Jasmonic Acid and Salicylic Acid Crosstalk Mediates Asymmetric Interactions Between Aphis gossypii and Lema decempunctata in Lycium barbarum
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Plants and Herbivores
2.2. Experimental Methods
2.2.1. Investigation of the Growth, Development, Survival, and Reproduction of A. Gossypii Under Elicitor Treatments
2.2.2. Quantitative Investigation of JA and SA in Goji Berry Under Elicitor Treatments
2.2.3. Investigation of the Effects of Me-JA and BTH Application on the Growth, Development, Survival, and Reproduction of A. gossypii
2.2.4. Statistical Analysis
3. Results
3.1. Effects of L. decempunctata or A. gossypii Infestation on the Growth, Development, Survival, and Reproduction of Aphids
3.2. Effects of L. decempunctata or A. gossypii Infestation on the Content of JA and SA in Goji Berry
3.3. Effects of Me-JA and BTH on the Growth, Development, Survival, and Reproduction of A. gossypii
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Denno, R.F.; McClure, M.S.; Ott, J.R. Interspecific Interactions in Phytophagous Insects: Competition Reexamined and Resurrected. Annu. Rev. Entomol. 1995, 40, 297–331. [Google Scholar] [CrossRef]
- Kaplan, I.; Denno, R.F. Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory. Ecol. Lett. 2007, 10, 977–994. [Google Scholar] [CrossRef]
- Cao, H.; Liu, H.; Zhang, Z.; Liu, T. The green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Sci. Rep. 2016, 6, 21954. [Google Scholar] [CrossRef]
- Li, Z.; Ahammed, G.J. Salicylic acid and jasmonic acid in elevated CO2-induced plant defense response to pathogens. J. Plant Physiol. 2023, 286, 154019. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Guo, R.; Li, Y.; Li, L.; Wei, Q.; Han, Y.; Liu, M.; Ma, X. Morphology and bionomics of Aphis gossypii (Hemiptera: Aphididae) on Chinese wolfberry (Lycium barbarum). Acta Entomol. Sin. 2017, 60, 666–680. [Google Scholar] [CrossRef]
- Morkunas, I.; Mai, V.C.; Gabryś, B. Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol. Plant. 2011, 33, 2057–2073. [Google Scholar] [CrossRef]
- Monaghan, J.; Weihmann, T.; Li, X. Plant Innate Immunity. In Plant-Environment Interactions; Ka, F.E.B., Ed.; Wiley: Oxford, UK, 2009; pp. 119–136. [Google Scholar]
- Zhang, P.; Zheng, S.; van Loon, J.J.A.; Boland, W.; David, A.; Mumm, R.; Dicke, M. Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc. Natl. Acad. Sci. USA 2009, 106, 21202–21207. [Google Scholar] [CrossRef]
- Liu, X.; Li, F. Effects of Water Treatment on the Growth and Development of Eggs and Larvae of Lema decempunctata Gebler. J. Cold-Arid Agric. Sci. 2024, 3, 486–490. [Google Scholar] [CrossRef]
- Teng, Y.; Zhang, Z.; Li, W.; Li, X.; Lei, X.; Zhang, F. Research on Biological Characteristics and Control Techniques of Lema decempunctata Gebler. Agric. Technol. 2025, 45, 57–60. [Google Scholar] [CrossRef]
- Davidson Lowe, E.; Szendrei, Z.; Ali, J.G. Asymmetric effects of a leaf-chewing herbivore on aphid population growth. Ecol. Entomol. 2019, 44, 81–92. [Google Scholar] [CrossRef]
- Eisenring, M.; Glauser, G.; Meissle, M.; Romeis, J. Differential Impact of Herbivores from Three Feeding Guilds on Systemic Secondary Metabolite Induction, Phytohormone Levels and Plant-Mediated Herbivore Interactions. J. Chem. Ecol. 2018, 44, 1178–1189. [Google Scholar] [CrossRef]
- Hou, S.; Tsuda, K. Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays. Biochem. 2022, 66, 647–656. [Google Scholar] [CrossRef]
- Thaler, J.S.; Humphrey, P.T.; Whiteman, N.K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012, 17, 260–270. [Google Scholar] [CrossRef]
- Koornneef, A.; Pieterse, C.M.J. Cross talk in defense signaling. Plant Physiol. 2008, 146, 839–844. [Google Scholar] [CrossRef]
- Glazebrook, J. Contrasting mechanisms of defense against Biotrophic and Necrotrophic Pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Walling, L.L. Avoiding effective defenses: Strategies employed by phloem-feeding insects. Plant Physiol. 2008, 146, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.A.; Goggin, F.L. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Bot. 2006, 57, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, M.; Skelly, M.J.; Itaya, T.; Mori, T.; Suzuki, T.; Matsushita, T.; Tokizawa, M.; Kuwata, K.; Mori, H.; Yamamoto, Y.Y.; et al. Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Rep. 2021, 37, 110125. [Google Scholar] [CrossRef]
- Spoel, S.H.; Koornneef, A.; Claessens, S.M.C.; Korzelius, J.P.; Van Pelt, J.A.; Mueller, M.J.; Buchala, A.J.; Metraux, J.; Brown, R.; Kazan, K.; et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 2003, 15, 760–770. [Google Scholar] [CrossRef]
- Li, J.; Brader, G.; Palva, E.T. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 2004, 16, 319–331. [Google Scholar] [CrossRef]
- Koo, Y.J.; Yoon, E.S.; Seo, J.S.; Kim, J.; Choi, Y.D. Characterization of a methyl jasmonate specific esterase in arabidopsis. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 27–33. [Google Scholar] [CrossRef]
- Ma, G.; Liu, S.; Du, X.; Dai, M.; Yuan, F.; Men, X. Effect of exogenous Me-JA treatment of cotton on the development of Aphis gossypii (Hemiptera: Aphididae) and Spodoptera litura (Lepidptera: Noctuidae). Chin. J. Appl. Entomol. 2018, 55, 399–406. [Google Scholar] [CrossRef]
- Sun, T.; Lu, Y.; Narusaka, M.; Shi, C.; Yang, Y.; Wu, J.; Zeng, H.; Narusaka, Y.; Yao, N. A Novel Pyrimidin-Like Plant Activator Stimulates Plant Disease Resistance and Promotes Growth. PLoS ONE 2015, 10, e123227. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, Y.; Zu, H. Research Progress on the Induced Disease Resistance Mechanism of Fruits and Vegetables by BTH. J. Anhui Agric. Sci. 2008, 36, 15053–15054. [Google Scholar] [CrossRef]
- Friedrich, L.; Lawton, K.; Ruess, W.; Masner, P.; Specker, N.; Rella, M.G.; Meier, B.; Dincher, S.; Staub, T.; Uknes, S.; et al. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 1996, 10, 61–70. [Google Scholar] [CrossRef]
- Li, F.; Deng, C.; Duan, G.; Fan, G.; Li, J. Influence of Aphis gossypii (Hemiptera: Aphididae) infestation on the growth, development and selectivity of Lema decempunctata (Coleoptera: Chrysomelidae) and host plant hormones. Acta Entomol. Sin. 2025, 68, 72–81. [Google Scholar] [CrossRef]
- Yang, M.; Li, J.; Liu, S.; Qiao, H.; Guo, K.; Xu, R.; Chen, J.; Xu, C. Hormone response of Lycium barbarum to gall mite Aceria pallida and effects of exogenous salicylic acid on the infestation and development of gall mite. Chin. J. Appl. Ecol. 2020, 31, 2307–2313. [Google Scholar] [CrossRef]
- Ahmed, F.; Tanwir, S.; Ahmad, J.N.; Kiran, A.; Joyia, F.A. Benzothiadiazole maintains redox balance and promotes defense against Sitobion avenae (F.) in wheat by fine-tuning the antioxidant system, secondary metabolism, and osmolyte accumulation. Turk. J. Bot. 2025, 49, 80–101. [Google Scholar] [CrossRef]
- Miao, F.; An, M.; Hua, M.; Chen, J.; Wang, J. The Study of the Inducer BTH on Resistance to the Three Main Disease of Paeonia delavayi. J. West China For. Sci. 2017, 46, 116–120. [Google Scholar] [CrossRef]
- Ali, J.; Tonga, A.; Islam, T.; Mir, S.; Mukarram, M.; Konopkova, A.S.; Chen, R. Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects. Front. Plant Sci. 2024, 15, 1376917. [Google Scholar] [CrossRef]
- Costarelli, A.; Bianchet, C.; Ederli, L.; Salerno, G.; Piersanti, S.; Rebora, M.; Pasqualini, S. Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack. Plant Signal. Behav. 2020, 15, 1704517. [Google Scholar] [CrossRef] [PubMed]
- Durner, J.; Shah, J.; Klessig, D.F. Salicylic acid and disease resistance in plants. Trends Plant Sci. 1997, 2, 266–274. [Google Scholar] [CrossRef]
- Mishra, S.; Roychowdhury, R.; Ray, S.; Hada, A.; Kumar, A.; Sarker, U.; Aftab, T.; Das, R. Salicylic acid (SA)-mediated plant immunity against biotic stresses: An insight on molecular components and signaling mechanism. Plant Stress 2024, 11, 100427. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Mishra, S.; Anand, G.; Dalal, D.; Gupta, R.; Kumar, A.; Gupta, R. Decoding the molecular mechanism underlying salicylic acid (SA)-mediated plant immunity: An integrated overview from its biosynthesis to the mode of action. Physiol. Plant. 2024, 176, e14399. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Ao, M.; Cui, Z.; Fan, K.; Guan, Y. Development mechanism and signal transduction pathway of lesion mimic mutation in plants. Soils Crops 2023, 12, 117–129. [Google Scholar]
- Sun, Y.; Liu, D.; Qi, X.; Feng, M.; Hang, X.; Yao, W. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress. Biotechnol. Bull. 2023, 39, 99–109. [Google Scholar] [CrossRef]
- Gui, L.; Liu, S.; Chen, Z. Plant resistance to insects induced by application of exogenous jasmonic acid and methyl jasmonate. Acta Entomol. Sin. 2004, 76, 507–514. [Google Scholar] [CrossRef]
- Zhu-Salzman, K.; Bi, J.; Liu, T. Molecular strategies of plant defense and insect counter-defense. Insect Sci. 2005, 12, 3–15. [Google Scholar] [CrossRef]
- Zarate, S.I.; Kempema, L.A.; Walling, L.L. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses. Plant Physiol. 2007, 143, 866–875. [Google Scholar] [CrossRef]
- Ghorbel, M.; Brini, F.; Sharma, A.; Landi, M. Role of jasmonic acid in plants: The molecular point of view. Plant Cell Rep. 2021, 40, 1471–1494. [Google Scholar] [CrossRef]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic Acid Signaling Pathway in Plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef]
- Turner, J.G.; Ellis, C.; Devoto, A. The jasmonate signal pathway. Plant Cell 2002, 14 (Suppl. S1), S153–S164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zukauskaite, A.; Petrik, I.; Pencik, A.; Honig, M.; Gruz, J.; Siroka, J.; Novak, O.; DoleZal, K. In situ characterisation of phytohormones from wounded Arabidopsis leaves using desorption electrospray ionisation mass spectrometry imaging. Analyst 2021, 146, 2653–2663. [Google Scholar] [CrossRef] [PubMed]
- Floková, K.; Tarkowská, D.; Miersch, O.; Strnad, M.; Wasternack, C.; Novák, O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 2014, 105, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Zhu-Salzman, K.; Salzman, R.A.; Ahn, J.; Koiwa, H. Transcriptional Regulation of Sorghum Defense Determinants against a Phloem-Feeding Aphid. Plant Physiol. 2004, 134, 420–431. [Google Scholar] [CrossRef]
- Chen, G.; Kim, H.K.; Klinkhamer, P.G.; Escobar-Bravo, R. Site-dependent induction of jasmonic acid-associated chemical defenses against western flower thrips in Chrysanthemum. Planta 2019, 251, 8. [Google Scholar] [CrossRef]
- Wink, M. Introduction: Biochemistry, Physiology and Ecological Functions of Secondary Metabolites. In Annual Plant Reviews; Wink, M., Ed.; Wiley-Blackwell: Oxford, UK, 2010; Volume 40, pp. 1–19. [Google Scholar]
- Salguero-Gómez, R.; Jones, O.R.; Jongejans, E.; Blomberg, S.P.; Hodgson, D.J.; Mbeau-Ache, C.; Zuidema, P.A.; de Kroon, H.; Buckley, Y.M. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. USA 2016, 113, 230–235. [Google Scholar] [CrossRef]
- Wu, P.; Xu, J.; Fu, R.; Lin, Q.; Liu, C.; Wang, Y. Psyllid-mite interactions promote psyllid fecundity by selecting for a different life history. Pest Manag. Sci. 2025, 81, 1393–1399. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Guo, K.; Zhang, F.; Qiao, H.; Chen, J.; Yang, M.; Zhu, X.; Xu, R.; Xu, C.; et al. Plant-mediated competition facilitates a phoretic association between a gall mite and a psyllid vector. Exp. Appl. Acarol. 2018, 76, 325–337. [Google Scholar] [CrossRef]
- Xu, H.; Qian, L.; Wang, X.; Shao, R.; Hong, Y.; Liu, S.; Wang, X. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc. Natl. Acad. Sci. USA 2019, 116, 490–495. [Google Scholar] [CrossRef]
- Dicke, M.; van Loon, J.J.A.; Soler, R. Chemical complexity of volatiles from plants induced by multiple attack. Nat. Chem. Biol. 2009, 5, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.; Baldwin, I.T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xu, C.; Zhang, J.; Lu, Y.; Wei, J.; Liu, Y.; David, A.; Boland, W.; Turlings, T.C.J. Phloem-feeding whiteflies can fool their host plants, but not their parasitoids. Funct. Ecol. 2013, 27, 1304–1312. [Google Scholar] [CrossRef]
- Bruinsma, M.; Posthumus, M.A.; Mumm, R.; Mueller, M.J.; van Loon, J.J.A.; Dicke, M. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: Effects of time and dose, and comparison with induction by herbivores. J. Exp. Bot. 2009, 60, 2575–2587. [Google Scholar] [CrossRef]
- Grover, S.; Puri, H.; Xin, Z.; Sattler, S.E.; Louis, J. Dichotomous Role of Jasmonic Acid in Modulating Sorghum Defense Against Aphids. Mol. Plant-Microbe Interact. 2022, 35, 755–767. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhu, B.; Deng, C.; Duan, G.; Li, J.; Fan, G. Jasmonic Acid and Salicylic Acid Crosstalk Mediates Asymmetric Interactions Between Aphis gossypii and Lema decempunctata in Lycium barbarum. Insects 2025, 16, 876. https://doi.org/10.3390/insects16090876
Liu Z, Zhu B, Deng C, Duan G, Li J, Fan G. Jasmonic Acid and Salicylic Acid Crosstalk Mediates Asymmetric Interactions Between Aphis gossypii and Lema decempunctata in Lycium barbarum. Insects. 2025; 16(9):876. https://doi.org/10.3390/insects16090876
Chicago/Turabian StyleLiu, Zhongxu, Beibei Zhu, Changrong Deng, Guozhen Duan, Jianling Li, and Guanghui Fan. 2025. "Jasmonic Acid and Salicylic Acid Crosstalk Mediates Asymmetric Interactions Between Aphis gossypii and Lema decempunctata in Lycium barbarum" Insects 16, no. 9: 876. https://doi.org/10.3390/insects16090876
APA StyleLiu, Z., Zhu, B., Deng, C., Duan, G., Li, J., & Fan, G. (2025). Jasmonic Acid and Salicylic Acid Crosstalk Mediates Asymmetric Interactions Between Aphis gossypii and Lema decempunctata in Lycium barbarum. Insects, 16(9), 876. https://doi.org/10.3390/insects16090876