entomology and taphonomy research. Int. J. Leg. Med. 2020, 134, 793–810. [Google Scholar] [CrossRef] [PubMed]
- Prada-Tiedemann, P.A. Understanding Death Using Animal Models in Forensic Taphonomy. In When Animals Die: Examining Justifications and Envisioning Justice; New York University Press: New York, NY, USA, 2024; pp. 173–194. [Google Scholar]
- Smith, K.G.V. A Manual of Forensic Entomology; Trustees of the British Museum (Natural History) and Cornell/University Press: London, UK, 1986; 205p. [Google Scholar]
- Catts, E.P. Problems in Estimating the Postmortem Interval in Death Investigations. 1992. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19930518027 (accessed on 15 February 2025).
- Catts, E.P.; Goff, M.L. Forensic entomology in criminal investigations. Annu. Rev. Entomol. 1992, 37, 253–272. [Google Scholar] [CrossRef]
- Goff, M.L. Estimation of postmortem interval using arthropod development and successional patterns. Forensic Sci. Rev. 1993, 5, 81–94. [Google Scholar] [CrossRef]
- Byrd, J.H.; Castner, J.L. (Eds.) Forensic Entomology: The Utility of Arthropods in Legal Investigations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 705. [Google Scholar] [CrossRef]
- Schultz, J.J.; Collins, M.E.; Falsetti, A.B. Sequential Monitoring of Burials Containing Large Pig Cadavers Using Ground-Penetrating Radar. J. Forensic Sci. 2006, 51, 607–616. [Google Scholar] [CrossRef]
- Schultz, J.J. Sequential Monitoring of Burials Containing Small Pig Cadavers Using Ground-Penetrating Radar. J. Forensic Sci. 2008, 53, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, J.; Simmons, T. The Influence of Preburial Insect Access on the Decomposition Rate. J. Forensic Sci. 2010, 55, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.K.; Ruffell, A.; Jervis, J.R.; Donnelly, L.; McKinley, J.; Hansen, J.; Morgan, R.; Pirrie, D.; Harrison, M. The Use of Geoscience Methods for Terrestrial Forensic Searches. Earth-Sci. Rev. 2012, 114, 108–123. [Google Scholar] [CrossRef]
- Pringle, J.K.; Jervis, J.R.; Roberts, D.; Dick, H.C.; Wisniewski, K.D.; Cassidy, N.J.; Cassella, J.P. Long-term Geophysical Monitoring of Simulated Clandestine Graves Using Electrical and Ground Penetrating Radar Methods: 4–6 Years. J. Forensic Sci. 2016, 61, 309–321. [Google Scholar] [CrossRef]
- Lynch-Aird, J.; Moffatt, C.; Simmons, T. Decomposition rate and pattern in hanging pigs. J. Forensic Sci. 2015, 60, 1155–1163. [Google Scholar] [CrossRef]
- Schoenly, K.G.; Haskell, N.H.; Hall, R.D.; Gbur, J.R. Comparative performance and complementarity of four sampling methods and arthropod preference tests from human and porcine remains at the Forensic Anthropology Center in Knoxville, Tennessee. J. Med. Entomol. 2007, 44, 881–894. [Google Scholar] [CrossRef]
- Connor, M.; Baigent, C.; Hansen, E.S. Testing the Use of Pigs as Human Proxies in Decomposition Studies. J. Forensic Sci. 2017, 62, 1350–1355. [Google Scholar] [CrossRef]
- Dautartas, A.; Kenyhercz, M.W.; Vidoli, G.M.; Meadows Jantz, L.; Mundorff, A.; Steadman, D.W. Differential decomposition among pig, rabbit, and human remains. J. Forensic Sci. 2018, 63, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Weidner, L.M.; Gemmellaro, M.D.; Tomberlin, J.K.; Hamilton, G.C. Evaluation of bait traps as a means to predict initial blow fly (Diptera: Calliphoridae) communities associated with decomposing swine remains in New Jersey, USA. Forensic Sci. Int. 2017, 278, 95–100. [Google Scholar] [CrossRef]
- Weidner, L.M.; Monzon, M.A.; Hamilton, G.C. Death eaters respond to the dark mark of decomposition day and night: Observations of initial insect activity on piglet carcasses. Int. J. Leg. Med. 2016, 130, 1633–1637. [Google Scholar] [CrossRef]
- Zafeiriou, S.; Rakopoulou, G.D.; Agapakis, G.; Petanidou, T.; Alexiou, S. Contribution to the Diversity of the Genus Sarcophaga (Diptera: Sarcophagidae): Checklist, Species Distribution, and New Records for Greece. Insects 2025, 16, 359. [Google Scholar] [CrossRef]
- Amendt, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J.R. Forensic entomology: Applications and limitations. Forensic Sci. Med. Pathol. 2011, 7, 379–392. [Google Scholar] [CrossRef]
- Morris, B.; Dadour, I.R. Insects and Their Uses In Legal Cases. In Expert Evidence; Freckleton, I., Selby, H., Eds.; The Law Book Company Limited: London, UK, 2015; Chapter 91a, pp. P8-5291-8-5381. [Google Scholar]
- Rakopoulou, G.D.; Dadour, I.R. A preliminary study of carrion insects in Greece and their attraction to three animal baits: A forensic entomology perspective. Forensic Sci. Med. Pathol. 2024, 21, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Bambaradeniya, Y.T.B.; Magni, P.A.; Dadour, I.R. Traumatic sheep myiasis: A review of the current understanding. Vet. Parasitol. 2023, 314, 109853. [Google Scholar] [CrossRef]
- Byrne, A.L.; Camann, M.A.; Cyr, T.L.; Catts, E.P.; Espelie, K.E. Forensic implications of biochemical differences among geographic populations of the black blow fly, Phormia regina (Meigen). J. Forensic Sci. 1995, 40, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Altamura, B.M.; Introna, F. A new possibility of applying the entomological method in forensic medicine: Age determination of postmortem mutilation. Med. Leg. Quad. Cam. 1982, 4, 127–130. [Google Scholar]
- Campobasso, C.P.; Introna, F. The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci. Int. 2001, 120, 132–139. [Google Scholar] [CrossRef]
- Haskell, N.H.; Hall, R.; Cervenka, V.J.; Clark, M.A. On the body: Insect’s life stage presence and their postmortem artifacts. In Forensic Taphonomy: The Postmortem Fate of Human Remains; Haglund, W.D., Sorg, M.A., Eds.; CRC: Boston, MA, USA, 1997; pp. 415–448. [Google Scholar]
- Dadour, I.R.; Morris, B. Forensic entomology: A synopsis, Guide and Update. In Essentials of Autopsy Practice: Innovations, Updates and Advances in Practice; Rutty, G.N., Ed.; Springer: London, UK, 2013; pp. 105–130. [Google Scholar] [CrossRef]
- Pirtle, D.; Magni, P.A.; Reinecke, G.W.; Dadour, I.R. Barnacle colonization of shoes: Evaluation of a novel approach to estimate the time spent in water of human remains. Forensic Sci. Int. 2019, 294, 1–9. [Google Scholar] [CrossRef]
- Lord, W.D.; DiZinno, J.A.; Wilson, M.R.; Budowle, B.; Taplin, D.; Meinking, T.L. Isolation, amplification, and sequencing of human mitochondrial DNA obtained from human crab louse, Pthirus pubis (L.), blood meals. J. Forensic Sci. 1998, 43, 1097–1100. [Google Scholar] [CrossRef]
- Wells, J.D.; Introna, F.; Di Vella, G., Jr.; Campobasso, C.P.; Hayes, J.; Sperling, F.A. Human and insect mitochondrial DNA analysis from maggots. J. Forensic Sci. 2001, 46, 685–687. [Google Scholar] [CrossRef]
- Carvalho, F.; Dadour, I.R.; Groth, D.M.; Harvey, M.L. Isolation and detection of ingested DNA from the immature stages of Calliphora dubia (Diptera: Calliphoridae) a forensically important blowfly. Forensic Sci. Med. Pathol. 2005, 1, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Pienaar, M.; Dadour, I.R. Post-mortem interval determinations using insects collected from illegally hunted and dehorned rhinoceros in the Republic of South Africa from 2014 to 2021. Med. Vet. Entomol. 2024, 39, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Perotti, A.; Goff, M.L.; Baker, A.; Turner, B.D.; Braig, H.R. Forensic acarology: An introduction. Exp. Appl. Acarol. 2009, 49, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Black, S. Body farms. Forensic Sci. Med. Pathol. 2017, 13, 475–476. [Google Scholar] [CrossRef]
- Williams, A.; Rogers, C.J.; Cassella, J.P. Why does the UK need a Human Taphonomy Facility? Forensic Sci. Int. 2019, 296, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Owings, C.G.; Spiegelman, C.; Tarone, A.M.; Tomberlin, J.K. Developmental variation among Cochliomyia macellaria Fabricius (Diptera: Calliphoridae) populations from three ecoregions of Texas, USA. Int. J. Leg. Med. 2014, 128, 709–717. [Google Scholar] [CrossRef]
- Mohr, R.M.; Tomberlin, J.K. Development and validation of a new technique for estimating a minimum postmortem interval using adult blow fly (Diptera: Calliphoridae) carcass attendance. Int. J. Leg. Med. 2015, 129, 851–859. [Google Scholar] [CrossRef]
- Corrêa, R.C.; Carmo, R.R.F.; George, A.R.; Tomberlin, J.K. Effect of Intraspecific Larval Aggregation and Diet Type on Life-History Traits of Dermestes maculatus and Dermestes caninus (Coleoptera: Dermestidae): Species of Forensic importance. J. Clin. Health Sci. 2021, 6, 83–89. [Google Scholar] [CrossRef]
- Cuttiford, L.; Pimsler, M.L.; Heo, C.C.; Zheng, L.; Karunaratne, I.; Trissini, G.; Tarone, A.M.; Lambiase, S.; Cammack, J.A.; Tomberlin, J.K. Evaluation of Development Datasets for Hermetia illucens (L.) (Diptera: Stratiomyidae) for Estimating the Time of Placement of Human and Swine Remains in Texas, USA. J. Med. Entomol. 2021, 58, 1654–1662. [Google Scholar] [CrossRef]
- Hyder, M.A. A Study on the Rate of Decomposition of Carrion in Closed Containers Placed in Shaded Areas Outdoors in Central Texas. Master’s Thesis, Texas State University, San Marcos, TX, USA, 2007; pp. 1–93. Available online: https://api.semanticscholar.org/CorpusID:113323539 (accessed on 1 December 2024).
- Phalen, K. Assessing the Effects of Clothing on Human Decomposition Rates in Central Texas. Master’s Thesis, Texas State University, San Marcos, TX, USA, 2013; pp. 26–42. Available online: https://digital.library.txstate.edu/bitstream/handle/10877/4887/PHALEN-THESIS-2013.pdf?isAllowed=y&sequence=1 (accessed on 1 December 2024).
- McDaneld, C.P. The Effect of Plastic Tarps on the Rate of Human Decomposition During the Spring/Summer in Central Texas. Master’s Thesis, Texas State University, San Marcos, TX, USA, 2016. Available online: https://digital.library.txstate.edu/bitstream/handle/10877/7488/MCDANELD-THESIS-2016.pdf?sequence=1220555 (accessed on 27 February 2025).
- George, A.R. Effect of Larval Secretions and Excretion on Selection of Food Source by Dermestes maculatus DeGeer. Undergraduate Thesis, Texas A&M University, College Station, TX, USA, 2017; pp. 16–19. Available online: https://oaktrust.library.tamu.edu/items/0e604d6d-1659-45d1-8c78-bbe50c46f512 (accessed on 1 December 2024).
- Cuttiford, L. The Use and Abuse of the Degree Day Concept in Forensic Entomology: Evaluation of Cochliomyia macelleria (Fabricius) (Diptera: Calliphoridae) Development Database. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2017. Available online: https://oaktrust.library.tamu.edu/server/api/core/bitstreams/aa267b20-b215-48ca-8ea8-d233ef2bb145/content (accessed on 1 December 2024).
- Spaulding, A.B. Differential Decomposition of Human Remains in Shallow Burials in the Humid Subtropical Environment of Central Texas. Master’s Thesis, Texas State University, San Marcos, TX, USA, 2020; pp. 20–32. Available online: https://digital.library.txstate.edu/bitstream/10877/9892/1/SPAULDING-THESIS-2020.pdf (accessed on 1 December 2024).
- Giacomello, E.M. The Impact of Fat Mass on Decomposition Rate and Postmortem Interval Estimation. Master’s Thesis, Texas State University, San Marcos, TX, USA, 2022; pp. 20–32, Available online at Texas State University Digital Collections. Available online: https://digital.library.txst.edu/items/7d40baed-338b-4eee-9e50-3c7f4f69fb4f/full (accessed on 1 December 2024).
- Young, L. Examining the Effect of the Pre-Colonization Interval of Insect Scavengers on Human Decomposition Rates in Central Texas. Submitted to Graduate Council of Texas State University. 2023, pp. 19–38. Available online: https://digital.library.txst.edu/items/37f15665-adf1-49c3-a8f1-dc6d3448b656 (accessed on 11 March 2025).
- Megyesi, M.S.; Nawrocki, S.P.; Haskell, N.H. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J. Forensic Sci. 2005, 50, 618–626. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Di Vella, G.; Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 2001, 120, 18–27. [Google Scholar] [CrossRef]
- Ferreira, M.T.; Cunha, E. Can we infer post mortem interval on the basis of decomposition rate? A case from a Portuguese cemetery. Forensic Sci. Int. 2013, 226, 298.e1–298.e6. [Google Scholar] [CrossRef]
- Schotsmans, E.M.J.; Van de Voorde, W.; De Winne, J.; Wilson, A.S. The impact of shallow burial on differential decomposition to the body: A temperate case study. Forensic Sci. Int. 2011, 206, e43–e48. [Google Scholar] [CrossRef]
- Tarone, A.M.; Picard, C.J.; Spiegelman, C.; Foran, D.R. Population and temperature effects on Lucilia sericata (Diptera: Calliphoridae) body size and minimum development time. J. Med. Entomol. 2011, 48, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Myburgh, J.; L’Abbé, E.N.; Steyn, M.; Becker, P.J. Estimating the postmortem interval (PMI) using accumulated degree-days (ADD) in a temperate region of South Africa. Forensic Sci. Int. 2013, 229, 165.e1–165.e6. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, K.; Krosch, M.N.; Wright, K. Variation in decomposition stages and carrion insect succession in a dry tropical climate and its effect on estimating postmortem interval. Forensic Sci. Res. 2020, 5, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, J.; Pulgarín Díaz, J.A.; López-Rubio, A.; Gómez-Piñerez, L.M.; Rúa-Uribe, G.; Márquez, E.J. Evidence of two mitochondrial lineages and genetic variability in forensically important Lucilia eximia (Diptera: Calliphoridae) in Colombia. J. Med. Entomol. 2023, 60, 656–663. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Marchetti, D.; Introna, F.; Colonna, M.F. Postmortem artifacts made by ants and the effect of ant activity on decompositional rates. Am. J. Forensic Med. Pathol. 2009, 30, 84–87. [Google Scholar] [CrossRef]
- Viero, A.; Montisci, M.; Pelletti, G.; Vanin, S. Crime scene and body alterations caused by arthropods: Implications in death investigation. Int. J. Leg. Med. 2019, 133, 307–316. [Google Scholar] [CrossRef]
- Vanin, S.; Gherardi, M.; Bugelli, V.; Di Paolo, M. Insects found on a human cadaver in central Italy including the blowfly Calliphora loewi (Diptera, Calliphoridae), a new species of forensic interest. Forensic Sci. Int. 2011, 207, e30–e33. [Google Scholar] [CrossRef]
- Oliva, A. A new species of Oxelytrum Gistel (Coleoptera, Silphidae) from southern Argentina, with a key to the species of the genus. ZooKeys 2012, 203, 1–14. [Google Scholar] [CrossRef]
- Fremdt, H.; Szpila, K.; Huijbregts, J.; Lindström, A.; Zehner, R.; Amendt, J. Lucilia silvarum Meigen, 1826 (Diptera: Calliphoridae)—A new species of interest for forensic entomology in Europe. Forensic Sci. Int. 2012, 222, 335–339. [Google Scholar] [CrossRef]
- Magni, P.A.; Pérez-Bañón, C.; Borrini, M.; Dadour, I.R. Syritta pipiens (Diptera: Syrphidae), a new species associated with human cadavers. Forensic Sci. Int. 2013, 231, e19–e23. [Google Scholar] [CrossRef]
- Ciftci, D.; RŮŽiČka, J.; Hasbenli, A.; Şahin, Ü.L.F.E.T. The large carrion beetles (Coleoptera: Silphidae) of Turkey: A review with a new species record. Zootaxa 2018, 4441, 555–591. [Google Scholar] [CrossRef]
- Kalawate, A.S.; Patole, S.S. First record of a trogid beetle (Coleoptera: Scarabaeoidea: Trogidae) from the Western Ghats, India. J. Threat. Taxa 2018, 10, 11988–11991. [Google Scholar] [CrossRef]
- Azmiera, N.; Mariana, A.; Heo, C.C. First report of Histiostoma sp. (Astigmata: Histiostomatidae) phoretic on a forensically important blowfly, Chrysomya villeneuvi (Diptera: Calliphoridae). Trop. Biomed. 2019, 36, 1099–1104. [Google Scholar] [PubMed]
- Saloña Bordas, M.I.; Perotti, M.A. First record of Lardoglyphus zacheri (Acari, Lardoglyphidae) in the Iberian Peninsula and new observations on its insect carriers. Syst. Appl. Acarol. 2020, 25, 412–419. [Google Scholar] [CrossRef]
- Michalski, M.; Gadawski, P.; Klemm, J.; Szpila, K. New species of soldier fly—Sargus bipunctatus (Scopoli, 1763)(Diptera: Stratiomyidae), recorded from a human corpse in Europe—A case report. Insects 2021, 12, 302. [Google Scholar] [CrossRef]
- Ivorra, T.; Rahimi, R.; Goh, T.G.; Azmiera, N.; Nur-Aliah, N.A.; Low, V.L.; Heo, C.C. First record of Diamesus osculans (Vigors, 1825) (Coleoptera: Silphidae) colonization on a human corpse. Int. J. Leg. Med. 2024, 138, 677–683. [Google Scholar] [CrossRef]
- Burcham, Z.M.; Belk, A.D.; McGivern, B.B.; Bouslimani, A.; Ghadermazi, P.; Martino, C.; Shenhav, L.; Zhang, A.R.; Shi, P.; Emmons, A.; et al. A conserved interdomain microbial network underpins cadaver decomposition despite environmental variables. Nat. Microbiol. 2024, 8, 595–613. [Google Scholar] [CrossRef]
- Iancu, L.; Junkins, E.N.; Necula-Petrareanu, G.; Purcarea, C. Characterizing forensically important insect and microbial community colonization patterns in buried remains. Sci. Rep. 2018, 8, 15513. [Google Scholar] [CrossRef]
- Cernosek, T.; Eckert, K.E.; Carter, D.O.; Perrault, K.A. Volatile Organic Compound Profiling from Postmortem Microbes using Gas Chromatography-Mass Spectrometry. J. Forensic Sci. 2020, 65, 134–143. [Google Scholar] [CrossRef]
- von Hoermann, C.; Weithmann, S.; Sikorski, J.; Nevo, O.; Szpila, K.; Grzywacz, A.; Grunwald, J.E.; Reckel, F.; Overmann, J.; Steiger, S.; et al. Linking bacteria, volatiles and insects on carrion: The role of temporal and spatial factors regulating inter-kingdom communication via volatiles. R. Soc. 2022, 9. [Google Scholar] [CrossRef]
- Rai, J.K.; Pickles, B.J.; Perotti, M.A. Assemblages of Acari in shallow burials: Mites as markers of the burial environment, of the stage of decay and of body-cadaver regions. Exp. Appl. Acarol. 2021, 85, 247–276. [Google Scholar] [CrossRef]
- Čuchta, P.; Kaňa, J.; Pouska, V. An important role of decomposing wood for soil environment with a reference to communities of springtails (Collembola). Environ. Monit. Assess. 2019, 191, 222. [Google Scholar] [CrossRef]
- Rusek, J. Biodiversity of Collembola and their functional role in the ecosystem. Biodivers. Conserv. 1998, 7, 1207–1219. [Google Scholar] [CrossRef]
- Perotti, M.A.; Braig, H.R. Phoretic mites associated with animal and human decomposition. Exp. Appl. Acarol. 2009, 49, 85–124. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.W.; Banner, J.L.; Cook, B.I.; Tremaine, D.M.; Wong, C.I.; Mace, R.E.; Gao, H.; Yang, Z.-L.; Flores Gonzalez, M.; Hoffpauir, R.; et al. Unprecedented drought challenges for Texas water resources in a changing climate: What do researchers and stakeholders need to know? Earth’s Future 2020, 8, e2020EF001552. [Google Scholar] [CrossRef]
- Sincerbox, S.N. Postmortem Timing of Microbe-Driven Decomposition Events: Indicators of Bloat and Post-Bloat in Central Texas. Master’s Thesis, Texas State University, San Marcos, TX, USA, 2018. Available online: https://www.researchgate.net/publication/326724018_Postmortem_Timing_of_Microbe-Driven_Decomposition_Events_Indicators_of_Bloat_and_Post-Bloat_in_Central_Texas (accessed on 1 May 2025).
- Varlet, V.; Joye, C.; Forbes, S.L.; Grabherr, S. Revolution in death sciences: Body farms and taphonomics blooming. A review investigating the advantages, ethical and legal aspects in a Swiss context. Int. J. Leg. Med. 2020, 134, 1875–1895. [Google Scholar] [CrossRef]
- Cockle, D.L.; Bell, L.S. The environmental variables that impact human decomposition in terrestrially exposed contexts within Canada. Sci. Justice 2017, 57, 107–117. [Google Scholar] [CrossRef] [PubMed]
Country | Institution | Name—Acronym | Est. | Environment |
---|---|---|---|---|
USA | University of Tennessee, Knoxville | Anthropology Research Facility (ARF) | 1981 | Temperate, without dry season and hot summers |
Western Carolina University, Cullowhee | Forensic Osteology Research Station (FOREST) | 2007 | Temperate, without dry season and hot summers | |
Texas State University, San Marcos (Freeman Ranch) | Forensic Anthropology Research Facility (FARF) | 2008 | Temperate, without dry season and hot summers | |
Sam Houston State University, Texas | Southwest Texas Applied Forensic Science Facility (STAFS) | 2008 | Temperate, without dry season and hot summers | |
Southern Illinois University, Carbondale | Complex for Forensic Anthropology Research (CFAR) | 2010 | Temperate, without dry season and warm summers | |
Colorado Mesa University, Grand Junction | Forensic Investigation Research Station (FIRS) | 2012 | Arid, steppe and cold. | |
University of Southern Florida, Tampa | USF Facility for Outdoor Research and Training (FORT) | 2016 | Subtropical, wet and dry season | |
University of Tennessee, Oakridge | Cumberland Forest Decomposition Center (CFDC) | 2016 | Temperate, without dry season and hot summers | |
Northern Michigan University, Marquette | Forensic Research Outdoor Station (FROST) | 2017 | Cold, dry winters | |
Florida gulf coast University, Florida | Forensics Institute for Research, Security and Tactics (FIRST) | 2017 | Subtropical, mild winters, humid summers | |
Louisiana State University, Baton Rouge | Forensic Taphonomy and Experimental Research Facility (FTERF) | 2018 | Subtropical, mild winters, hot humid summers | |
George Mason University, Manassas, Virginia | Forensic Science Research and Training Lab (FSRTL) | 2021 | Humid subtropical and warm summers | |
Australia | University Technology Sydney | Australian Facility for Taphonomic and Experimental Research (AFTER) | 2016 | Temperate, without dry season and hot summer |
Netherlands | Amsterdam UMC (University Medical Centers) | Amsterdam Research Initiative for Sub-surface Taphonomy and Anthropology (ARISTA) | 2018 | Temperate, without dry season and warm summer |
Canada | Université du Québec à Trois-Rivières | Recherche en Sciences Thanatologiques [Experimentales et Sociales], (REST[ES]) | 2020 | Humid, continental, cold winters, hot summers. |
Author(s) | Year | Type of Work | Major Findings and Contributions |
---|---|---|---|
Owings et al. [99] | 2014 | Published | Genetic variation among Cochliomyia macellaria (Fabricius) developmental relative to temperature |
Pechal et al. [40] | 2015 | Observed unusual arthropod activity of Orthoptera, Isopoda and Hymenoptera on human remains | |
O’Connor et al. [41] | Conducted taxonomic revision of mites Myianoetus muscarum (Linnaeus) associated with human decomposition | ||
Mohr and Tomberlin [100] | Prediction of TOP using adult blow fly (Diptera: Calliphoridae) carcass attendance | ||
Singh et al. [45] | 2018 | Human cadaver decomposition has spatiotemporal effect on bacterial and arthropod communities | |
Corrêa et al. [101] | 2021 | Larval aggregation of Dermestes maculatus (De Geer) and D. caninus (Germar) development | |
Cuttiford et al. [102] | 2021 | BSF development is inconsistent for estimating TOP | |
Hyder [103] | 2007 | Dissertation | Containers and shading slow decomposition |
Phalen [104] | 2013 | Body clothing slows decomposition | |
McDaneld [105] | 2016 | Tarp-covered remains have a higher decomposition rate due to higher insect activity compared to uncovered ones | |
George [106] | 2017 | Examines the effect of larval secretions and excretions on food source selection by D. maculatus | |
Cuttiford [107] | DD models need validation for C. macellaria to improve PMI accuracy | ||
Spaulding [108] | 2020 | Shallow burials slow decomposition | |
Giacomello [109] | 2022 | Higher fat mass slow down decomposition | |
Young [110] | 2023 | Less pre colonization slows decomposition |
Year of Record | Literature Source | Taxon— Scientific Name | Common Name— Descriptor | Higher Level Taxonomic Classification | Family |
---|---|---|---|---|---|
2007 | Hyder [103] | N | Blow flies | Diptera | Calliphoridae |
Flesh flies | Diptera | Sarcophagidae | |||
Black soldier flies | Diptera | Stratiomyidae | |||
Larval masses | Diptera | N | |||
– | Coleoptera | Dermestidae | |||
Hymenoptera | Formicidae | ||||
2013 | Phalen [104] | Chrysomya rufifacies (Macquart) | Hairy maggot blow fly | Diptera | Calliphoridae |
C. macellaria | Secondary screwworm | Diptera | Calliphoridae | ||
N | Adult Flies | Diptera | N | ||
Gnats | Diptera | ||||
Biting Ants | Hymenoptera | Formicidae | |||
Solenopsis spp. | Fire Ants | Hymenoptera | Formicidae | ||
Dorymyrmex pyramicus Roger | Pyramid ants | Hymenoptera | Formicidae | ||
N | Beetles | Coleoptera | N | ||
Dermestes lardarius Linnaeus | N | Coleoptera | Dermestidae | ||
N | Spiders | Araneae | N | ||
Praying mantis | Mantodea | ||||
Cockroaches | Blattodea | ||||
N | Katydids | Orthoptera | Tettigoniidae | ||
Mosquitoes | Diptera | N | |||
2014 | Owings et al. [99] | C. macellaria | Secondary screwworm | Diptera | Calliphoridae |
2015 | Mohr and Tomberlin [100] | Phormia regina Meigen | Black blow fly | Diptera | Calliphoridae |
C. rufifacies | Hairy maggot blow fly | Diptera | Calliphoridae | ||
Calliphora vicina (Robineau-Desvoidy) | Blue bottle fly | Diptera | Calliphoridae | ||
C. macellaria | Secondary screwworm | Diptera | Calliphoridae | ||
2015 | O’Connor et al. [41] | Myianoetus muscarum (Linnaeus) | Mites | Acari | Histiostomatidae |
2015 | Pechal et al. [40] | Pediodectes haldemani Girard | Katydid | Orthoptera | Tettigoniidae |
Armadillidium cf. vulgare (Latreille) | Pill bug | Isopoda | Armadillidiidae | ||
Solenopsis invicta Buren | Red Imported Fire Ant | Hymenoptera | Formicidae | ||
2016 | McDaneld [105] | N | Blow fly larvae | Diptera | Calliphoridae |
2017 | George [106] | D. maculatus | N | Coleoptera | Dermestidae |
2017 | Cuttiford [107] | C. macellaria | Secondary screwworm | Diptera | Calliphoridae |
2018 | Singh et al. [45] | N | N | Hymenoptera | Formicidae |
Diptera | N | ||||
Coleoptera | Staphylinidae | ||||
Coleoptera | Carabidae | ||||
Collembola | Isotomidae | ||||
Acari | Acaridae | ||||
Mesostigmata | Uropodidae | ||||
Oribatida | Pthiricaridae | ||||
Acari | Prostigmata | ||||
2020 | Spaulding [108] | Hermetia illucens Linnaeus | Black soldier fly | Diptera | Stratiomyidae |
N | Phoretic mites | Acari | N | ||
Ants | Hymenoptera | Formicidae | |||
Larvae | Diptera | – | |||
2021 | Cuttiford et al. [102] | H. illucens | Black soldier fly | Diptera | Stratiomyidae |
Corrêa et al. [101] | D. maculatus | N | Coleoptera | Dermestidae | |
D. caninus | |||||
2022 | Giacomello [109] | N | Blow fly | Diptera | Calliphoridae |
2023 | Young [110] | Sarcophaga spp. | Flesh flies | Diptera | Sarcophagidae |
Lucilia spp. | Green bottle flies | Diptera | Calliphoridae | ||
Solenopsis spp. | Fire ants | Hymenoptera | Formicidae | ||
N | Larval masses | Diptera | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkhoma, T.B.; Rakopoulou, G.D.; Fortney, S.H.; Wescott, D.J.; Spradley, K.M.; Dadour, I.R. A Synopsis of Two Decades of Arthropod Related Research at the Forensic Anthropology Research Facility (FARF), Texas State University (TXST), San Marcos, Texas, USA. Insects 2025, 16, 897. https://doi.org/10.3390/insects16090897
Nkhoma TB, Rakopoulou GD, Fortney SH, Wescott DJ, Spradley KM, Dadour IR. A Synopsis of Two Decades of Arthropod Related Research at the Forensic Anthropology Research Facility (FARF), Texas State University (TXST), San Marcos, Texas, USA. Insects. 2025; 16(9):897. https://doi.org/10.3390/insects16090897
Chicago/Turabian StyleNkhoma, Tennyson B., Gabriella D. Rakopoulou, Scott H. Fortney, Daniel J. Wescott, Katherine M. Spradley, and Ian R. Dadour. 2025. "A Synopsis of Two Decades of Arthropod Related Research at the Forensic Anthropology Research Facility (FARF), Texas State University (TXST), San Marcos, Texas, USA" Insects 16, no. 9: 897. https://doi.org/10.3390/insects16090897
APA StyleNkhoma, T. B., Rakopoulou, G. D., Fortney, S. H., Wescott, D. J., Spradley, K. M., & Dadour, I. R. (2025). A Synopsis of Two Decades of Arthropod Related Research at the Forensic Anthropology Research Facility (FARF), Texas State University (TXST), San Marcos, Texas, USA. Insects, 16(9), 897. https://doi.org/10.3390/insects16090897