Honey Bee Foraging Decisions Are Shaped by Floral Trait Distinctiveness and Perception of Gains or Losses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Learning Data Analysis
2.2.2. Reversal Learning Data Analysis
2.2.3. Flower Color Modeling
3. Results
3.1. Learning
3.2. Reversal Learning
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faegri, K.; van der Pijl, L. The Principles of Pollination Ecology, 3rd ed.; Pergamon Press: Oxford, UK, 1979; p. 244. [Google Scholar]
- Grant, V. Plant Speciation, 1st ed.; Columbia University Press: New York, NY, USA, 1971; p. 435. [Google Scholar]
- Nilsson, L.A. The evolution of flowers with deep corolla tubes. Nature 1988, 334, 147–149. [Google Scholar] [CrossRef]
- Shafir, S.; Bechar, A.; Weber, E.U. Cognition-mediated coevolution—Context-dependent evaluations and sensitivity of pollinators to variability in nectar rewards. Plant Syst. Evol. 2003, 238, 195–209. [Google Scholar] [CrossRef]
- Johnson, S.D.; Steiner, K.E. Specialized pollination systems in southern Africa. S. Afr. J. Sci. 2003, 99, 345–348. Available online: https://hdl.handle.net/10520/EJC97669 (accessed on 16 July 2025).
- Fenster, C.B.; Armbruster, W.S.; Wilson, P.; Dudash, M.R.; Thomson, J.D. Pollination syndromes and floral specialization. Ann. Rev. Ecol. Evol. Syst. 2004, 35, 375–403. [Google Scholar] [CrossRef]
- Bascompte, J.; Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Ann. Rev. Ecol. Evol. Syst. 2007, 38, 567–593. [Google Scholar] [CrossRef]
- Harder, L.D.; Johnson, S. Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New Phytol. 2009, 183, 530–545. [Google Scholar] [CrossRef]
- Rosas-Guerrero, V.; Aguilar, R.; Martén-Rodríguez, S.; Ashworth, L.; Lopezaraiza-Mikel, M.; Bastida, J.M.; Quesada, M. A quantitative review of pollination syndromes: Do floral traits predict effective pollinators? Ecol. Lett. 2014, 17, 388–400. [Google Scholar] [CrossRef]
- Heinrich, B. Bumblebee Economics, 1st ed.; 1979 with a New Preface; Harvard University Press: Cambridge, MA, USA, 2004; pp. 123–146. [Google Scholar]
- Gumbert, A.; Kunze, J.; Chittka, L. Floral colour diversity in plant communities, bee colour space and a null model. Proc. R. Soc. B Biol. Sci. 1999, 266, 1711–1716. [Google Scholar] [CrossRef]
- Chittka, L.; Schurkens, S. Succesful invasion of a floral market. Nature 2001, 411, 653. [Google Scholar] [CrossRef]
- Chittka, L.; Raine, N.E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 2006, 9, 428–435. [Google Scholar] [CrossRef]
- Baracchi, D. Cognitive ecology of pollinators and the main determinants of foraging plasticity. Curr. Zool. 2019, 65, 421–424. [Google Scholar] [CrossRef]
- Kramer, D.L. Foraging behavior. In Evolutionary Ecology Concepts and Case Studies, 1st ed.; Fox, C.W., Roff, D.A., Fairbairn, D.J., Eds.; Oxford University Press: New York, NY, USA, 2007; pp. 232–246. [Google Scholar]
- Giurfa, M. Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 2004, 91, 228–231. [Google Scholar] [CrossRef]
- Dyer, A.G.; Chittka, L. Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 2004, 91, 224–227. [Google Scholar] [CrossRef]
- Waddington, K.D.; Holden, L.R. Optimal foraging: On flower selection by bees. Am. Nat. 1979, 114, 179–196. [Google Scholar] [CrossRef]
- Wells, H.; Wells, P.H. Optimal diet, minimal uncertainty and individual constancy in the foraging of honey bees, Apis mellifera. J. Anim. Ecol. 1986, 55, 881–891. [Google Scholar] [CrossRef]
- Gegear, R.J.; Laverty, T.M. The effect of variation among floral traits on the flower constancy of pollinators. In Cognitive Ecology of Pollination, 1st ed.; Chittka, L., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 1–20. [Google Scholar]
- Wells, H.; Cakmak, I.; Coburn, P.; Athens, M.; Hill, P.S.M. Honeybee (Apis mellifera ligustica) use of color and pattern in making foraging choices. J. Kans. Entomol. Soc. 2001, 73, 195–207. Available online: https://www.jstor.org/stable/25085970 (accessed on 16 July 2025).
- Chittka, L.; Dyer, A.G.; Bock, F.; Dornhaus, A. Bees trade off foraging speed for accuracy. Nature 2003, 424, 388. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.G.; Neumeyer, C. Simultaneous and succesive colour discrimination in the honeybee (Apis mellifera). J. Comp. Physiol. A 2005, 191, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, C.E.; Cook, P.; Hill, P.S.M.; Orozco, B.S.; Abramson, C.I.; Wells, H. Nectar quality perception by honey bees (Apis mellifera ligustica). J. Comp. Psychol. 2013, 127, 341–351. [Google Scholar] [CrossRef]
- Stephens, D.W.; Krebs, J.R. Foraging Theory, 1st ed.; Princeton Academic Press: Princeton, NJ, USA, 1986; p. 237. [Google Scholar]
- Núñez, J.A. The relationship between sugar flow and foraging and recruiting behaviour of honey bees (Apis mellifera L.). Anim. Behav. 1970, 18, 527–538. [Google Scholar] [CrossRef]
- Núñez, J.A. Honeybee foraging strategies at a food source in relation to its distance from the hive and the rate of sugar flow. J. Apic. Res. 1982, 21, 139–150. [Google Scholar] [CrossRef]
- Varjú, D.; Núñez, J.A. What do foraging honeybees optimize? J. Comp. Physiol. A 1991, 169, 729–736. [Google Scholar] [CrossRef]
- Wells, H.; Wells, P.H. Honey bee foraging ecology: Optimal diet, minimal uncertainty or individual constancy. J. Anim. Ecol. 1983, 52, 829–836. [Google Scholar] [CrossRef]
- Dukas, R. Evolutionary ecology of learning. In Cognitive Ecology, 1st ed.; Dukas, R., Ed.; The University of Chicago Press: Chicago, IL, USA, 1998; pp. 129–174. [Google Scholar]
- Dyer, A.G.; Dorin, A.; Reinhardt, V.; Rosa, M.G.P. Colour reverse learning and animal personalities: The advantage of behavioral diversity assessed with agent-based simulations. Nat. Preced. 2012. [Google Scholar] [CrossRef]
- Cakmak, I.; Sanderson, C.; Blocker, T.D.; Pham, L.L.; Checotah, S.; Norman, A.A.; Harader-Pate, B.K.; Reidenbaugh, R.T.; Nenchev, P.; Barthell, J.F.; et al. Different solutions by bees to a foraging problem. Anim. Behav. 2009, 77, 1273–1280. [Google Scholar] [CrossRef]
- Dyer, A.G.; Dorin, A.; Reinhardt, V.; Garcia, J.E.; Rosa, M.G.P. Bee reverse-learning behavior and intra-colony differences: Simulations based on behavioral experiments reveal benefits of diversity. Ecol. Model. 2014, 277, 119–131. [Google Scholar] [CrossRef]
- Greggers, U.; Menzel, R. Memory dynamics and foraging strategies of honeybees. Behav. Ecol. Sociobiol. 1993, 32, 17–29. [Google Scholar] [CrossRef]
- Gil, M.; De Marco, R.J.; Menzel, R. Learning reward expectations in honeybees. Learn. Mem. 2007, 14, 491–496. [Google Scholar] [CrossRef]
- Amaya-Márquez, M.; Hill, P.S.M.; Abramson, C.I.; Wells, H. Honeybee location- and time-linked memory use in novel foraging situations: Floral color dependence. Insects 2014, 5, 243–269. [Google Scholar] [CrossRef]
- Gegear, R.J.; Thomson, J.D. Does the flower constancy of bumble bees reflect foraging economics? Ethology 2004, 110, 793–805. [Google Scholar] [CrossRef]
- Kulahci, I.G.; Dornhaus, A.; Papaj, D.R. Multimodal signals enhance decision making in foraging bumble-bees. Proc. R. Soc. B Biol. Sci. 2008, 275, 797–802. [Google Scholar] [CrossRef]
- Leonard, A.S.; Masek, P. Multisensory integration of colors and scents: Insights from bees and flowers. J. Comp. Physiol. A 2014, 200, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Latty, T.; Trueblood, J.S. How do insects choose? A review of multi-attribute flower choice and decoy effects in flower-visiting insects. J. Anim. Ecol. 2020, 89, 2750–2762. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.A.; Sprayberry, J.D.H.; Joiner, W.M.; Combes, S.A. Multimodal processing of noise cues in bumblebees. iScience 2024, 27, 108587. [Google Scholar] [CrossRef] [PubMed]
- Banschbach, V.S. Colour association influences honey bee choice between sucrose concentrations. J. Comp. Physiol. A 1994, 175, 107–114. [Google Scholar] [CrossRef]
- Real, L.A. Animal choice behavior and the evolution of cognitive architecture. Science 1991, 253, 980–986. [Google Scholar] [CrossRef]
- Wester, P.; Lunau, K. Plant-Pollinator communication. Adv. Bot. Res. 2016, 82, 225–257. [Google Scholar] [CrossRef]
- Somanathan, H.; Balamurali, G.S. Comparative psychophysics of colour preferences and colour learning in bees with special focus on Asian social bees. J. Indian Inst. Sci. 2023, 103, 971–980. [Google Scholar] [CrossRef]
- van der Kooi, C.J.; Spaethe, J.; Leonhardt, S.D. Editorial: Sensory ecology of plant-pollinator interactions. Front. Ecol. Evol. 2022, 10, 1101114. [Google Scholar] [CrossRef]
- Gutierrez-Camargo, M.G.; Arista, M.; Lunau, K.; Ortiz, P.L.; Le Stradic, S.; Bretas Rocha, N.M.; Cerdeira Morella, P.C. Flowering phenology of species with similar flower colours in species-rich communities. Flora 2023, 304, 152312. [Google Scholar] [CrossRef]
- Bruninga-Socolar, B.; Socolar, J.B.; Konzmann, S.; Lunau, K. Pollinator-mediated plant coexistence requires high levels of pollinator specialization. Ecol. Evol. 2023, 13, e10349. [Google Scholar] [CrossRef]
- Dukas, R.; Real, L.A. Effects of recent experience on foraging decisions by bumble bees. Oecologia 1993, 94, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Menzel, R. Learning in honey bees in an ecological and behavioral context. In Experimental Behavioral Ecology and Sociobiology; Holldobler, B., Lindauer, M., Eds.; Gustav Fisher Verlag: Jena, Germany, 1985; pp. 55–74. [Google Scholar]
- Menzel, R. Memory dynamics in the honeybee. J. Comp. Physiol. A 1999, 185, 323–340. [Google Scholar] [CrossRef]
- Menzel, R. Behavioral and neural mechanisms of learning and memory as determinants of flower constancy. In Cognitive Ecology of Pollination, 1st ed.; Chittka, L., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 21–40. [Google Scholar]
- Couvillon, P.A.; Bitterman, M.E. Performance of honeybees in reversal and ambiguous cue problems: Tests of a choice model. Anim. Learn. Behav. 1986, 14, 225–231. [Google Scholar] [CrossRef]
- Beran, M.J.; Klein, E.D.; Evans, T.A. Discrimination Reversal Learning in Capuchin Monkeys (Cebus apella). Psychol. Rec. 2008, 58, 3–14. [Google Scholar] [CrossRef]
- Izquierdo, A.; Belcher, A.M. Rodent models of adaptive decision making. In Psychiatric Disorders. Methods in Molecular Biology; Kobeissy, T., Ed.; Humana Press: Totowa, NJ, USA, 2012; pp. 85–101. [Google Scholar]
- Swainson, R.; Rogers, R.D.; Sahakian, B.J.; Summers, B.A.; Polkey, C.E.; Robbins, T.W. Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: Possible adverse effects of dopaminergic medication. Neuropsychologia 2000, 38, 596–612. [Google Scholar] [CrossRef]
- Remijnse, P.L.; Nielen, M.M.; van Balkom, A.J.; Cath, D.C.; van Oppen, P.; Uylings, H.B.; Veltman, D.J. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch. Gen. Psychiatry 2006, 63, 1225–1236. [Google Scholar] [CrossRef]
- Jones, B.; Mishkin, M. Limbic lesions and the problem of stimulus-reinforcement associations. Exp. Neurol. 1972, 36, 362–377. [Google Scholar] [CrossRef]
- Rescorla, R.A.; Wagner, A.R. A theory of classical conditioning: Variations in the effectiveness of reinforcement. In Classical Conditioning II: Current Research and Theory, 1st ed.; Black, A.H., Prokasy, W.F., Eds.; Appleton_Century-Crofts: Bloomington, IN, USA; Indiana University: Bloomington, IN, USA, 1972; pp. 64–99. [Google Scholar]
- Izquierdo, A.; Brigman, J.L.; Radke, A.K.; Rudebeck, P.H.; Holmes, A. The neural basis of reversal learning: An updated perspective. Neuroscience 2017, 345, 12–26. [Google Scholar] [CrossRef]
- Finke, V.; Scheiner, R.; Giurfa, M.; Avargués-Weber, A. Individual consistency in the learning abilities of honey bees: Cognitive specialization within sensory and reinforcement modalities. Anim. Cogn. 2023, 26, 909–928. [Google Scholar] [CrossRef]
- Ben-Shahar, Y.; Thompson, C.K.; Hartz, S.M.; Smith, B.H.; Robinson, G.E. Differences in performance on a reversal learning test and division of labor in honey bee colonies. Anim. Cogn. 2000, 3, 119–125. [Google Scholar] [CrossRef]
- Hadar, R.; Menzel, R. Memory formation in reversal learning of the honeybee. Front. Behav. Neurosci. 2010, 4, 186. [Google Scholar] [CrossRef] [PubMed]
- Mota, T.; Giurfa, M. Multiple reversal olfactory learning in honey bees. Front. Behav. Neurosci. 2010, 4, 48. [Google Scholar] [CrossRef] [PubMed]
- Strang, C.G.; Sherry, D.F. Serial reversal learning in bumblebees (Bombus impatiens). Anim. Cogn. 2014, 17, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Wells, P.H.; Wells, H. Can honey bees change foraging patterns? Ecol. Entomol. 1984, 9, 467–473. [Google Scholar] [CrossRef]
- Hill, P.S.M.; Wells, P.H.; Wells, H. Spontaneous flower constancy and learning in honey bees as a function of colour. Anim. Behav. 1997, 54, 615–627. [Google Scholar] [CrossRef]
- Chittka, L. The colour hexagon: A cromaticity diagrama based on photoreceptors excitations as a generalized representation of color opponency. J. Comp. Physiol. A 1992, 170, 533–543. [Google Scholar] [CrossRef]
- Jones, B.; Sall, J. JMP Statistical Discovery Software. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 188–194. [Google Scholar] [CrossRef]
- Judd, D.B.; MacAdam, D.L.; Wyszecki, G.; Budde, H.W.; Condit, H.R.; Henderson, S.T.; Simonds, J.L. Spectral distribution of typical daylight as a function of correlated color temperature. J. Opt. Soc. Am. 1964, 54, 1031–1040. [Google Scholar] [CrossRef]
- Endler, J.A. The color of light in forests and its implications. Ecol. Monogr. 1993, 63, 2–27. [Google Scholar] [CrossRef]
- Garcia, J.E.; Spaethe, J.; Dyer, A.G. The path to colour discrimination is S-shaped: Behavior determines the interpretation of color models. J. Comp. Physiol. A 2017, 203, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Cnaani, J.; Thomson, J.D.; Papaj, D.R. Flower choice and learning in foraging bumblebees: Effects of variation in nectar volume and concentration. Ethology 2006, 112, 278–285. [Google Scholar] [CrossRef]
- Amaya-Márquez, M.; Wells, H. Social complexity and learning foraging tasks in bees. Caldasia 2008, 30, 469–477. Available online: https://www.jstor.org/stable/23641905 (accessed on 24 March 2025).
- Couvillon, P.A.; Lee, Y.; Bitterman, M.E. Learning in honey bees (apis mellifera) as a function of amount of reward: Rejection of equal-asymptote assumption. Anim. Learn. Behav. 1991, 19, 381–387. [Google Scholar] [CrossRef]
- Howard, S.R.; Avargues-Weber, A.; Garcia, J.E.; Greentree, A.D.; Dyer, A.G. Surpassing the subitizing threshold: Appetitive-aversive conditioning improves discrimination of numerosities. J. Exp. Biol. 2019, 222, jeb205658. [Google Scholar] [CrossRef]
- Pappini, M.R. Diversity of adjustments to reward downshift in vertebrates. Int. J. Comp. Psychol. 2014, 27, 420–443. [Google Scholar] [CrossRef]
- Bitterman, M. Incentive contrast in honeybees. Science 1976, 192, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Couvillon, P.A.; Bitterman, M.E. The overlearning-extinction effects and succesive negative contrast in honey bees (Apis mellifera). J. Comp. Psychol. 1984, 98, 100–109. [Google Scholar] [CrossRef]
- Hemingway, C.T.; Muth, F. Label-based expectations affect incentive contrast effects in bumblebees. Biol. Lett. 2022, 18, 20210549. [Google Scholar] [CrossRef]
- Wiegmann, D.D.; Wiegmann, D.; Waldron, F. Effects of a reward downshift on the consumatory behavior and flower choices in bumblebee foragers. Physiol. Behav. 2003, 79, 561–566. [Google Scholar] [CrossRef]
- Waldron, F.A.; Wiegmann, D.D.; Wiegmann, D.A. Negative incentive contrast induces economic choice behavior by bumble bees. Int. J. Comp. Psychol. 2005, 181, 358–371. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decisions under risk. Econometrica 1979, 47, 313–327. [Google Scholar] [CrossRef]
Experiment | Change | Treatment I | Treatment II | Treatment III |
---|---|---|---|---|
1 | Decrease Δρ% = 10% | 30% vs. 30% | 30% vs. 20% | 20% vs. 30% |
2 | Decrease Δρ% = 20% | 40% vs. 40% | 40% vs. 20% | 20% vs. 40% |
3 | Decrease Δρ% = 30% | 50% vs. 50% | 50% vs. 20% | 20% vs. 50% |
4 | Decrease Δρ% = 40% | 60% vs. 60% | 60% vs. 20% | 30% vs. 20% |
5 | Increase Δρ% = 10% | 20% vs. 20% | 30% vs. 30% | 20% vs. 30% |
6 | Increase Δρ% = 20% | 20% vs. 20% | 40% vs. 20% | 20% vs. 40% |
7 | Increase Δρ% = 30% | 20% vs. 20% | 50% vs. 20% | 20% vs. 50% |
8 | Increase Δρ% = 40% | 20% vs. 20% | 60% vs. 20% | 20% vs. 60% |
Source | F | p Value |
---|---|---|
(color) | F1308 = 55.3 | p < 0.0001 |
(color distinctness) | F1308 = 8.2 | p = 0.0044 |
(reward difference) | F1308 = 5.1 | p = 0.0242 |
(color) × (color distinctness) | F1308 = 5.6 | p = 0.0183 |
(color) × (method) | F1308 = 12.0 | p = 0.0006 |
(color) × (method) × (reward difference) | F1308 = 5.5 | p = 0.0192 |
(treatment) × (color) | F2307 = 2515.4 | p < 0.0001 |
(treatment) × (color distinctness) | F2307 = 16.4 | p < 0.0001 |
(treatment) × (method) | F2307 = 9.7 | p < 0.0001 |
(treatment) × (color) × (method) | F2307 = 7.2 | p = 0.0009 |
(treatment) × (color) × (reward difference) | F2307 = 29.4 | p < 0.0001 |
(treatment) × (color distinctness) × (reward difference) | F2307 = 3.5 | p = 0.0302 |
(treatment) × (color) × (method) × (reward difference) | F2307 = 3.3 | p = 0.0368 |
(treatment) × (color) × (color distinctness) × (reward diff.) | F2307 = 3.59 | p = 0.0287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, J.C.; García, J.E.; Wells, H.; Amaya-Márquez, M. Honey Bee Foraging Decisions Are Shaped by Floral Trait Distinctiveness and Perception of Gains or Losses. Insects 2025, 16, 884. https://doi.org/10.3390/insects16090884
Hernández JC, García JE, Wells H, Amaya-Márquez M. Honey Bee Foraging Decisions Are Shaped by Floral Trait Distinctiveness and Perception of Gains or Losses. Insects. 2025; 16(9):884. https://doi.org/10.3390/insects16090884
Chicago/Turabian StyleHernández, Juan C., Jair E. García, Harrington Wells, and Marisol Amaya-Márquez. 2025. "Honey Bee Foraging Decisions Are Shaped by Floral Trait Distinctiveness and Perception of Gains or Losses" Insects 16, no. 9: 884. https://doi.org/10.3390/insects16090884
APA StyleHernández, J. C., García, J. E., Wells, H., & Amaya-Márquez, M. (2025). Honey Bee Foraging Decisions Are Shaped by Floral Trait Distinctiveness and Perception of Gains or Losses. Insects, 16(9), 884. https://doi.org/10.3390/insects16090884