Host Plant Dependence of the Symbiotic Microbiome of the Gall-Inducing Wasp Trichagalma acutissimae
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Processing
2.2. Sequencing and Bioinformatics Analysis
2.3. Data Analysis
3. Results
3.1. Sequencing Data Quality Assessment
3.2. Composition and Structure of Symbiotic Bacteria Communities of T. acutissimae
3.3. Differences in Symbiotic Microbial Communities of T. acutissimae
4. Discussion
4.1. Host-Driven Microbial Diversity Patterns of T. acutissimae
4.2. Phylum-Level Adaptations of T. acutissimae to Host Chemistry
4.3. Genus-Level Functional Specialization of T. acutissimae
4.4. Result Supporting the Hypothesis of “Functional Redundancy”
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Sun, S.; Yang, X.; Cheng, J.; Wei, H.; Li, Z.; Michaud, J.P.; Liu, X. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 2020, 11, 1366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, H.; Tu, C.; Han, R.; Luo, J.; Xu, L. Enhanced capacity of a leaf beetle to combat dual stress from entomopathogens and herbicides mediated by associated microbiota. Integr. Zool. 2024, 19, 1092–1104. [Google Scholar] [CrossRef]
- Philipp, E.; Moran, N.A. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar]
- Bai, S.; Yao, Z.; Raza, M.F.; Cai, Z.; Zhang, H. Regulatory mechanisms of microbial homeostasis in insect gut. Insect Sci. 2021, 28, 286–301. [Google Scholar] [CrossRef]
- Sun, H.; Li, H.; Zhang, X.; Liu, Y.; Chen, H.; Zheng, L.; Zhai, Y.; Zheng, H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr. Zool. 2023, 18, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.K.; Chatterjee, S.; Sharma, S.; Mazumder, P.B.; Vairale, M.G.; Raju, P.S. Insect gut bacteria and their potential application in degradation of lignocellulosic biomass: A review. In Bioremediation: Applications for Environmental Protection and Management; Springer: Singapore, 2018; pp. 277–299. [Google Scholar]
- Storelli, G.; Defaye, A.; Erkosar, B.; Hols, P.; Leulier, F. Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-Dependent nutrient sensing. Cell Metab. 2011, 14, 403–414. [Google Scholar] [CrossRef]
- Erkosar, B.; Kolly, S.; van der Meer, J.R.; Kawecki, T.J.; Lemaitre, B. Adaptation to chronic nutritional stress leads to reduced sependence on microbiota in drosophila melanogaster. Mbio 2017, 8, e02199-17. [Google Scholar] [CrossRef]
- Bing, X.L.; Gerlach, J.; Loeb, G.; Buchon, N. Nutrient-Dependent impact of microbes on Drosophila suzukii development. Mbio 2018, 9, e02199-17. [Google Scholar] [CrossRef]
- Yun, J.-H.; Roh, S.W.; Whon, T.W.; Jung, M.-J.; Kim, M.-S.; Park, D.-S.; Yoon, C.; Nam, Y.-D.; Kim, Y.-J.; Choi, J.-H.; et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 2014, 80, 5254–5264. [Google Scholar] [CrossRef]
- Iltis, C.; Tougeron, K.; Hance, T.; Louâpre, P.; Foray, V. A perspective on insect–microbe holobionts facing thermal fluctuations in a climate-change context. Environ. Microbiol. 2021, 24, 18–29. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Li, D.; Chen, Z.; Luo, Y.; Zhou, J.; Luo, B.; Yan, R.; Liu, H.; Wang, L. Advancements in the impact of insect gut microbiota on host feeding behaviors. Genes 2024, 15, 1320. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, G.; Zhang, W.; Xu, L. Adaptation strategies of insects to their environment by collecting and utilizing external microorganisms. Integr. Zool. 2025, 20, 208–212. [Google Scholar] [CrossRef]
- Lyte, M. Microbial endocrinology and the microbiota-gut-brain axis. AEMB 2014, 817, 3–24. [Google Scholar]
- Yang, Y.; Liu, X.; Xu, H.; Liu, Y.; Lu, Z. Effects of host plant and insect generation on shaping of the gut microbiota in the rice leaffolder, Cnaphalocrocis medinalis. Front. Microbiol. 2022, 13, 824224. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.; Guo, W.; Chen, S.; Guo, M.; Qiu, B.; Yang, C.; Lian, T.; Pan, H. Host plants influence the composition of the gut bacteria in Henosepilachna vigintioctopunctata. PLoS ONE 2019, 14, e0224213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shu, J.; Xue, H.; Zhang, W.; Zhang, Y.; Liu, Y.; Fang, L.; Wang, Y.; Wang, H.; Heck, M. The gut microbiota in Camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems 2020, 5, 692–719. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Li, Y.-H.; Sun, Z.-X.; Du, E.-W.; Lu, Z.-H.; Li, H.; Gui, F.-R. Effects of host plants on bacterial community structure in larvae midgut of Spodoptera frugiperda. Insects 2022, 13, 373. [Google Scholar] [CrossRef]
- Jing, T.-Z.; Qi, F.-H.; Wang, Z.-Y. Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome 2020, 8, 38. [Google Scholar] [CrossRef]
- Adair, K.L.; Douglas, A.E. Making a microbiome: The many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 2017, 35, 23–29. [Google Scholar] [CrossRef]
- Akami, M.; Njintang, N.Y.; Gbaye, O.A.; Andongma, A.A.; Rashid, M.A.; Niu, C.-Y.; Nukenine, E.N. Gut bacteria of the cowpea beetle mediate its resistance to dichlorvos and susceptibility to Lippia adoensis essential oil. Sci. Rep. 2019, 9, 6435. [Google Scholar] [CrossRef]
- Frago, E.; Dicke, M.; Godfray, H.C.J. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 2012, 27, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.K.; Moran, N.A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 2014, 23, 1473–1496. [Google Scholar] [CrossRef] [PubMed]
- Akami, M.; Andongma, A.A.; Zhengzhong, C.; Nan, J.; Khaeso, K.; Jurkevitch, E.; Niu, C.-Y.; Yuval, B. Intestinal bacteria modulate the foraging behavior of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). PLoS ONE 2019, 14, e0210109. [Google Scholar] [CrossRef]
- Lv, D.; Liu, X.; Dong, Y.; Yan, Z.; Zhang, X.; Wang, P.; Yuan, X.; Li, Y. Comparison of gut bacterial communities of fall armyworm (Spodoptera frugiperda) reared on different host plants. Int. J. Mol. Sci. 2021, 22, 11266. [Google Scholar] [CrossRef]
- Wang, H.; Jin, L.; Zhang, H. Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. J. Appl. Microbiol. 2011, 110, 1390–1401. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Kikuchi, Y. Impact of the insect gut microbiota on ecology, evolution, and industry. Curr. Opin. Insect Sci. 2020, 41, 33–39. [Google Scholar] [CrossRef]
- Yang, Z.-W.; Luo, J.-Y.; Men, Y.; Liu, Z.-H.; Zheng, Z.-K.; Wang, Y.-H.; Xie, Q. Different roles of host and habitat in determining the microbial communities of plant-feeding true bugs. Microbiome 2023, 11, 244. [Google Scholar] [CrossRef]
- Guo, C.; Peng, X.; Zheng, X.; Wang, X.; Wang, R.; Huang, Z.; Yang, Z. Comparison of bacterial diversity and abundance between sexes of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) from China. PeerJ 2020, 8, e8411. [Google Scholar]
- Xue, S.; Zhang, Y.; Gao, S.; Lu, S.; Wang, J.; Zhang, K. Mitochondrial genome of Trichagalma acutissimae (Hymenoptera: Cynipoidea: Cynipidae) and phylogenetic analysis. Mitochondrial DNA Part B 2020, 5, 1073–1074. [Google Scholar] [CrossRef]
- Michell, C.T.; Nyman, T. Microbiomes of willow-galling sawflies: Effects of host plant, gall type, and phylogeny on community structure and function. Genome 2021, 64, 615–626. [Google Scholar] [CrossRef]
- Rinke, C.; Schwientek, P.; Sczyrba, A.; Ivanova, N.N.; Anderson, I.J.; Cheng, J.-F.; Darling, A.; Malfatti, S.; Swan, B.K.; Gies, E.A. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013, 499, 431–437. [Google Scholar] [CrossRef]
- Shi, W.; Syrenne, R.; Sun, J.Z.; Yuan, J.S. Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age. Insect Sci. 2010, 17, 199–219. [Google Scholar] [CrossRef]
- Yang, Z.-W.; Men, Y.; Zhang, J.; Liu, Z.-H.; Luo, J.-Y.; Wang, Y.-H.; Li, W.-J.; Xie, Q. Evaluation of sample preservation approaches for better insect microbiome research according to next-generation and third-generation sequencing. Microb. Ecol. 2021, 82, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Fong, J.J. Strong agricultural management effects on soil microbial community in a non-experimental agroecosystem. Appl. Soil Ecol. 2021, 165, 103970. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Z.; Yu, J.; Li, Z.; Liu, X.; Xu, H. Comparison of gut bacterial communities and their associations with host diets in four fruit borers. Pest Manag. Sci. 2020, 76, 1353–1362. [Google Scholar] [CrossRef]
- Jones, A.G.; Mason, C.J.; Felton, G.W.; Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 2019, 9, 2792. [Google Scholar] [CrossRef]
- Sugio, A.; Dubreuil, G.; Giron, D.; Simon, J.-C. Plant–insect interactions under bacterial influence: Ecological implications and underlying mechanisms. J. Exp. Bot. 2015, 66, 467–478. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hayatsu, M.; Hosokawa, T.; Nagayama, A.; Tago, K.; Fukatsu, T. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 8618–8622. [Google Scholar] [CrossRef]
- Li, G.; Sun, J.; Meng, Y.; Yang, C.; Chen, Z.; Wu, Y.; Tian, L.; Song, F.; Cai, W.; Zhang, X. The impact of environmental habitats and diets on the gut microbiota diversity of true bugs (Hemiptera: Heteroptera). Biology 2022, 11, 1039. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Wang, Y.; Bi, S.; Hu, B.; Hu, F.; Xu, L. Comparison of gut microbial community between Bt-Resistant and susceptible strains of Ostrinia furnacalis. Agronomy 2023, 13, 1923. [Google Scholar] [CrossRef]
- Bueren, E.K.; Weinheimer, A.R.; Aylward, F.O.; Hsu, B.B.; Haak, D.C.; Belden, L.K. Characterization of prophages in bacterial genomes from the honey bee (Apis mellifera) gut microbiome. PeerJ 2023, 11, e15383. [Google Scholar] [CrossRef]
- Leite-Mondin, M.; Dilegge, M.J.; Manter, D.K.; Weir, T.L.; Vivanco, J.M. The gut microbiota composition of Trichoplusia ni is altered by diet and may infuence its polyphagous behavior. Sci. Rep. 2021, 11, 5786. [Google Scholar] [CrossRef]
- Shozo, T. Discrimination of hybrids between Quercus variabilis and Q. acutissima by using stellate hairs, and analysis of the hybridization zone in the Chubu District of central Japan. J. Phytogeogr. Taxon. 2005, 53, 145–152. [Google Scholar]
- Coenye, T.; Vandamme, P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 2003, 5, 719–729. [Google Scholar] [CrossRef]
- Behar, A.; Yuval, B.; Jurkevitch, E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J. Insect Physiol. 2008, 54, 1377–1383. [Google Scholar] [CrossRef]
- Schloss, P.D.; Delalibera, I., Jr.; Handelsman, J.; Raffa, K.F. Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ. Entomol. 2006, 35, 625–629. [Google Scholar] [CrossRef]
- Guo, S.-h.; Yi, X.-f. Gut bacterial composition of two Curculio species and their adaptation to high-tannin food. Acta Microbiol. Sin. 2019, 59, 657–667. [Google Scholar]
- Kou, R.-M.; Li, Y.; Dou, F.-Y.; Zhou, Z.-Y.; Huang, D.-Y. Diversity and differences of gut bacterial communities in different instar larvae and diapause prepupae of Colletes gigas (Hymenoptera: Colletidae). Acta Entomol. Sin. 2021, 64, 682–693. [Google Scholar]
- Ahn, J.-H.; Hong, I.-P.; Bok, J.-I.; Kim, B.-Y.; Song, J.; Weon, H.-Y. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 2012, 50, 735–745. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.; Zhang, Z.; Huang, Z.; Fang, D.; Zheng, X.; Yang, Z.; Lu, M. Isolation, identification, and analysis of potential functions of culturable bacteria associated with an invasive gall wasp, Leptocybe invasa. Microb. Ecol. 2021, 83, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Sun, X. Studies on the interrelationship among Oligonychus ununguis, host plants and Amblyseius finlandicus. III. Relationship between chemical component of host plants and development of Oligonychus ununguis. Scient. Silvae Sin. 2002, 38, 105–110. [Google Scholar]
- Jander, G.; Rahme, L.G.; Ausubel, F.M. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 2000, 182, 3843–3845. [Google Scholar] [CrossRef]
- Tanaka, Y.; Okada, K.; Asami, T.; Suzuki, Y. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge. Biosci. Biotechnol. Biochem. 2013, 77, 1942–1948. [Google Scholar] [CrossRef] [PubMed]
- Takei, M.; Yoshida, S.; Kawai, T.; Hasegawa, M.; Suzuki, Y. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees. J. Insect Physiol. 2015, 72, 43–51. [Google Scholar] [CrossRef]
- Kai, S.; Kumashiro, S.; Adachi, S.; Suzuki, Y.; Shiomi, Y.; Matsunaga, K.; Gyoutoku, N.; Asami, T.; Tokuda, M. Life history of Stenopsylla nigricornis (Hemiptera: Psylloidea: Triozidae) and phytohormones involved in its gall induction. Arthropod-Plant Interact. 2017, 11, 99–108. [Google Scholar] [CrossRef]
- Yang, X.; Hui, Y.; Zhu, D.; Zeng, Y.; Zhao, L.; Yang, X.; Wang, Y. The diversity of bacteria associated with the invasive gall wasp Dryocosmus kuriphilus, its galls and a specialist parasitoid on chestnuts. Insects 2022, 13, 86. [Google Scholar] [CrossRef]
- Kwong, W.K.; Moran, N.A. Apibacter adventoris gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from honey bees. Int. J. Syst. Evol. Microbiol. 2016, 66, 1323–1329. [Google Scholar] [CrossRef]
- Kageyama, D.; Narita, S.; Watanabe, M. Insect sex determination manipulated by their endosymbionts: Incidences, mechanisms and implications. Insects 2012, 3, 161–199. [Google Scholar] [CrossRef]
- Himler, A.G.; Adachi-Hagimori, T.; Bergen, J.E.; Kozuch, A.; Kelly, S.E.; Tabashnik, B.E.; Chiel, E.; Duckworth, V.E.; Dennehy, T.J.; Zchori-Fein, E. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 2011, 332, 254–256. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Zhang, K.; Wu, S. Factors influencing the temporal and spatial population dynamics of Trichagalma cutissimae (Hymenoptera: Cynipidae). J. Appl. Entomol. 2017, 54, 515–521. [Google Scholar]
- Boivin, T.; Henri, H.; Vavre, F.; Gidoin, C.; Veber, P.; Candau, J.N.; Magnoux, E.; Roques, A.; Auger-Rozenberg, M.A. Epidemiology of asexuality induced by the endosymbiotic Wolbachia across phytophagous wasp species: Host plant specialization matters. Mol. Ecol. 2014, 23, 2362–2375. [Google Scholar] [CrossRef]
- Zhao, G.-Z.; Zhu, T.-R.; Zeng, Y.; Zhu, D.-H. Wolbachia infection in six species of gall wasps and their parasitoids. J. Asia Pac. Entomol. 2021, 24, 21–25. [Google Scholar] [CrossRef]
- Taprogge, M.; Grath, S. Modelling suggests Wolbachia-induced cytoplasmic incompatibility in oak gall wasps with cyclical parthenogenesis. J. Evol. Biol. 2024, 37, 926–934. [Google Scholar] [CrossRef]
- Watts, J. Wolbachia Infection in Gall Associated Insect Communities in Illinois and Indiana. Master’s Thesis, Eastern Illinois University, Charleston, IL, USA, 2023. [Google Scholar]
- Pijls, J.W.; van Steenbergen, H.J.; van Alphen, J.J. Asexuality cured: The relations and differences between sexual and asexual Apoanagyrus diversicornis. Heredity 1996, 76, 506–513. [Google Scholar] [CrossRef]
- Wybouw, N.; Dermauw, W.; Tirry, L.; Stevens, C.; Grbić, M.; Feyereisen, R.; Van Leeuwen, T. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife 2014, 3, e02365. [Google Scholar] [CrossRef]
- Sun, B.; Xiao, J.; He, S.; Liu, L.; Murphy, R.; Huang, D. Multiple ancient horizontal gene transfers and duplications in Lepidopteran species. Insect Mol. Biol. 2013, 22, 72–87. [Google Scholar] [CrossRef]
- Louca, S.; Polz, M.F.; Mazel, F.; Albright, M.B.; Huber, J.A.; O’Connor, M.I.; Ackermann, M.; Hahn, A.S.; Srivastava, D.S.; Crowe, S.A. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2018, 2, 936–943. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Y.; Li, R.; Li, Y.; Cha, M.; Yi, X. Host Plant Dependence of the Symbiotic Microbiome of the Gall-Inducing Wasp Trichagalma acutissimae. Insects 2025, 16, 652. https://doi.org/10.3390/insects16070652
Wang Y, Zhang Y, Li R, Li Y, Cha M, Yi X. Host Plant Dependence of the Symbiotic Microbiome of the Gall-Inducing Wasp Trichagalma acutissimae. Insects. 2025; 16(7):652. https://doi.org/10.3390/insects16070652
Chicago/Turabian StyleWang, Yingnan, Yuanchen Zhang, Ran Li, Yujian Li, Muha Cha, and Xianfeng Yi. 2025. "Host Plant Dependence of the Symbiotic Microbiome of the Gall-Inducing Wasp Trichagalma acutissimae" Insects 16, no. 7: 652. https://doi.org/10.3390/insects16070652
APA StyleWang, Y., Zhang, Y., Li, R., Li, Y., Cha, M., & Yi, X. (2025). Host Plant Dependence of the Symbiotic Microbiome of the Gall-Inducing Wasp Trichagalma acutissimae. Insects, 16(7), 652. https://doi.org/10.3390/insects16070652