The Role of Insects in Agri-Food Sustainability: Taking Advantage of Ecosystem Services to Achieve Integrated Insect Management
Simple Summary
Abstract
1. Introduction
2. Conceptual Approach
2.1. Integrative Literature Exploration
2.2. Framework Development and Core Management Areas
3. A Socio-Ecological Perspective of Insect Contributions Considering Both Ecosystem Services and Challenges
3.1. Regulating Roles: Ecological Balance and Regulatory Challenges in Agrifood Systems
3.2. Provisioning Roles (Food, Feed, and Biomolecules) and Their Associated Risks
3.3. Cultural Roles: Symbolic Power vs. Societal Tensions
3.4. Supporting Roles: Foundations of Ecosystem Resilience
4. Towards Holistic Insect Management: Key Areas Necessary for Decision-Making
4.1. Insect Conservation Management
4.2. Insect Pest and Vector Management
4.3. Wild Insect Gathering Management
4.4. Insect Farming Management
5. Optimizing Insect Socio-Ecological Roles: Synergies, Management, and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ES | Ecosystem Services |
SER | Socio Ecological Roles |
MEA | Millennium Ecosystem Assessment |
SDG | Sustainable Development Goals |
IPM | Integrated pest management |
NGO | Non-Governmental Organization. |
PM | Particulate Matter |
IPIFF | International Platform of Insects for Food and Feed |
EFSA | European Food Safety Authority |
ASIFF | Academic Society for Insects as Food and Feed |
AFFIA | Asian Food and Feed Insect Association |
ALPA | Latin American Association of Animal Production |
References
- Moruzzo, R.; Mancini, S.; Guidi, A. Edible insects and sustainable development goals. Insects 2021, 12, 557. [Google Scholar] [CrossRef]
- Peguero, D.A.; Gold, M.; Vandeweyer, D.; Zurbrügg, C.; Mathys, A. A review of pretreatment methods to improve agri-food waste bioconversion by black soldier fly larvae. Front. Sustain. Food Syst. 2022, 5, 745894. [Google Scholar] [CrossRef]
- Schmitt, E.; de Vries, W. Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Curr. Opin. Green Sustain. Chem. 2020, 25, 100335. [Google Scholar] [CrossRef]
- United Nations. SDG Indicators. Available online: https://unstats.un.org/sdgs/ (accessed on 15 March 2025).
- Van Zanten, H.H.E.; Van Ittersum, M.K.; De Boer, I.J.M. The role of farm animals in a circular food system. Glob. Food Sec. 2019, 21, 18–22. [Google Scholar] [CrossRef]
- Nichols, E.; Spector, S.; Louzada, J.; Larsen, T.; Amezquita, S.; Favila, M.E. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 2008, 141, 1461–1474. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- IUCN. Global Standard for Nature-Based Solutions. A User-Friendly Framework for the Verification, Design and Scaling up of NbS; IUCN: Gland, Switzerland, 2020; Available online: https://portals.iucn.org/library/sites/library/files/documents/2020-020-En.pdf (accessed on 15 March 2025).
- Jarzebski, M.P.; Su, J.; Abrahamyan, A.; Lee, J.; Kawasaki, J.; Chen, B.; Andriatsitohaina, R.N.N.; Ocen, I.; Sioen, G.B.; Lambino, R.; et al. Developing biodiversity-based solutions for sustainable food systems through transdisciplinary sustainable development goals labs (SDG-labs). Front. Sustain. Food Syst. 2023, 7, 1144506. [Google Scholar] [CrossRef]
- Verma, R.C.; Waseem, M.A.; Sharma, N.; Bharathi, K.; Singh, S.; Rashwin, A.; Pandey, S.K.; Singh, B.V. The role of insects in ecosystems, an in-depth review of entomological research. Int. J. Environ. Clim. Chang. 2023, 13, 4340–4348. [Google Scholar] [CrossRef]
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A.; et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 2020, 242, 108426. [Google Scholar] [CrossRef]
- Stork, N.E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 2018, 63, 31–45. [Google Scholar] [CrossRef]
- Ballal, C.R. Insects and ABS. In Biodiversity Conservation Through Access and Benefit Sharing (ABS); Oommen, O.V., Laladhas, K.P., Nelliyat, P., Pisupati, B., Eds.; Springer: Cham, Switzerland, 2022; pp. 211–227. [Google Scholar]
- Eilenberg, J.; van Loon, J.J. Insects: Key biological features. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 3–15. [Google Scholar]
- Elizalde, L.; Abertman, M.; Arnan, X.; Eggleton, P.; Leal, I.; Lescano, M.; Saez, A.; Werwnkraut, V.; Pirk, G. The ecosystem services provided by social insects: Traits, management tools and knowledge gaps. Biol. Rev. 2020, 95, 1418–1441. [Google Scholar] [CrossRef] [PubMed]
- Borrello, M.; Lombardi, A.; Pascucci, S.; Cembalo, L. The seven challenges for transitioning into a bio-based circular economy in the agri-food sector. Recent Pat. Food Nutr. Agric. 2016, 8, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Dangles, O.; Casas, J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst. Serv. 2019, 35, 109–115. [Google Scholar] [CrossRef]
- Dicke, M. Insects as feed and the sustainable development goals. J. Insects Food Feed 2018, 4, 147–156. [Google Scholar] [CrossRef]
- Barragán-Fonseca, K.B.; Ortiz, E.; Garcia, J.D.; Giron, D. Multidimensional assessment of the potential of insects for sustainable agri-food systems. LE STUDIUM Multidiscip. J. 2025, 9, 8–14. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Busch, M.; La Notte, A.; Laporte, V.; Erhard, M. Potentials of quantitative and qualitative approaches to assessing ecosystem services. Ecol. Indic. 2012, 21, 89–103. [Google Scholar] [CrossRef]
- FAO. Construyendo una Visión Común para la Agricultura y Alimentación Sostenibles—Principios y Enfoques; FAO: Rome, Italy, 2015. [Google Scholar]
- Losey, J.E.; Vaughan, M. The economic value of ecological services provided by insects. Bioscience 2006, 56, 311–323. [Google Scholar] [CrossRef]
- Faheem, M.; Aslam, M.; Razaq, M. Pollination ecology with special reference to insects: A review. J. Res. Sci. 2004, 4, 395–409. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a704606c09a2089e847fc150582f35e31fb45094 (accessed on 18 August 2025).
- Kevan, P.G.; Clark, E.A.; Thomas, V.G. Insect pollinators and sustainable agriculture. Am. J. Altern. Agric. 1990, 5, 13–22. [Google Scholar] [CrossRef]
- Santa, F.; Aguado, L.O.; Falcó-Garí, J.V.; Jiménez-Peydró, R.; Schade, M.; Vasileiadis, V.; Miranda-Barroso, L.; Peris-Felipo, F.J. Effectiveness of multifunctional margins in insect biodiversity enhancement and rare species conservation in intensive agricultural landscapes. Agronomy 2021, 11, 2093. [Google Scholar] [CrossRef]
- Crespo-Pérez, V.; Kazakou, E.; Roubik, D.W.; Cárdenas, R.E. The importance of insects on land and in water: A tropical view. Curr. Opin. Insect Sci. 2020, 40, 31–38. [Google Scholar] [CrossRef]
- Chowdhury, S.; Dubey, V.K.; Choudhury, S.; Das, A.; Jeengar, D.; Sujatha, B.; Kumar, A.; Kumar, N.; Semwal, A.; Kumar, V. Insects as bioindicator: A hidden gem for environmental monitoring. Front. Environ. Sci. 2023, 11, 1146052. [Google Scholar] [CrossRef]
- Pallottini, M.; Goretti, E.; Argenti, C.; La Porta, G.; Tositti, L.; Dinelli, E.; Cappelletti, D. Butterflies as bioindicators of metal contamination. Environ. Sci. Pollut. Res. 2023, 30, 95606–95620. [Google Scholar] [CrossRef]
- Macrì, M.; Gea, M.; Piccini, I.; Dessì, L.; Santovito, A.; Bonelli, S.; Bonetta, S. Cabbage butterfly as bioindicator species to investigate the genotoxic effects of PM10. Environ. Sci. Pollut. Res. 2023, 30, 45285–45294. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Fidelis, E.G.; Querino, R.B.; Adaime, R. The Amazon and its biodiversity: A source of unexplored potential natural enemies for biological control (predators and parasitoids). Neotrop. Entomol. 2023, 52, 152–171. [Google Scholar] [CrossRef]
- Dunn, L.; Lequerica, M.; Reid, C.R.; Latty, T. Dual ecosystem services of syrphid flies (Diptera: Syrphidae): Pollinators and biological control agents. Pest Manag. Sci. 2020, 76, 1973–1979. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Li, S.; Xu, Q.; Wang, J.; Yang, Y.; Mi, Y.; Wang, S. Optimizing the use of basil as a functional plant for the biological control of aphids by Chrysopa pallens (Neuroptera: Chrysopidae) in greenhouses. Insects 2022, 13, 552. [Google Scholar] [CrossRef] [PubMed]
- Rondoni, G.; Borges, I.; Collatz, J.; Conti, E.; Costamagna, F.; Dumont, A.C.; Cock, M.J. Exotic ladybirds for biological control of herbivorous insects—A review. Entomol. Exp. Appl. 2021, 169, 6–27. [Google Scholar] [CrossRef]
- Martel, V.; Johns, R.C.; Jochems-Tanguay, L.; Jean, F.; Maltais, A.; Trudeau, S.; Boisclair, J. The use of UAS to release the egg parasitoid Trichogramma spp. (Hymenoptera: Trichogrammatidae) against an agricultural and a forest pest in Canada. J. Econ. Entomol. 2021, 114, 1867–1881. [Google Scholar] [CrossRef]
- Barragán-Fonseca, K.B. Sustainable insect farming: A system and One Health approach for effective management. Anim. Sci. Cases. 2024, ascs20240003, 1–13. [Google Scholar] [CrossRef]
- Sharma, S.; Kooner, R.; Arora, R. Insect pests and crop losses. In Breeding Insect Resistant Crops for Sustainable Agriculture; Arora, R., Sandhu, S., Eds.; Springer: Singapore, 2017; pp. 45–66. [Google Scholar]
- Eggleton, P. The state of the world’s insects. Annu. Rev. Environ. Resour. 2020, 45, 61–82. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef]
- Mateos Fernández, R.; Petek, M.; Gerasymenko, I.; Juteršek, M.; Baebler, Š.; Kallam, K.; Moreno Giménez, E.; Gondolf, J.; Nordmann, A.; Gruden, K.; et al. Insect pest management in the age of synthetic biology. Plant Biotechnol. J. 2022, 20, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, C.; Subramanian, S. Storage insect pests and their damage symptoms: An overview. Indian J. Entomol. 2016, 78, 53–58. [Google Scholar] [CrossRef]
- Ratcliffe, N.A.; Furtado Pacheco, J.P.; Dyson, P.; Castro, H.C.; Gonzalez, M.S.; Azambuja, P.; Mello, C.B. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasites Vectors 2022, 15, 112. [Google Scholar] [CrossRef]
- Jaisval, G.K.; Dwivedi, H.; Pandey, A.; Jaiswal, S.; Kumar, A.; Kushwaha, D.; Shukla, P. A comprehensive review on plant disease vectors and their management. Int. J. Environ. Clim. Chang. 2023, 13, 2518–2530. [Google Scholar] [CrossRef]
- Sarwar, M. Insects as transport devices of plant viruses. In Applied Plant Virology: Advances, Detection, and Antiviral Strategies; Awasthi, L.P., Ed.; Academic Press: Rajasthan, India, 2020; pp. 381–402. [Google Scholar]
- Purcell, A.H.; Almeida, R.P. Insects as vectors of disease agents. In Encyclopedia of Plant and Crop Science; Taylor & Francis: Abingdon, UK, 2005; Volume 10, pp. 1–5. [Google Scholar]
- Barboza, P.S.; Parker, K.L.; Hume, I.D. Integrative Wildlife Nutrition; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Mitchell, D.R.; Wroe, S.; Ravosa, M.J.; Menegaz, R.A. More challenging diets sustain feeding performance: Applications toward the captive rearing of wildlife. Integr. Org. Biol. 2021, 3, obab030. [Google Scholar] [CrossRef]
- Abensperg-Traun, M.; Steven, D. Ant- and termite-eating in Australian mammals and lizards: A comparison. Aust. J. Ecol. 1997, 22, 9–17. [Google Scholar] [CrossRef]
- Capinera, J. Insects and Wildlife: Arthropods and Their Relationships with Wild Vertebrate Animals; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Gasca-Álvarez, H.J.; Costa-Neto, E.M. Insects as a food source for indigenous communities in Colombia: A review and research perspectives. J. Insects Food Feed 2022, 8, 593–603. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Van Itterbeeck, J. Ecosystem services from edible insects in agricultural systems: A review. Insects 2017, 8, 24. [Google Scholar] [CrossRef]
- van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Omuse, E.R.; Tonnang, H.E.; Yusuf, A.A.; Machekano, H.; Egonyu, J.P.; Kimathi, E.; Niassy, S. The global atlas of edible insects: Analysis of diversity and commonality contributing to food systems and sustainability. Sci. Rep. 2024, 14, 5045. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J. Anthropo-entomophagy: Cultures, evolution and sustainability. Entomol. Res. 2009, 39, 271–288. [Google Scholar] [CrossRef]
- Skrivervik, E. Insects’ contribution to the bioeconomy and the reduction of food waste. Heliyon 2020, 6, e03934. [Google Scholar] [CrossRef]
- Jongema, Y. Worldwide List of Recorded Edible Insects; Wageningen University and Research: Wageningen, The Netherlands, 2017; Available online: https://www.wur.nl (accessed on 15 March 2025).
- Orkusz, A. Edible insects versus meat—Nutritional comparison: Knowledge of their composition is the key to good health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Barragán-Fonseca, K.Y.; Barragán-Fonseca, K.B.; Verschoor, G.; van Loon, J.J.A.; Dicke, M. Insects for peace. Curr. Opin. Insect Sci. 2020, 40, 85–93. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; van Loon, J.J.; Dicke, M. Insects for sustainable animal feed: Inclusive business models involving smallholder farmers. Curr. Opin. Environ. Sustain. 2019, 41, 23–30. [Google Scholar] [CrossRef]
- Girotto, F.; Cossu, R. Role of animals in waste management with a focus on invertebrates’ biorefinery: An overview. Environ. Dev. 2019, 32, 100454. [Google Scholar] [CrossRef]
- Poveda, J. Insect frass in the development of sustainable agriculture: A review. Agron. Sustain. Dev. 2021, 41, 1–15. [Google Scholar] [CrossRef]
- Halloran, A.; Hansen, H.H.; Jensen, L.S.; Bruun, S. Comparing environmental impacts from insects for feed and food as an alternative to animal production. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 163–180. [Google Scholar]
- van Loon, J.J.A. Insects: Why we need them on our plates. In Our Future Proteins: A Diversity of Perspectives; Pyett, H.H.E., Jenkins, S.C., van Mierlo, B.C., Trindade, L.M., Welch, D., van Zanten, W.M.N., Eds.; VU University Press: Amsterdam, The Netherlands, 2023; pp. 123–129. [Google Scholar]
- Vilcinskas, A. Insect Biotechnology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 2. [Google Scholar]
- Keil, T.A.; Steinbrecht, R.A. Insects as model systems in cell biology. Methods Cell Biol. 2010, 96, 363–394. [Google Scholar] [CrossRef]
- Tonk-Rügen, M.; Vilcinskas, A.; Wagner, A.E. Insect models in nutrition research. Biomolecules 2022, 12, 1668. [Google Scholar] [CrossRef] [PubMed]
- Touchard, A.; Aili, R.; Paterson, E.; Escoubas, E.; Orivel, J.; Nicholson, G.; Dejean, A. The biochemical toxin arsenal from ant venoms. Toxins 2016, 8, 30. [Google Scholar] [CrossRef]
- Douglas, A.E. The molecular basis of bacterial–insect symbiosis. J. Mol. Biol. 2014, 426, 3830–3837. [Google Scholar] [CrossRef]
- Nunes, J. Development of an Insect Cell Factory for the Production of Complex Biopharmaceuticals Using a Synthetic Biology Approach. Master’s Thesis, University of Lisboa, Lisboa, Portugal, 2011. [Google Scholar]
- Drugmand, J.C.; Schneider, Y.J.; Agathos, S.N. Insect cells as factories for biomanufacturing. Biotechnol. Adv. 2012, 30, 1140–1157. [Google Scholar] [CrossRef]
- Cappellozza, S.; Casartelli, M.; Sandrelli, F.; Saviane, A.; Tettamanti, G. Silkworm and silk: Traditional and innovative applications. Insects 2022, 13, 1016. [Google Scholar] [CrossRef] [PubMed]
- Benhabiles, M.S.; Salah, R.; Lounici, H.; Drouiche, N.; Goosen, M.F.A.; Mameri, N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012, 29, 48–56. [Google Scholar] [CrossRef]
- Gómez-Gaviria, M.; Mora-Montes, H.M. Exploring the potential of chitin and chitosan in nanobiocomposites for fungal immunological detection and antifungal action. Carbohydr. Res. 2024, 16, 109220. [Google Scholar] [CrossRef]
- Croce, A.C.; Scolari, F. Autofluorescent biomolecules in Diptera: From structure to metabolism and behavior. Molecules 2022, 27, 4458. [Google Scholar] [CrossRef]
- Rivas-Navia, D.M.; Dueñas-Rivadeneira, A.A.; Dueñas-Rivadeneira, J.P.; Aransiola, S.A.; Maddela, N.R.; Prasad, R. Bioactive compounds of insects for food use: Potentialities and risks. J. Agric. Food Res. 2023, 14, 100807. [Google Scholar] [CrossRef]
- da Silva Lucas, A.J.; de Oliveira, L.M.; Da Rocha, M.; Prentice, C. Edible insects: An alternative of nutritional, functional, and bioactive compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef]
- Mézes, M. Food safety aspect of insects: A review. Acta Aliment. 2018, 47, 513–522. [Google Scholar] [CrossRef]
- Kaszak, I.; Planellas, M.; Dworecka-Kaszak, B. Pine processionary caterpillar, Thaumetopoea pityocampa Denis and Schiffermüller, 1775 contact as a health risk for dogs. Ann. Parasitol. 2015, 61, 159–163. [Google Scholar] [CrossRef]
- Olivieri, M.; Ludovico, E.; Battisti, A. Occupational exposure of forest workers to the urticating setae of the pine processionary moth Thaumetopoea pityocampa. Int. J. Environ. Res. Public Health 2023, 20, 4735. [Google Scholar] [CrossRef]
- Wilderspin, D.E.; Halloran, A. The effects of regulation, legislation and policy on consumption of edible insects in the global south. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 443–455. [Google Scholar]
- Duffus, N.; Christie, C.; Morimoto, J. Insect cultural services: How insects have changed our lives and how can we do better for them. Insects 2021, 12, 377. [Google Scholar] [CrossRef]
- Ciesla, W.M. A close encounter with a fascinating insect. Am. Entomol. 2013, 59, 76–81. [Google Scholar] [CrossRef]
- DeFoliart, G.R. Overview of role of edible insects in preserving biodiversity. Ecol. Food Nutr. 2005, 36, 109–132. [Google Scholar] [CrossRef]
- Coelho, J. Insects in rock & roll music. Am. Entomol. 2000, 46, 186–200. [Google Scholar] [CrossRef]
- Sogari, G.; Menozzi, D.; Mora, C. The food neophobia scale and young adults’ intention to eat insect products. Int. J. Consum. Stud. 2019, 43, 68–76. [Google Scholar] [CrossRef]
- Fukano, Y.; Soga, M. Evolutionary psychology of entomophobia and its implications for insect conservation. Curr. Opin. Insect Sci. 2023, 59, 101100. [Google Scholar] [CrossRef]
- Asshoff, R.; Heuckmann, B.; Ryl, M.; Reinhardt, K. “Bed bugs live in dirty places”—How using live animals in teaching contributes to reducing stigma, disgust, psychological stigma, and misinformation in students. CBE—Life Sci. Educ. 2022, 21, ar73. [Google Scholar] [CrossRef] [PubMed]
- Querner, P. Insect pests and integrated pest management in museums, libraries and historic buildings. Insects 2015, 6, 595–607. [Google Scholar] [CrossRef]
- Manachini, B. Alien insect impact on cultural heritage and landscape: An underestimated problem. Conserv. Sci. Cult. Herit. 2015, 15, 61–72. [Google Scholar] [CrossRef]
- Sofo, A.; Mininni, A.N.; Ricciuti, P. Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy 2020, 10, 456. [Google Scholar] [CrossRef]
- Gotcha, N.; Machekano, H.; Cuthbert, R.N.; Nyamukondiwa, C. Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Sci. 2021, 28, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, S.; Mądra-Bielewicz, A. Competition of insect decomposers over large vertebrate carrion: Necrodes beetles (Silphidae) vs. blow flies (Calliphoridae). Curr. Zool. 2022, 68, 645–656. [Google Scholar] [CrossRef]
- Wissinger, S.A.; Klemmer, A.J.; Braccia, A.; Bush, B.M.; Batzer, D.P. Relationships between macroinvertebrates and detritus in freshwater wetlands. Freshw. Sci. 2021, 40, 681–698. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES): 2011 Update; European Environment Agency: Copenhagen, Denmark, 2011. [Google Scholar]
- Fowles, T.; Nansen, C. Insect-based bioconversion: Value from food waste. In Food Waste Management: Solving the Wicked Problem; Närvänen, E., Mesiranta, N., Mattila, M., Heikkinen, A., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 321–346. [Google Scholar]
- Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 2014, 12, 168–180. [Google Scholar] [CrossRef]
- Querejeta, M.; Hervé, V.; Perdereau, E.; Marchal, L.; Herniou, E.A.; Boyer, S.; Giron, D. Changes in bacterial community structure across the different life stages of black soldier fly (Hermetia illucens). Microb. Ecol. 2023, 86, 1254–1267. [Google Scholar] [CrossRef]
- Van Zanten, H.H.E.; Mollenhorst, H.; Oonincx, D.G.A.B.; Bikker, P.; Meerburg, B.G.; De Boer, I.J.M. From environmental nuisance to environmental opportunity: Housefly larvae convert waste to livestock feed. J. Clean. Prod. 2015, 102, 362–369. [Google Scholar] [CrossRef]
- Barragán-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Jiang, S.; Su, T.; Zhao, J.; Wang, Z. Biodegradation of polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus larvae and comparison of their degradation effects. Polymers 2021, 13, 3539. [Google Scholar] [CrossRef]
- Riley, S.J.; Decker, D.J.; Carpenter, L.H.; Organ, J.F.; Mattfeld, G.F.; Parsons, G.; Siemer, W.F. The essence of wildlife management. Wildl. Soc. Bull. 2002, 30, 585–593. [Google Scholar]
- Barragán-Fonseca, K.B.; Cortés-Urquijo, J.; Pineda-Mejía, J.; Lagos-Sierra, D.; Dicke, M. Small-scale black soldier fly–fish farming: A model with socioeconomic benefits. Anim. Front. 2023, 13, 91–101. [Google Scholar] [CrossRef]
- Halloran, A.; Roos, N.; Flore, R.; Hanboonsong, Y. The development of the edible cricket industry in Thailand. J. Insects Food Feed 2016, 2, 291–300. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Tchibozo, S.; Abdulmawjood, A.; Acheuk, F. Wildlife resource, and pest management legislation. Edible insects in Africa in terms of food, wildlife resource, and pest management legislation. Foods 2020, 9, 502. [Google Scholar] [CrossRef] [PubMed]
- Cohnstaedt, L.W.; Lado, P.; Ewing, R.; Cherico, J.; Brabec, D.; Shults, P.; Chaskopoulou, A. Harvesting insect pests for animal feed: Potential to capture an unexploited resource. J. Econ. Entomol. 2024, 117, 1301–1305. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Francis, F.; Haubruge, E.; Le Gall, P.; Tomberlin, J.K.; Miranda, C.D.; Jordan, H.R.; Picard, C.J.; Pino, M.J.M.; Ramos-Elordy, J.; et al. A worldwide overview of the status and prospects of edible insect production. Entomol. Gen. 2024, 44, 3–27. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Siwar, C.; Ismail, S.M. Sustainability measurement for ecotourism destination in Malaysia: A study on Lake Kenyir, Terengganu. Soc. Indic. Res. 2016, 128, 1029–1045. [Google Scholar] [CrossRef]
- Barragán-Fonseca, K.B. Navigating social, environmental, and economic complexities of insect farming to contribute to sustainable agrifood systems. Anim. Sci. Cases 2024, ascs20240004, 1–13. [Google Scholar] [CrossRef]
- Gossner, M.M.; Menzel, F.; Simons, N.K. Less overall, but more of the same: Drivers of insect population trends lead to community homogenization. Biol. Lett. 2023, 19, 20230007. [Google Scholar] [CrossRef]
- Samways, M.J. Insect conservation: A synthetic management approach. Annu. Rev. Entomol. 2007, 52, 465–487. [Google Scholar] [CrossRef]
- Morimoto, J. Addressing global challenges with unconventional insect ecosystem services: Why should humanity care about insect larvae? People Nat. 2020, 2, 582–595. [Google Scholar] [CrossRef]
- Grzywacz, D.; Stevenson, P.C.; Mushobozi, W.L.; Belmain, S.; Wilson, K. The use of indigenous ecological resources for pest control in Africa. Food Secur. 2014, 6, 71–86. [Google Scholar] [CrossRef]
- Biermann, F.; Hickmann, T.; Sénit, C.A.; Beisheim, M.; Bernstein, S.; Chasek, P.; Grob, L.; Kim, R.E.; Kotzé, L.J.; Nilsson, M.; et al. Scientific evidence on the political impact of the sustainable development goals. Nat. Sustain. 2022, 5, 795–801. [Google Scholar] [CrossRef]
- Scaffardi, L.; Formici, G. Novel Foods and Edible Insects in the European Union; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Sittenfeld, A.; Tamayo, G.; Nielsen, V.; Jiménez, A.; Hurtado, P.; Chinchilla, M.; Alvarado, E. Costa Rican international cooperative biodiversity group: Using insects and other arthropods in biodiversity prospecting. Pharm. Biol. 1999, 37, 55–68. [Google Scholar] [CrossRef]
- Lees, R.S.; Gilles, J.R.; Hendrichs, J.; Vreysen, M.J.; Bourtzis, K. Back to the future: The sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 2015, 10, 156–162. [Google Scholar] [CrossRef]
- Barragán-Fonseca, K.B.; Llauradó Casares, R. Aproximación al estado actual de la producción de insectos como alimento humano y animal en Latinoamérica. Arch. Latinoam. Prod. Anim. 2024, 32, 77–88. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; Costa-Neto, E.M.; Dos Santos, J.F.; Moreno, J.M.P.; Landero-Torres, I.; Campos, S.C.A.; Pérez, Á.G. Estudio comparativo del valor nutritivo de varios coleópteros comestibles de México y Pachymerus nucleorum (Fabricius, 1792) (Bruchidae) de Brasil. Interciencia 2006, 31, 512–516. [Google Scholar]
- Costa-Neto, E.M. Anthropo-entomophagy in Latin America: An overview of the importance of edible insects to local communities. J. Insects Food Feed 2015, 1, 17–23. [Google Scholar] [CrossRef]
- van Huis, A. Insects as food in sub-Saharan Africa. Int. J. Trop. Insect Sci. 2003, 23, 163–185. [Google Scholar] [CrossRef]
- Gahukar, R.T. Entomophagy and human food security. Int. J. Trop. Insect Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef]
- Van Itterbeeck, J.; van Huis, A. Environmental manipulation for edible insect procurement: A historical perspective. J. Ethnobiol. Ethnomed. 2012, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.; Mbeche, R.; Mithöfer, D. Strategic business decisions of retailers in the edible insect value chain in Uganda. Int. Food Agribus. Manag. Rev. 2023, 26, 267–285. [Google Scholar] [CrossRef]
- Belluco, S.; Bertola, M.; Montarsi, F.; Di Martino, G.; Granato, A.; Stella, R.; Martinello, M.; Bordin, F.; Mutinelli, F. Insects and public health: An overview. Insects 2023, 14, 240. [Google Scholar] [CrossRef]
- IPIFF. The Insect Sector Milestones Towards Sustainable Food Supply Chains; Brussels. 2020. Available online: https://ipiff.org/wp-content/uploads/2020/05/IPIFF-RegulatoryBrochure-update07-2020-1.pdf (accessed on 16 March 2025).
- Barragán-Fonseca, K.Y.; Nurfikari, A.; van de Zande, E.M.; Wantulla, M.; van Loon, J.J.A.; de Boer, W.; Dicke, M. Insect frass and exuviae to promote plant growth and health. Trends Plant Sci. 2022, 27, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef]
- Żuk-Gołaszewska, K.; Gałęcki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible insect farming in the context of the EU regulations and marketing—An overview. Insects 2022, 13, 50446. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, A.; Kaim, K.; Volk, M. Towards systematic analyses of ecosystem service trade-offs and synergies. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Noriega, J.A.; Hortal, J.; Azcárate, F.M.; Berg, M.P.; Bonada, N.; Briones, M.J.; Santos, A.M. Research trends in ecosystem services provided by insects. Basic Appl. Ecol. 2018, 26, 8–23. [Google Scholar] [CrossRef]
- Barragán-Fonseca, K.B.; Gómez, D. Review: Ecosystem service indicators in insect farming—A novel One Health perspective. Animal 2025, in press. [Google Scholar] [CrossRef]
- Hanley, N.; Breeze, T.D.; Ellis, C.; Goulson, D. Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosyst. Serv. 2015, 14, 124–132. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, H.T.; Ngo, H.T.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Vanbergen, A.J. The Assessment Report on Pollinators, Pollination and Food Production: Summary for Policymakers; IPBES: Bonn, Germany, 2016. [Google Scholar]
- Vansynghel, J.; Ocampo-Ariza, C.; Maas, B.; Martin, E.A.; Thomas, E.; Hanf-Dressler, F.F.; Schumacher, T.; Ulloque-Samatelo, N.C.; Yovera, C.; Tscharntke, T.; et al. Quantifying services and disservices provided by insects and vertebrates in cacao agroforestry landscapes. Proc. R. Soc. B Biol. Sci. 2022, 289, 20221309. [Google Scholar] [CrossRef]
Management Area | Main Objective | Associated Ecosystem Services | Associated Problems | Key Stakeholders | Integration Needs | Example of Cross-Area Synergy |
---|---|---|---|---|---|---|
Insect conservation | Preserve native insect diversity and ecosystem functions. | Pollination and seed dispersal (regulation); cultural symbolism (cultural service); bioindication (regulation); soil regeneration (support). | Decrease in pollinators; entomophobia and stigma; invasive species replacing native species. | Academics, farmers, activists, policymakers, researchers, educators. | Link biodiversity protection to agri-food systems; promote culturally sensitive conservation. | Conservation of native dung beetles supports soil regeneration and may inform species selection for insect farming. |
Insect pest and vector management | Reduce crop losses and disease transmission by managing pest/vector species. | Biological control (regulation); vector monitoring (regulation). | Pesticide resistance; ecological imbalance; health impacts. | Farmers, agroecologists, health authorities, policymakers, extension workers. | Combine monitoring with agroecological control; incorporate local knowledge. | Wild gathering of pest species can provide food and help reduce outbreaks. |
Wild insect gathering | Sustain local livelihoods and traditional insect uses through responsible harvesting. | Food/feed provision (provisioning); cultural heritage (cultural service); biomass cycling (support). | Overharvesting; lack of safety standards; criminalization. | Indigenous groups, other harvesters, policymakers, local markets, NGOs. | Develop biocultural protocols; support community-based monitoring; ensure legal recognition. | Wild gathering of farmed species can help protect genetic diversity and prevent disease outbreaks in insect farming. |
Insect farming | Produce insects for food, feed, waste reduction, biocontrol and bio-products. | Organic matter conversion (support); protein/fertilizer production (provisioning); circular innovation (support). | Contamination; limited regulation; low species diversity. | Farmers, researchers, regulators, policymakers, investors. | Improve biosafety norms; regulate inputs; diversify species. | Insect farming based on native biodiversity may promote ecosystem restoration and community income. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barragán-Fonseca, K.B.; Ortiz, J.E.; García-Arteaga, J.D.; Giron, D. The Role of Insects in Agri-Food Sustainability: Taking Advantage of Ecosystem Services to Achieve Integrated Insect Management. Insects 2025, 16, 866. https://doi.org/10.3390/insects16080866
Barragán-Fonseca KB, Ortiz JE, García-Arteaga JD, Giron D. The Role of Insects in Agri-Food Sustainability: Taking Advantage of Ecosystem Services to Achieve Integrated Insect Management. Insects. 2025; 16(8):866. https://doi.org/10.3390/insects16080866
Chicago/Turabian StyleBarragán-Fonseca, Karol B., Julio Esteban Ortiz, Juan D. García-Arteaga, and David Giron. 2025. "The Role of Insects in Agri-Food Sustainability: Taking Advantage of Ecosystem Services to Achieve Integrated Insect Management" Insects 16, no. 8: 866. https://doi.org/10.3390/insects16080866
APA StyleBarragán-Fonseca, K. B., Ortiz, J. E., García-Arteaga, J. D., & Giron, D. (2025). The Role of Insects in Agri-Food Sustainability: Taking Advantage of Ecosystem Services to Achieve Integrated Insect Management. Insects, 16(8), 866. https://doi.org/10.3390/insects16080866