Context-Dependent Anti-Predator Behavior in Nymphs of the Invasive Spotted Lanternfly (Lycorma delicatula): Effects of Development, Microhabitat, and Social Environment
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Multinomial Regression Results
3.1.1. Location on Plant and Developmental Effects
3.1.2. Host Plant Effects
3.1.3. Group Size Effects
3.2. Predicted Probabilities Across Conditions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kikuchi, D.W.; Allen, W.L.; Arbuckle, K.; Aubier, T.G.; Briolat, E.S.; Burdfield-Steel, E.R.; Cheney, K.L.; Dankova, K.; Elias, M.; Hamalainen, L.; et al. The evolution and ecology of multiple antipredator defences. J. Evol. Biol. 2023, 36, 975–991. [Google Scholar] [CrossRef]
- Sugiura, S. Predators as drivers of insect defenses. Entomol. Sci. 2020, 23, 316–337. [Google Scholar] [CrossRef]
- Exnerova, A.; Kang, C.; Rowland, H.M.; Kikuchi, D.W. Evolution of multiple prey defences: From predator cognition to community ecology. J. Evol. Biol. 2023, 36, 961–966. [Google Scholar] [CrossRef]
- Ramirez, R.A.; Crowder, D.W.; Snyder, G.B.; Strand, M.R.; Snyder, W.E. Antipredator behavior of Colorado potato beetle larvae differs by instar and attacking predator. Biol. Control 2010, 53, 230–237. [Google Scholar] [CrossRef]
- Creer, D.A. Correlations between Ontogenetic Change in Color Pattern and Antipredator Behavior in the Racer, Coluber constrictor. Ethology 2005, 111, 287–300. [Google Scholar] [CrossRef]
- Grant, J.B. Ontogenetic colour change and the evolution of aposematism: A case study in panic moth caterpillars. J. Anim. Ecol. 2007, 76, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Bernal, X.E.; Stanley Rand, A.; Ryan, M.J. Sexual differences in the behavioral response of túngara frogs, Physalaemus pustulosus, to cues associated with increased predation risk. Ethology 2007, 113, 755–763. [Google Scholar] [CrossRef]
- Kohler, S.L.; McPeek, M.A. Predation risk and the foraging behavior of competing stream insects. Ecology 1989, 70, 1811–1825. [Google Scholar] [CrossRef]
- Matsubara, S.; Sugiura, S. Host plant architecture affects the costs of dropping behaviour in Phaedon brassicae (Coleoptera: Chrysomelidae). Appl. Entomol. Zool. 2018, 53, 501–508. [Google Scholar] [CrossRef]
- Ward, A.J.; Herbert-Read, J.E.; Sumpter, D.J.; Krause, J. Fast and accurate decisions through collective vigilance in fish shoals. Proc. Natl. Acad. Sci. USA 2011, 108, 2312–2315. [Google Scholar] [CrossRef]
- Palmer, M.S.; Packer, C. Reactive anti-predator behavioral strategy shaped by predator characteristics. PLoS ONE 2021, 16, e0256147. [Google Scholar] [CrossRef]
- Ioannou, C.C.; Krause, J. Interactions between background matching and motion during visual detection can explain why cryptic animals keep still. Biol. Lett. 2009, 5, 191–193. [Google Scholar] [CrossRef]
- Blanchette, A.; Becza, N.; Saporito, R.A. Escape behaviour of aposematic (Oophaga pumilio) and cryptic (Craugastor sp.) frogs in response to simulated predator approach. J. Trop. Ecol. 2017, 33, 165–169. [Google Scholar] [CrossRef]
- Poulton, E.B. The colours of animals: Their meaning and use. In Science and Visual Culture in Great Britain in the Long Nineteenth Century; Routledge: Abingdon, UK, 1890; pp. 405–409. [Google Scholar]
- Mappes, J.; Marples, N.; Endler, J.A. The complex business of survival by aposematism. Trends Ecol. Evol. 2005, 20, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Pröhl, H.; Ostrowski, T. Behavioural elements reflect phenotypic colour divergence in a poison frog. Evol. Ecol. 2011, 25, 993–1015. [Google Scholar] [CrossRef]
- Hatle, J.; Whitman, D.; Ananthakrishnan, T. Sluggish movement of conspicuous insects as a defense mechanism against motion-oriented predators. In Insect and Plant Defense Dynamics; Science Publishers: Enfield, NH, USA, 2001; pp. 209–228. [Google Scholar]
- Hatle, J.D.; Salazar, B.A.; Whitman, D.W. Survival advantage of sluggish individuals in aggregations of aposematic prey, during encounters with ambush predators. Evol. Ecol. 2002, 16, 415–431. [Google Scholar] [CrossRef]
- Speed, M.P.; Brockhurst, M.A.; Ruxton, G.D. The dual benefits of aposematism: Predator avoidance and enhanced resource collection. Evolution 2010, 64, 1622–1633. [Google Scholar] [CrossRef]
- Barringer, L.; Ciafré, C.M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 2020, 49, 999–1011. [Google Scholar] [CrossRef]
- Urban, J.M.; Leach, H. Biology and Management of the Spotted Lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), in the United States. Annu. Rev. Entomol. 2023, 68, 151–167. [Google Scholar] [CrossRef]
- Dara, S.K.; Barringer, L.; Arthurs, S.P. Lycorma delicatula (Hemiptera: Fulgoridae): A new invasive pest in the United States. J. Integr. Pest. Manag. 2015, 6, 20. [Google Scholar] [CrossRef]
- Liu, H. Oviposition selection in spotted lanternfly: Impact of habitat and substrate on egg mass size and hatchability. Front. Insect Sci. 2022, 2, 932433. [Google Scholar] [CrossRef]
- Liu, H. Seasonal development, cumulative growing degree-days, and population density of spotted lanternfly (Hemiptera: Fulgoridae) on selected hosts and substrates. Environ. Entomol. 2020, 49, 1171–1184. [Google Scholar] [CrossRef]
- Dechaine, A.C.; Sutphin, M.; Leskey, T.C.; Salom, S.M.; Kuhar, T.P.; Pfeiffer, D.G. Phenology of lycorma delicatula (Hemiptera: Fulgoridae) in Virginia, USA. Environ. Entomol. 2021, 50, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.E.; Hermann, S.; Hoover, K. Predation of spotted lanternfly (Lycorma delicatula) by generalist arthropod predators in North America. Arthropod-Plant Interact. 2025, 19, 31. [Google Scholar] [CrossRef]
- Xue, G.; Yuan, S. Separation and preparation of indole alkaloids in Lycorma delicatula White. by HPLC. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Medica 1996, 21, 554–555, 576. [Google Scholar]
- Kang, C.; Moon, H.; Sherratt, T.N.; Lee, S.-I.; Jablonski, P.G. Multiple lines of anti-predator defence in the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Biol. J. Linn. Soc. 2016, 120, 115–124. [Google Scholar] [CrossRef]
- Kang, C.-K.; Lee, S.-I.; Jablonski, P.G. Effect of sex and bright coloration on survival and predator-induced wing damage in an aposematic lantern fly with startle display. Ecol. Entomol. 2011, 36, 709–716. [Google Scholar] [CrossRef]
- Kane, S.A.; Bien, T.; Contreras-Orendain, L.; Ochs, M.F.; Tonia Hsieh, S. Many ways to land upright: Novel righting strategies allow spotted lanternfly nymphs to land on diverse substrates. J. R. Soc. Interface 2021, 18, 20210367. [Google Scholar] [CrossRef]
- Li, C.; Xu, A.J.; Beery, E.; Hsieh, S.T.; Kane, S.A. Putting a new spin on insect jumping performance using 3D modeling and computer simulations of spotted lanternfly nymphs. J. Exp. Biol. 2023, 226, jeb246340. [Google Scholar] [CrossRef]
- Elsensohn, J.E.; Nixon, L.J.; Urban, J.; Jones, S.K.; Leskey, T.C. Survival and development of Lycorma delicatula (Hemiptera: Fulgoridae) on common secondary host plants differ by life stage under controlled conditions. Front. Insect Sci. 2023, 3, 1134070. [Google Scholar] [CrossRef]
- Murman, K.; Setliff, G.P.; Pugh, C.V.; Toolan, M.J.; Canlas, I.; Cannon, S.; Abreu, L.; Fetchen, M.; Zhang, L.; Warden, M.L. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Environ. Entomol. 2020, 49, 1270–1281. [Google Scholar] [CrossRef]
- Song, S.; Kim, S.; Kwon, S.W.; Lee, S.I.; Jablonski, P.G. Defense sequestration associated with narrowing of diet and ontogenetic change to aposematic colours in the spotted lanternfly. Sci. Rep. 2018, 8, 16831. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.E. Effects of Toxin Sequestration in Spotted Lanternfly (Lycorma Delicatula) on Predator-Prey Interactions in North America; The Pennsylvania State University: University Park, PA, USA, 2024. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Taylor & Francis: Abingdon, UK, 1989. [Google Scholar]
- Agresti, A. Categorical Data Analysis; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 2003, 19, 716–723. [Google Scholar] [CrossRef]
- Sperandei, S. Understanding logistic regression analysis. Biochem. Medica 2014, 24, 12–18. [Google Scholar] [CrossRef]
- Evans, D.A.; Stempel, A.V.; Vale, R.; Branco, T. Cognitive Control of Escape Behaviour. Trends Cogn. Sci. 2019, 23, 334–348. [Google Scholar] [CrossRef]
- Schulte, J.; Losos, J.; Cruz, F.; Núñez, H. The relationship between morphology, escape behaviour and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae*: Liolaemini). J. Evol. Biol. 2004, 17, 408–420. [Google Scholar] [CrossRef]
- Nalam, V.J.; Han, J.; Pitt, W.J.; Acharya, S.R.; Nachappa, P. Location, location, location: Feeding site affects aphid performance by altering access and quality of nutrients. PLoS ONE 2021, 16, e0245380. [Google Scholar] [CrossRef]
- Liden, W.H.; Phillips, M.L.; Herberholz, J. Neural control of behavioural choice in juvenile crayfish. Proc. R. Soc. B Biol. Sci. 2010, 277, 3493–3500. [Google Scholar] [CrossRef]
- Wink, M. Functions of Plant Secondary Metabolites and Their Exploitation in Biotechnology; Sheffield Academic Press: Sheffield, UK, 1999. [Google Scholar]
- Opitz, S.E.; Müller, C. Plant chemistry and insect sequestration. Chemoecology 2009, 19, 117–154. [Google Scholar] [CrossRef]
- Domenici, P.; Batty, R.S. Escape behaviour of solitary herring (Clupea harengus) and comparisons with schooling individuals. Mar. Biol. 1997, 128, 29–38. [Google Scholar] [CrossRef]
- Bien, T.; Alexander, B.H.; White, E.; Hsieh, S.T.; Kane, S.A. Sizing up spotted lanternfly nymphs for instar determination and growth allometry. PLoS ONE 2023, 18, e0265707. [Google Scholar] [CrossRef]
- Lehtonen, J.; Jaatinen, K. Safety in numbers: The dilution effect and other drivers of group life in the face of danger. Behav. Ecol. Sociobiol. 2016, 70, 449–458. [Google Scholar] [CrossRef]
- Hamilton, W.D. Geometry for the selfish herd. J. Theor. Biol. 1971, 31, 295–311. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Wilgenburg, E.; Aung, C.; Caputo, J.N. Context-Dependent Anti-Predator Behavior in Nymphs of the Invasive Spotted Lanternfly (Lycorma delicatula): Effects of Development, Microhabitat, and Social Environment. Insects 2025, 16, 815. https://doi.org/10.3390/insects16080815
van Wilgenburg E, Aung C, Caputo JN. Context-Dependent Anti-Predator Behavior in Nymphs of the Invasive Spotted Lanternfly (Lycorma delicatula): Effects of Development, Microhabitat, and Social Environment. Insects. 2025; 16(8):815. https://doi.org/10.3390/insects16080815
Chicago/Turabian Stylevan Wilgenburg, Ellen, Crystal Aung, and Julia N. Caputo. 2025. "Context-Dependent Anti-Predator Behavior in Nymphs of the Invasive Spotted Lanternfly (Lycorma delicatula): Effects of Development, Microhabitat, and Social Environment" Insects 16, no. 8: 815. https://doi.org/10.3390/insects16080815
APA Stylevan Wilgenburg, E., Aung, C., & Caputo, J. N. (2025). Context-Dependent Anti-Predator Behavior in Nymphs of the Invasive Spotted Lanternfly (Lycorma delicatula): Effects of Development, Microhabitat, and Social Environment. Insects, 16(8), 815. https://doi.org/10.3390/insects16080815