Insect Decline in the Anthropocene: Historical Parallels and Emerging Monitoring Tools
Simple Summary
Abstract
1. Introduction
2. Insect Species Status
3. Historical Drivers of Insect Evolution: Interactions and Ecosystem Roles
3.1. Atmospheric Oxygen and Insect Evolution
3.2. Temperature Stress and Insect Body Size Shifts
4. Anthropogenic Stressors Resembling Ancient Pressures
4.1. Pesticide Exposure and Hypoxia Responses
4.2. Temperature Changes and Insect Immunity
5. Space Limitations, Light Pollution, and Population Bottlenecks
6. Climate Change Shifts Scales Between Pest and Beneficial Insects
6.1. Impacts on Parasitoids Wasps and Pest Insects
6.2. Impacts on Beneficial Insects
6.3. Modern Approaches in Measuring Insect Decline and Trait-Based Population Shifts
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stork, N.E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 2018, 63, 31–45. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, T.M.; Gittleman, J.L.; Joppa, L.N.; Raven, P.H.; Roberts, C.M.; Sexton, J.O. The biodiversity of species and their rates of extinction, distribution, and protection. Science 2014, 344, 1246752. [Google Scholar] [CrossRef]
- Wagner, D.L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 2020, 65, 457–480. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A.; et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 2020, 242, 108426. [Google Scholar] [CrossRef]
- Wei, N.; Kaczorowski, R.L.; Arceo-Gómez, G.; O’Neill, E.M.; Hayes, R.A.; Ashman, T.L. Pollinators contribute to the maintenance of flowering plant diversity. Nature 2021, 597, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Noriega, J.A.; Hortal, J.; Azcárate, F.M.; Berg, M.P.; Bonada, N.; Briones, M.J.I.; Del Toro, I.; Goulson, D.; Ibanez, S.; Landis, D.A.; et al. Research trends in ecosystem services provided by insects. Basic Appl. Ecol. 2018, 26, 8–23. [Google Scholar] [CrossRef]
- Auclerc, A.; Doyen, L.; Hedde, M.; Nahmani, J.; Salmon, S. Fostering the use of soil invertebrate traits to restore ecosystem functioning. Geoderma 2022, 424, 116019. [Google Scholar] [CrossRef]
- Seibold, S.; Bässler, C.; Brandl, R.; Büche, B.; Szallies, A.; Thorn, S.; Ulyshen, M.D.; Müller, J. The contribution of insects to global forest deadwood decomposition. Nature 2021, 597, 77–81. [Google Scholar] [CrossRef]
- Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 2019, 29, R967–R971. [Google Scholar] [CrossRef]
- Pryke, J.S.; Samways, M.J.; New, T.R.; Cardoso, P.; Gaigher, R. Routledge Handbook of Insect Conservation; Routledge: London, UK, 2024; Chapter 4. [Google Scholar] [CrossRef]
- Noriega, J.A.; Schowalter, T.D. Insects as functional components of communities and ecosystems. In Routledge Handbook of Insect Conservation; Taylor & Francis: London, UK, 2024; pp. 35–52. Available online: https://www.taylorfrancis.com/chapters/edit/10.4324/9781003285793-5/insects-functional-components-communities-ecosystems-jorge-ari-noriega-timothy-schowalter (accessed on 8 August 2025).
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- vanEngelsdorp, D.; Meixner, M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010, 103, S80–S95. [Google Scholar] [CrossRef]
- Harwood, G.P.; Dolezal, A.G. Pesticide–virus interactions in honey bees: Challenges and opportunities for understanding drivers of bee declines. Viruses 2020, 12, 566. [Google Scholar] [CrossRef]
- Brühl, C.A.; Zaller, J.G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 2019, 7, 464007. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Neonicotinoids: A critical assessment of the global research landscape of the most extensively used insecticide. Environ. Res. 2022, 213, 113727. [Google Scholar] [CrossRef]
- Krupke, C.H.; Holland, J.D.; Long, E.Y.; Eitzer, B.D. Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit. J. Appl. Ecol. 2017, 54, 1449–1458. [Google Scholar] [CrossRef]
- Singla, A.; Barmota, H.; Kumar, S.K.S.; Kang, B.K. Influence of neonicotinoids on pollinators: A review. J. Apic. Res. 2021, 60, 19–32. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F. Indirect effect of pesticides on insects and other arthropods. Toxics 2021, 9, 177. [Google Scholar] [CrossRef]
- Harrison, J.F.; Kaiser, A.; VandenBrooks, J.M. Atmospheric oxygen level and the evolution of insect body size. Proc. R. Soc. B Biol. Sci. 2010, 277, 1937–1946. [Google Scholar] [CrossRef]
- Nijhout, H.F. The control of body size in insects. Dev. Biol. 2003, 261, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.D.; Jones, T.H.; Hartley, S.E. ‘Insectageddon’: A call for more robust data and rigorous analyses. Glob. Change Biol. 2019, 25, 1891–1892. [Google Scholar] [CrossRef] [PubMed]
- Cowie, R.H.; Bouchet, P.; Fontaine, B. The sixth mass extinction: Fact, fiction or speculation? Biol. Rev. 2022, 97, 640–663. [Google Scholar] [CrossRef]
- Müller, J.; Müller, D.W.H.; Neuschulz, E.L.; Braunisch, V.; Seibold, S.; Ulyshen, M.D.; Weisser, W.W.; Wiezik, M.; Jarzyna, M.A.; Lachat, T.; et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 2024, 628, 349–354. [Google Scholar] [CrossRef]
- Labandeira, C.C.; Sepkoski, J.J. Insect diversity in the fossil record. Science 1993, 261, 310–315. [Google Scholar] [CrossRef]
- Dmitriev, V.Y.; Sinitshenkova, N.D.; Shcherbakov, D.E.; Vassilenko, D.V.; Aristov, D.S.; Naugolnykh, S.V.; Lukashevich, E.D.; Vasilenko, D.V.; Zherikhin, V.V. Insect diversity from the Carboniferous to recent. Paleontol. J. 2018, 52, 610–619. [Google Scholar] [CrossRef]
- Ross, A.J.; Jarzembowski, E.A.; Brooks, S.J. The Cretaceous and Cenozoic record of insects (Hexapoda) with regard to global change. In Biotic Response to Global Change; Cambridge University Press: Cambridge, UK, 2000; pp. 288–302. [Google Scholar] [CrossRef]
- Zessin, W. Neue Insekten aus dem Moler (Paläozän/Eozän) von Dänemark Teil 1 (Odonata: Epallagidae, Megapodagrioniidae). Virgo Mitteilungsblatt Entomol. Ver. Mecklenbg. 2011, 14, 62–71. [Google Scholar]
- Prokop, J.; Ren, D. New significant fossil insects from the Upper Carboniferous of Ningxia in northern China (Palaeodictyoptera, Archaeorthoptera). Eur. J. Entomol. 2007, 104, 267–275. [Google Scholar] [CrossRef]
- Labandeira, C.C.; Currano, E.D. The fossil record of plant–insect dynamics. Annu. Rev. Earth Planet. Sci. 2013, 41, 287–311. [Google Scholar] [CrossRef]
- Mángano, M.G.; Buatois, L.A. The Trace-Fossil Record of Major Evolutionary Events; Topics in Geobiology; Springer: Dordrecht, The Netherlands, 2016; Volume 40. [Google Scholar] [CrossRef]
- Strömberg, C.A.E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 2011, 39, 517–544. [Google Scholar] [CrossRef]
- Kergoat, G.J.; Condamine, F.L.; Toussaint, E.F.A.; Capdevielle-Dulac, C.; Clamens, A.-L.; Meseguer, A.S.; Warren, A.D.; Espeland, M.; Sahoo, R.K.; Loiseau, A.; et al. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nat. Commun. 2018, 9, 5089. [Google Scholar] [CrossRef]
- Goin, F.J. Cenozoic metatherian evolution in the Americas. In American and Australasian Marsupials; Springer International Publishing: Cham, Switzerland, 2023; pp. 249–267. [Google Scholar] [CrossRef]
- Rosenberg, Y.; Blonder, B.; Gillooly, J.F.; Hoelzel, A.R.; Jetz, W.; Jones, K.E.; Koo, M.S.; Naskrecki, P.; Pienkowski, T.; Stork, N.E.; et al. The global biomass and number of terrestrial arthropods. Sci. Adv. 2023, 9, eabq4049. [Google Scholar] [CrossRef] [PubMed]
- Mills, B.J.W.; Krause, A.J.; Jarvis, I.; Cramer, B.D. Evolution of atmospheric O2 through the Phanerozoic, revisited. Annu. Rev. Earth Planet. Sci. 2023, 51, 253–276. [Google Scholar] [CrossRef]
- Schachat, S.R.; Labandeira, C.C. Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record. Ann. Entomol. Soc. Am. 2021, 114, 99–118. [Google Scholar] [CrossRef]
- Pecharová, M.; Ren, D.; Prokop, J. A new palaeodictyopteroid (Megasecoptera: Brodiopteridae) from the Early Pennsylvanian of northern China reveals unique morphological traits and intra-specific variability. Alcheringa 2015, 39, 236–249. [Google Scholar] [CrossRef]
- Boderau, M.; Roques, P.; Nel, A. New paleopteran and polyneopteran insects from the Carboniferous of Northern France. Acta Palaeontol. Pol. 2024, 69, 737–745. [Google Scholar] [CrossRef]
- Cannell, A.; Blamey, N.; Brand, U.; Escapa, I.; Large, R. A revised sedimentary pyrite proxy for atmospheric oxygen in the Paleozoic: Evaluation for the Silurian–Devonian–Carboniferous period and the relationship of the results to the observed biosphere record. Earth-Sci. Rev. 2022, 231, 104062. [Google Scholar] [CrossRef]
- Schneider, J.W.; Rößler, R. The early history of giant cockroaches: Gyroblattids and Necymylacrids (Blattodea) of the Late Carboniferous. Diversity 2023, 15, 429. [Google Scholar] [CrossRef]
- Clapham, M.E.; Karr, J.A. Environmental and biotic controls on the evolutionary history of insect body size. Proc. Natl. Acad. Sci. USA 2012, 109, 10927–10930. [Google Scholar] [CrossRef]
- Chown, S.L. Biotic interactions modify the effects of oxygen on insect gigantism. Proc. Natl. Acad. Sci. USA 2012, 109, 10745–10746. [Google Scholar] [CrossRef]
- Molet, M.; Péronnet, R.; Couette, S.; Canovas, C.; Doums, C. Effect of temperature and social environment on worker size in the ant Temnothorax nylanderi. J. Therm. Biol. 2017, 67, 22–29. [Google Scholar] [CrossRef]
- Ju, R.-T.; Wang, F.; Li, B. Effects of temperature on the development and population growth of the sycamore lace bug, Corythucha ciliata. J. Insect Sci. 2011, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, H.; Schlemmer, M.-L.; Van den Berg, J. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2020, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhou, Q.; Shan, S.; Bi, Y.; He, Y.; Luo, Y.; Wang, Q.; Wang, J.; Cui, J. Effect of short-term high temperatures on the growth, development and reproduction in the fruit fly, Bactrocera tau (Diptera: Tephritidae). Sci. Rep. 2020, 10, 6418. [Google Scholar] [CrossRef] [PubMed]
- Wonglersak, R.; Fenberg, P.B.; Langdon, P.G.; Brooks, S.J.; Price, B.W. Insect body size changes under future warming projections: A case study of Chironomidae (Insecta: Diptera). Hydrobiologia 2021, 848, 2785–2796. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Al-Ghamdi, A.A.; Mohamed, A.A. Tolerance of two honey bee races to various temperature and relative humidity gradients. Environ. Exp. Biol. 2012, 10, 133–138. [Google Scholar]
- Garcia-Robledo, C.; Baer, C.S.; Lippert, K.; Sarathy, V. Evolutionary history, not ecogeographic rules, explains size variation of tropical insects along elevational gradients. Funct. Ecol. 2020, 34, 2513–2523. [Google Scholar] [CrossRef]
- Duffy, G.A.; Coetzee, B.W.; Janion-Scheepers, C.; Chown, S.L. Microclimate-based macrophysiology: Implications for insects in a warming world. Curr. Opin. Insect Sci. 2015, 11, 84–89. [Google Scholar] [CrossRef]
- Harvey, J.A.; Heinen, R.; Gols, R.; Thakur, M.P.; Bezemer, T.M.; van Doorslaer, W.; Venette, R.; de Sassi, C.; Tylianakis, J.M.; Ellers, J.; et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 2023, 93, e1553. [Google Scholar] [CrossRef]
- Harris, J.E.; Rodenhouse, N.L.; Holmes, R.T. Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming. Biol. Conserv. 2019, 240, 108219. [Google Scholar] [CrossRef]
- Campbell, J.B.; López-Martínez, G. Anoxia elicits the strongest stimulatory protective response in insect low-oxygen hormesis. Curr. Opin. Toxicol. 2022, 29, 51–56. [Google Scholar] [CrossRef]
- Sukkar, D.; Laval-Gilly, P.; Kanso, A.; Azoury, S.; Bonnefoy, A.; Falla-Angel, J. A potential trade-off between offense and defense in honeybee innate immunity: Reduced phagocytosis in honeybee hemocytes correlates with a protective response after exposure to imidacloprid and amitraz. Pestic. Biochem. Physiol. 2024, 199, 105772. [Google Scholar] [CrossRef]
- Förster, T.D.; Woods, H.A. Mechanisms of tracheal filling in insects. Biol. Rev. 2013, 88, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nicodemo, D.; Malaspina, O.; Nascimento, A.M.; De Jong, D.; Bernardi, R.; Petta, V.; Bonetti, A.M.; Guardabassi, L.; Carneiro, F.E.; Begliomini, E.; et al. Mitochondrial respiratory inhibition promoted by pyraclostrobin in fungi is also observed in honey bees. Environ. Toxicol. Chem. 2020, 39, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Nicodemo, D.; Nascimento, A.M.; De Jong, D.; de Toledo, V.A.A.; Marchini, L.C.; Ruvolo-Takasusuki, M.C.C.; Marsaro Júnior, A.L.; Nocelli, R.C.F.; Kretzschmar, A.A.; Carvalho, S.M. Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environ. Toxicol. Chem. 2014, 33, 2070–2075. [Google Scholar] [CrossRef]
- Campbell, J.B.; Miller, K.A.; Moye, J.K.; Smith, T.A.; Berenbaum, M.R.; Scharf, M.E.; Johnson, R.M.; Cameron, S.A. The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees. J. Insect Physiol. 2016, 86, 11–16. [Google Scholar] [CrossRef]
- Syromyatnikov, M.; Nesterova, E.; Smirnova, T.; Popov, V. Methylene blue can act as an antidote to pesticide poisoning of bumble bee mitochondria. Sci. Rep. 2021, 11, 14710. [Google Scholar] [CrossRef]
- Nareshkumar, B.; Akbar, S.M.; Sharma, H.C.; Jayalakshmi, S.K.; Sreeramulu, K. Imidacloprid impedes mitochondrial function and induces oxidative stress in cotton bollworm, Helicoverpa armigera larvae (Hubner: Noctuidae). J. Bioenerg. Biomembr. 2018, 50, 21–32. [Google Scholar] [CrossRef]
- de Aguiar, L.M.; Figueira, F.H.; Gottschalk, M.S.; da Rosa, C.E. Glyphosate-based herbicide exposure causes antioxidant defence responses in the fruit fly Drosophila melanogaster. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016, 185, 94–101. [Google Scholar] [CrossRef]
- Leão, M.B.; Gonçalves, D.F.; Miranda, G.M.; da Paixão, G.M.X.; Dalla Corte, C.L. Toxicological evaluation of the herbicide Palace® in Drosophila melanogaster. J. Toxicol. Environ. Health A 2019, 82, 1172–1185. [Google Scholar] [CrossRef]
- Sargent, J.C. Gut Bacterial Load Associates with Dramatic Declines in Anoxia Tolerance in Young Drosophila melanogaster Adults. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2020. Available online: https://keep.lib.asu.edu/items/158428/view (accessed on 8 August 2025).
- O’Neal, S.T.; Reeves, A.M.; Fell, R.D.; Brewster, C.C.; Anderson, T.D. Chlorothalonil exposure alters virus susceptibility and markers of immunity, nutrition, and development in honey bees. J. Insect Sci. 2019, 19, 14. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Smart, M.D.; Anelli, C.M.; Sheppard, W.S. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J. Invertebr. Pathol. 2012, 109, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Daisley, B.A.; Trinder, M.; McDowell, T.W.; Welle, H.; Dube, J.S.; Ali, S.N.; Leong, H.S.; Sumarah, M.W.; Reid, G. Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Sci. Rep. 2017, 7, 2703. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Yordanova, M.; Evison, S.E.F.; Gill, R.J.; Graystock, P. The threat of pesticide and disease co-exposure to managed and wild bee larvae. Int. J. Parasitol. Parasites Wildl. 2022, 17, 319–326. [Google Scholar] [CrossRef]
- King, A.M.; MacRae, T.H. Insect heat shock proteins during stress and diapause. Annu. Rev. Entomol. 2015, 60, 59–75. [Google Scholar] [CrossRef]
- Mason, C.J.; Shikano, I. Hotter days, stronger immunity? Exploring the impact of rising temperatures on insect gut health and microbial relationships. Curr. Opin. Insect Sci. 2023, 59, 101096. [Google Scholar] [CrossRef]
- Thomas, M.B.; Blanford, S. Thermal biology in insect–parasite interactions. Trends Ecol. Evol. 2003, 18, 344–350. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Matsumoto, H.; Ochiai, M.; Tsuzuki, S.; Hayakawa, Y. Enhanced expression of stress-responsive cytokine-like gene retards insect larval growth. Insect Biochem. Mol. Biol. 2012, 42, 183–192. [Google Scholar] [CrossRef]
- Matsumura, T.; Nakano, F.; Matsumoto, H.; Uryu, O.; Hayakawa, Y. Identification of a cytokine combination that protects insects from stress. Insect Biochem. Mol. Biol. 2018, 97, 19–30. [Google Scholar] [CrossRef]
- Awde, D.N.; Řeřicha, M.; Knapp, M. Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds. Commun. Biol. 2023, 6, 838. [Google Scholar] [CrossRef]
- Habel, J.C.; Samways, M.J.; Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 2019, 28, 1343–1360. [Google Scholar] [CrossRef]
- Owens, A.C.S.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E.K.; Seymoure, B.M. Light pollution is a driver of insect declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Bobbink, R.; Hornung, M.; Roelofs, J.G.M. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 2010, 20, 30–59. [Google Scholar] [CrossRef] [PubMed]
- Boggs, C.L. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 2016, 17, 69–73. [Google Scholar] [CrossRef] [PubMed]
- van Klink, R.; Bowler, D.E.; Gongalsky, K.B.; Swengel, A.B.; Gentile, A.; Chase, J.M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 2020, 368, 417–420. [Google Scholar] [CrossRef]
- Raubenheimer, D.; Simpson, S.J.; Tait, A.H.; Mayntz, D.; Felton, A.M.; Sibly, R.M.; Simpson, C.; South, J.; Kraft, T.S. An integrative approach to dietary balance across the life course. Iscience 2022, 25, 104315. [Google Scholar] [CrossRef] [PubMed]
- Cavigliasso, F.; Gatti, J.-L.; Colinet, D.; Poirié, M. Impact of temperature on the immune interaction between a parasitoid wasp and Drosophila host species. Insects 2021, 12, 647. [Google Scholar] [CrossRef]
- Dhillon, M.K.; Sharma, H.C. Temperature influences the performance and effectiveness of field and laboratory strains of the ichneumonid parasitoid, Campoletis chlorideae. BioControl 2009, 54, 743–750. [Google Scholar] [CrossRef]
- Gupta, R.K.; Raj, D.; Devi, N. Biological and impact assessment studies on Campoletis chlorideae Uchida: A promising solitary larval endoparasitoid of Helicoverpa armigera (Hübner). J. Asia-Pac. Entomol. 2004, 7, 239–247. [Google Scholar] [CrossRef]
- Dennington, N.L.; Ferguson, L.V.; Valenzuela, N.; Hahn, D.A.; Benoit, J.B. Phenotypic adaptation to temperature in the mosquito vector, Aedes aegypti. Glob. Change Biol. 2024, 30, e17009. [Google Scholar] [CrossRef] [PubMed]
- Caminade, C.; Kovats, S.; Rocklov, J.; Tompkins, A.M.; Morse, A.P.; Colón-González, F.J.; Stenlund, H.; Martens, P.; Lloyd, S.J. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. USA 2014, 111, 3286–3291. [Google Scholar] [CrossRef] [PubMed]
- van Engelsdorp, D.; Hayes, J.; Underwood, R.M.; Pettis, J. A survey of honey bee colony losses in the U.S., Fall 2007 to Spring 2008. PLoS ONE 2008, 3, e4071. [Google Scholar] [CrossRef]
- Langowska, A.; Zawilak, M.; Sparks, T.H.; Glazaczow, A.; Tomkins, P.W.; Tryjanowski, P. Long-term effect of temperature on honey yield and honeybee phenology. Int. J. Biometeorol. 2017, 61, 1125–1132. [Google Scholar] [CrossRef]
- Switanek, M.; Crailsheim, K.; Truhetz, H.; Brodschneider, R. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Sci. Total Environ. 2017, 579, 1581–1587. [Google Scholar] [CrossRef]
- Monceau, R.; Bonnard, O.; Thiéry, D. Vespa velutina: A new invasive predator of honeybees in Europe. J. Pest Sci. 2014, 87, 1–16. [Google Scholar] [CrossRef]
- Stabentheiner, A.; Nagy, J.M.; Kovac, H.; Käfer, H.; Petrocelli, I.; Turillazzi, S. Effect of climate on strategies of nest and body temperature regulation in paper wasps, Polistes biglumis and Polistes gallicus. Sci. Rep. 2022, 12, 3372. [Google Scholar] [CrossRef]
- van Kolfschoten, L.; Dück, L.; Lind, M.I.; Jandér, K.C. Rising temperatures threaten pollinators of fig trees—Keystone resources of tropical forests. Ecol. Evol. 2022, 12, e9311. [Google Scholar] [CrossRef]
- International Commission on Stratigraphy. International Chronostratigraphic Chart. 2023. Available online: https://stratigraphy.org/chart (accessed on 8 August 2025).
- Cusimano, C.A.; Massa, B.; Morganti, M. Importance of meteorological variables for aeroplankton dispersal in an urban environment. Ital. J. Zool. 2016, 83, 263–269. [Google Scholar] [CrossRef]
- Nebel, S.; Mills, A.; McCracken, J.D.; Taylor, P.D. Declines of aerial insectivores in North America follow a geographic gradient. Avian Conserv. Ecol. 2010, 5, art1. [Google Scholar] [CrossRef]
- Bell, J.R.; Bohan, D.A.; Shaw, E.M.; Weyman, G.S. Ballooning dispersal using silk: World fauna, phylogenies, genetics and models. Bull. Entomol. Res. 2005, 95, 69–114. [Google Scholar] [CrossRef] [PubMed]
- Waters, C.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.; Fairchild, I.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351, aad2622. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The great acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Green, S.J.; Brookson, C.B.; Hardy, N.A.; Crowder, L.B. Trait-based approaches to global change ecology: Moving from description to prediction. Proc. R. Soc. B Biol. Sci. 2022, 289. [Google Scholar] [CrossRef]
- Welti, E.A.R.; Zajicek, P.; Frenzel, M.; Ayasse, M.; Bornholdt, T.; Buse, J.; Classen, A.; Dziock, F.; Engelmann, R.A.; Englmeier, J.; et al. Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conserv. Divers. 2022, 15, 168–180. [Google Scholar] [CrossRef]
- Rishan, S.T.; Kline, R.J.; Rahman, M.S. Environmental DNA (eDNA) collection techniques across diverse ecosystems: A mini-review of promising new tools for eDNA metabarcoding. Environ. Sci. Pollut. Res. 2025, 32, 13566–13577. [Google Scholar] [CrossRef]
- Sahu, A.; Singh, M.; Amin, A.; Malik, M.M.; Qadri, S.N.; Abubakr, A.; Teja, S.S.; Dar, S.A.; Ahmad, I. A systematic review on environmental DNA (eDNA) science: An eco-friendly survey method for conservation and restoration of fragile ecosystems. Ecol. Indic. 2025, 173, 113441. [Google Scholar] [CrossRef]
- Sahu, A.; Kumar, N.; Pal Singh, C.; Singh, M. Environmental DNA (eDNA): Powerful technique for biodiversity conservation. J. Nat. Conserv. 2023, 71, 126325. [Google Scholar] [CrossRef]
- Koubínová, D.; Kirchgeorg, S.; Geckeler, C.; Thurnheer, S.; Lüthi, M.; Sanchez, T.; Mintchev, S.; Pellissier, L.; Albouy, C. Robot-aided measurement of insect diversity on vegetation using environmental DNA. Ecol. Evol. 2025, 15, e71391. [Google Scholar] [CrossRef]
- Gibson, J.; Shokralla, S.; Porter, T.M.; King, I.; Van Konynenburg, S.; Janzen, D.H.; Hallwachs, W.; Hajibabaei, M. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc. Natl. Acad. Sci. USA 2014, 111, 8007–8012. [Google Scholar] [CrossRef]
- Creer, S.; Deiner, K.; Frey, S.; Porazinska, D.; Taberlet, P.; Thomas, W.K.; Potter, C.; Bik, H.M. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 2016, 7, 1008–1018. [Google Scholar] [CrossRef]
- Bohmann, K.; Evans, A.; Gilbert, M.T.P.; Carvalho, G.R.; Creer, S.; Knapp, M.; Yu, D.W.; De Bruyn, M. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 2014, 29, 358–367. [Google Scholar] [CrossRef]
- Li, X.; Wiens, J.J. Estimating global biodiversity: The role of cryptic insect species. Syst. Biol. 2023, 72, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, C.; Dong, D.; Wang, K. Real-time monitoring of insects based on laser remote sensing. Ecol. Indic. 2023, 151, 110302. [Google Scholar] [CrossRef]
- Rydhmer, K.; Bick, E.; Still, L.; Strand, A.; Luciano, R.; Helmreich, S.; Beck, B.D.; Grønne, C.; Malmros, L.; Poulsen, K.; et al. Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 2022, 12, 2603. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, K.; Beery, S.; Palmer, M.S.; Harchaoui, Z.; Abrahms, B. Generative AI as a tool to accelerate the field of ecology. Nat. Ecol. Evol. 2025, 9, 378–385. [Google Scholar] [CrossRef]
- Chen, A.C.; He, H.; Davey, R.B. Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Vet. Parasitol. 2007, 148, 379–383. [Google Scholar] [CrossRef]
- Kamler, M.; Nesvorna, M.; Stara, J.; Erban, T.; Hubert, J. Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. Exp. Appl. Acarol. 2016, 69, 1–9. [Google Scholar] [CrossRef]
- Bass, C.; Nauen, R. The molecular mechanisms of insecticide resistance in aphid crop pests. Insect Biochem. Mol. Biol. 2023, 156, 103937. [Google Scholar] [CrossRef]
- Ma, C.-S.; Zhang, W.; Peng, Y.; Zhao, F.; Chang, X.Q.; Xing, K.; Zhu, L.; Ma, G.; Yang, H.P.; Rudolf, V.H. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nat. Commun. 2021, 12, 5351. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Fan, R.; Naz, H.; Bamisile, B.S.; Hafeez, M.; Ghani, M.I.; Wei, Y.; Xu, Y.; Chen, X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front. Physiol. 2023, 13, 1112278. [Google Scholar] [CrossRef]
- Samways, M.J.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A.; et al. Solutions for humanity on how to conserve insects. Biol. Conserv. 2020, 242, 108427. [Google Scholar] [CrossRef]
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. USA 2021, 118, e2002543117. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef]
- Vogel, G. Where have all the insects gone? Science 2017, 356, 576–579. [Google Scholar] [CrossRef]
- Kunin, W.E. Robust evidence of declines in insect abundance and biodiversity. Nature 2019, 574, 641–642. [Google Scholar] [CrossRef]
Approach | Description | Strengths | Key Indicators |
---|---|---|---|
Long-term trait-based tracking and modelling | Monitors ecological functions such as pollination, decomposition, predation, or other functions, and physiological traits to predict vulnerability or adaptability | Forecasts responses to environmental stressors. Links biodiversity to ecosystem function. Standardized detection of insect trends over decades. | Trait distribution, functional diversity Shift in insect population dominance, biomass, and functional dominance. |
Environmental DNA analysis and metabarcoding | Detection of insect DNA from environmental matrices (mainly plant surfaces followed by soil and air). High-throughput sequencing of mixed insect or environmental samples. | Non-invasive, high taxonomic resolution; detects cryptic species. | Presence/absence, richness, detection probability, taxonomic diversity indices. |
Remote sensing | Spatial mapping of habitat changes, fragmentation, or land-use intensity. | Broad spatial coverage, real-time monitoring, links habitat dynamics to insect trends. | Sound frequency, wing beat harmonics, melanization, and flight orientation, automated. |
Integrating assessments with artificial intelligence | Generating forecasts in population dynamics. Identification of species. | Bypasses tedious work loads, increases feasibility of wide range assessments. Expanding applications. Limited human bias. | Traits and characteristics, species detection/absence. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukkar, D.; Falla-Angel, J.; Laval-Gilly, P. Insect Decline in the Anthropocene: Historical Parallels and Emerging Monitoring Tools. Insects 2025, 16, 841. https://doi.org/10.3390/insects16080841
Sukkar D, Falla-Angel J, Laval-Gilly P. Insect Decline in the Anthropocene: Historical Parallels and Emerging Monitoring Tools. Insects. 2025; 16(8):841. https://doi.org/10.3390/insects16080841
Chicago/Turabian StyleSukkar, Dani, Jairo Falla-Angel, and Philippe Laval-Gilly. 2025. "Insect Decline in the Anthropocene: Historical Parallels and Emerging Monitoring Tools" Insects 16, no. 8: 841. https://doi.org/10.3390/insects16080841
APA StyleSukkar, D., Falla-Angel, J., & Laval-Gilly, P. (2025). Insect Decline in the Anthropocene: Historical Parallels and Emerging Monitoring Tools. Insects, 16(8), 841. https://doi.org/10.3390/insects16080841