Spodoptera frugiperda Uses Specific Volatiles to Assess Maize Development for Optimal Offspring Survival
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Experimental Instruments
2.3. Collection of Volatiles from Maize
2.4. Behavioral Bioassay of S. frugiperda
2.5. Oviposition Selectivity of S. frugiperda Females
2.6. Growth Performance of S. frugiperda Colonized on Maize at Different Growth Stages
2.7. GC-EAD and GC-MS Analysis of Volatile Compounds from Maize at Key Growth Stages
2.8. SSR Validation of GC-EAD Results
2.9. Olfactory Responses of Female S. frugiperda to Electrophysiologically Active Components
2.10. Data Analysis
3. Results
3.1. Behavioral Bioassay of S. frugiperda
3.2. Oviposition Selectivity of Female S. frugiperda
3.3. Effects of Feeding Maize Leaves at Different Growth Stages on the Growth, Development, and Reproduction of S. frugiperda
3.4. GC-EAD and GC-MS Analysis of Volatile Compounds from Maize at Key Growth Stages
3.5. SSR Validation in GC-EAD Results
3.6. Olfactory Response of Female Adults of S. frugiperda to Volatile Active Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sparks, A.N. A review of the biology of the fall armyworm. Fla. Entomol. 1979, 62, 82–87. [Google Scholar] [CrossRef]
- Sagar, G.C.; Aastha, B.; Laxman, K. An introduction of fall armyworm (Spodoptera frugiperda) with management strategies: A review paper. Nippon J. Environ. Sci. 2020, 1, 1010. [Google Scholar] [CrossRef]
- Nagoshi, R.N.; Goergen, G.; Koffi, D.; Agboka, K.; Adjevi, A.K.M.; Du Plessis, H.; Berg, J.V.D.; Tepa-Yotto, G.T.; Winsou, J.K.; Meagher, R.L.; et al. Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior. Sci. Rep. 2022, 12, 1941. [Google Scholar] [CrossRef]
- Maruthadurai, R.; Ramesh, R. Occurrence, damage pattern and biology of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on fodder crops and green amaranth in Goa, India. Phytoparasitica 2020, 48, 15–23. [Google Scholar] [CrossRef]
- He, L.; Wu, Q.; Gao, X.; Wu, K. Population life tables for the invasive fall armyworm, Spodoptera frugiperda fed on major oil crops planted in China. J. Integr. Agric. 2021, 20, 745–754. [Google Scholar] [CrossRef]
- Sun, X.X.; Hu, C.X.; Jia, H.R.; Wu, Q.L.; Shen, X.J.; Zhao, S.Y.; Jiang, Y.Y.; Wu, K.M. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. J. Integr. Agric. 2021, 20, 664–672. [Google Scholar] [CrossRef]
- Xiao, Y. Research on the invasive pest of fall armyworm (Spodoptera frugiperda) in China. J. Integr. Agric. 2021, 20, 633–636. [Google Scholar] [CrossRef]
- Wu, Q.L.; He, L.M.; Shen, X.J.; Jiang, Y.Y.; Liu, J.; Hu, G.; Wu, K.M. Estimation of the potential infestation area of newly-invaded fall armyworm Spodoptera frugiperda in the Yangtze River valley of China. Insects 2019, 10, 298. [Google Scholar] [CrossRef]
- Yang, X.L.; Liu, Y.C.; Luo, M.Z.; Li, Y.; Wang, W.H.; Wan, F.; Jiang, H. Spodoptera frugiperda (J.E. Smith) was first discovered in Jiangcheng County of Yunnan Province in southwestern China. Yunnan Agric. 2019, 1, 72. [Google Scholar]
- Cock, M.J.; Beseh, P.K.; Buddie, A.G.; Cafá, G.; Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. 2017, 7, 4103. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Liu, J.; Xie, M.C.; Li, Y.H.; Yang, J.J.; Zhang, M.L.; Qiu, K. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Prot. 2019, 45, 10–19. [Google Scholar]
- Juárez, M.L.; Murúa, M.G.; García, M.G.; Ontivero, M.; Vera, M.T.; Vilardi, J.C.; Groot, A.T.; Castagnaro, A.P.; Gastaminza, G.; Willink, E. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 2012, 105, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Dumas, P.; Legeai, F.; Lemaitre, C.; Scaon, E.; Orsucci, M.; Labadie, K.; Gimenez, S.; Clamens, A.-L.; Henri, H.; Vavre, F.; et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species? Genetica 2015, 143, 305–316. [Google Scholar] [CrossRef]
- Johnnie, V.D.B.; Hannalene, D.P. Chemical control and insecticide resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 2022, 115, 1761–1771. [Google Scholar]
- Moustafa, A.M.M.; Said, A.E.N.; Alfuhaid, A.N.; Elinin, F.M.A.A.; Mohamed, R.M.B.; Aioub, A.A.A. Monitoring and detection of insecticide resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae): Evidence for field-evolved resistance in Egypt. Insects 2024, 15, 705. [Google Scholar] [CrossRef]
- Yu, S.J.; Nguyen, S.N.; Abo-Elghar, G.E. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic. Biochem. Physiol. 2003, 77, 1–11. [Google Scholar] [CrossRef]
- Sosa, A.; Diaz, M.; Salvatore, A.I.A.; Bardon, A.; Borkosky, S.; Vera, N. Insecticidal effects of Vernonanthura nebularum against two economically important pest insects. Saudi J. Biol. Sci. 2019, 26, 881–889. [Google Scholar] [CrossRef]
- Tait, G.; Mermer, S.; Stockton, D.; Lee, J.; Avosani, S.; Abrieux, A.; Anfora, G.; Beers, E.; Biondi, A.; Burrack, H.; et al. Drosophila suzukii (Diptera: Drosophilidae): A decade of research towards a sustainable integrated pest management program. J. Econ. Entomol. 2021, 114, 1950–1974. [Google Scholar] [CrossRef]
- Saveer, A.M.; Hatano, E.; Wada-Katsumata, A.; Meagher, R.L.; Schal, C. Nonanal, a new fall armyworm sex pheromone component, significantly increases the efficacy of pheromone lures. Pest Manag. Sci. 2023, 79, 2831–2839. [Google Scholar] [CrossRef]
- Yactayo-Chang, J.P.; Mendoza, J.; Willms, S.D.; Rering, C.C.; Beck, J.J.; Block, A.K. Zea mays volatiles that influence oviposition and feeding behaviors of Spodoptera frugiperda. J. Chem. Ecol. 2021, 47, 799–809. [Google Scholar] [CrossRef]
- Wang, J.L.; Wei, J.Q.; Yi, T.; Li, Y.Y.; Xu, T.; Chen, L.; Xu, H.H. A green leaf volatile, (Z)-3-hexenyl acetate, mediates differential oviposition by Spodoptera frugiperda on maize and rice. BMC Biol. 2023, 21, 140. [Google Scholar] [CrossRef] [PubMed]
- Cardona, J.B.; Grover, S.; Bowman, M.J.; Busta, L.; Kundu, P.; Koch, K.G.; Sarath, G.; Sattler, S.E.; Louis, J. Sugars and cuticular waxes impact sugarcane aphid (Melanaphis sacchari) colonization on different developmental stages of sorghum. Plant Sci. 2023, 330, 111646. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhang, Y.P.; Huang, S.H.; Liu, W.L.; Su, X.N.; Pan, Z.P. Research on artificial rearing techniques of Spodoptera frugiperda in laboratory. J. Environ. Entomol. 2019, 41, 986–991. [Google Scholar]
- Hwang, S.; Liu, C.; Shen, T. Effects of plant nutrient availability and host plant species on the performance of two Pieris butterflies (Lepidoptera: Pieridae). Biochem. Syst. Ecol. 2008, 36, 505–513. [Google Scholar] [CrossRef]
- Dicke, M.; Baldwin, I.T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. Trends Plant Sci. 2010, 15, 167–175. [Google Scholar] [CrossRef]
- Xiu, C.; Pan, H.; Liu, B.; Luo, Z.; Williams, L.; Yang, Y.; Lu, Y. Perception of and behavioral responses to host plant volatiles for three Adelphocoris species. J. Chem. Ecol. 2019, 45, 779–788. [Google Scholar] [CrossRef]
- Chen, C.; Xu, T.; Li, S.; Xue, M.; Deng, Y.; Fan, B.; Yang, C.; Hao, D. The key phytochemical cue camphor is a promising lure for traps monitoring the new monophagous camphor tree borer Pagiophloeus tsushimanus (Coleoptera: Curculionidae). J. Chem. Ecol. 2024, 50, 1023–1035. [Google Scholar] [CrossRef]
- Wang, J.J.; Ma, C.; Tian, Z.Y.; Zhou, Y.P.; Yang, J.F.; Gao, X.Y.; Chen, H.S.; Ma, W.H.; Zhou, Z.S. Electroantennographic and Behavioral Responses of the Melon fly, Zeugodacus cucurbitae (Coquillett), to Volatile Compounds of Ridge Gourd, Luffa acutangular L. J. Chem. Ecol. 2024, 50, 1036–1045. [Google Scholar] [CrossRef]
- Pan, H.; Lu, Y.; Xiu, C.; Geng, H.; Cai, X.; Sun, X.; Zhang, Y.; Iii, L.W.; Wyckhuys, K.A.G.; Wu, K. Volatile fragrances associated with flowers mediate host plant alternation of a polyphagous mirid bug. Sci. Rep. 2015, 5, 14805. [Google Scholar] [CrossRef]
- Dong, Y.F.; Chen, D.P.; Zhou, S.Y.; Mao, Z.Y.; Fan, J.T. Identification of attractants from three host plants and how to improve attractiveness of plant volatiles for Monochamus saltuarius. Plants 2024, 13, 1732. [Google Scholar] [CrossRef]
- Albarenque, S.; Basso, B.; Melchiori, R. Emergence delay effect on maize (Zea mays L.) nitrogen uptake. Agron. J. 2024, 116, 2872–2884. [Google Scholar] [CrossRef]
- Di Mauro, G.; Rotili, D.H.; Parra, G.; Gambin, B.L.; Costanzi, J.O.N.; Micheloud, J.E.; Martini, G.; Paolini, M.I.A.; Schwalbert, R.I. Revisiting plant density by environment interaction in maize across contrasting sowing dates. Field Crops Res. 2025, 328, 109917. [Google Scholar] [CrossRef]
- Xie, J.; Mo, Q.Y.; Chen, L.N.; Zhu, Z.Y.; Liu, X.; Smagghe, G.; Ye, M.; Li, S.W. Identification and functional study of Fib-L, a major silk fibroin gene component in rice leaf folders. Insect Mol. Biol. 2025, 34, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Behmer, S.T. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 2009, 54, 165–187. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Liu, Y.; Chen, D.; Chen, F.; Fang, X.; Hong, G.; Wang, L.; Wang, J.; Chen, X. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat. Commun. 2017, 8, 13925. [Google Scholar] [CrossRef]
- Lin, H.; Yao, Y.J.; Sun, P.C.; Feng, L.D.; Wang, S.; Ren, Y.M.; Yu, X.; Xi, Z.; Liu, J. Haplotype-resolved genomes of two buckwheat crops provide insights into their contrasted rutin concentrations and reproductive systems. BMC Biol. 2023, 21, 87. [Google Scholar] [CrossRef]
- Ryu, W.H.; Yuk, J.H.; An, H.J.; Kim, D.; Song, H.; Oh, S. Comparison of secondary metabolite changes in Camellia sinensis leaves depending on the growth stage. Food Control 2017, 73, 916–921. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.; Ashkani, S.; Rahmat, A.; Juraimi, A.S.; Puteh, A.; Mohamed, M.T.M. Variation in secondary metabolite production as well as antioxidant and antibacterial activities of Zingiber zerumbet (L.) at different stages of growth. BMC Complement. Altern. Med. 2016, 16, 104. [Google Scholar] [CrossRef]
- Groot, A.T.; Cé, G.; Brownie, C.; Gould, F.; Schal, C. Male and female antennal responses in Heliothis virescens and H. subflexa to conspecific and heterospecific sex pheromone compounds. Environ. Entomol. 2005, 34, 256–263. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, T.; Wu, Q.; Liang, K.; Yu, G.; He, M.; Chen, D.; Su, X.; Zhang, Y.; Zhang, Z.; et al. Comparation of pheromone-binding proteins 1 and 2 of Spodoptera frugiperda in perceiving the three sex pheromone components Z9-14:Ac, Z7-12:Ac and Z11-16:Ac. Pestic. Biochem. Physiol. 2024, 206, 106183. [Google Scholar] [CrossRef]
- Bian, L.; Cai, X.; Luo, Z.; Li, Z.; Xin, Z.; Chen, Z. Design of an attractant for Empoasca onukii (Hemiptera: Cicadellidae) based on the volatile components of fresh tea leaves. J. Econ. Entomol. 2018, 111, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Tasin, M.; Larsson Herrera, S.; Knight, A.L.; Barros-Parada, W.; Fuentes Contreras, E.; Pertot, I. Volatiles of grape inoculated with microorganisms: Modulation of grapevine moth oviposition and field attraction. Microb. Ecol. 2018, 76, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, T.; Jiang, Y.; Chen, P.; Tang, J.; Wang, J.; Jin, D.; Guo, J. Research of synergistic substances on tobacco beetle [Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae)] adults attractants. Front. Chem. 2022, 10, 921113. [Google Scholar] [CrossRef]
- Liu, J.; Tallat, M.; Wang, G.; Li, G.; Zhang, H.; Wu, X.; Qiao, H.; Zhao, X.; Feng, H. The utility of visual and olfactory maize leaf cues in host finding by adult Spodoptera frugiperda (Lepidoptera: Noctuidae). Plants 2024, 13, 3300. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Xiu, C.; Lu, Y. A combination of olfactory and visual cues enhance the behavioral responses of Apolygus lucorum. J. Insect Behav. 2015, 28, 525–534. [Google Scholar] [CrossRef]
- Guera, O.G.M.; Castrejón-Ayala, F.; Robledo, N.; Jiménez-Pérez, A.; Sánchez-Rivera, G. Plant selection for the establishment of push–pull strategies for Zea mays—Spodoptera frugiperda pathosystem in Morelos, Mexico. Insects 2020, 11, 349. [Google Scholar] [CrossRef]
No. | Volatile Components | CAS No. | Relative Content (%) | |||
---|---|---|---|---|---|---|
SS | STS | FS | MS | |||
1 | p-xylene | 106-42-3 | 18.20 ± 1.04 a | 0.96 ± 0.28 b | 0.15 ± 0.08 b | 0.68 ± 0.27 b |
2 | (+)-camphor | 464-49-3 | 2.48 ± 0.93 a | 1.30 ± 0.06 a | 2.08 ± 0.44 a | 1.78 ± 0.25 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wan, P.; Zhu, Z.; Xu, D.; Cong, S.; Xu, M.; Yin, H. Spodoptera frugiperda Uses Specific Volatiles to Assess Maize Development for Optimal Offspring Survival. Insects 2025, 16, 592. https://doi.org/10.3390/insects16060592
Li H, Wan P, Zhu Z, Xu D, Cong S, Xu M, Yin H. Spodoptera frugiperda Uses Specific Volatiles to Assess Maize Development for Optimal Offspring Survival. Insects. 2025; 16(6):592. https://doi.org/10.3390/insects16060592
Chicago/Turabian StyleLi, Hanbing, Peng Wan, Zhihui Zhu, Dong Xu, Shengbo Cong, Min Xu, and Haichen Yin. 2025. "Spodoptera frugiperda Uses Specific Volatiles to Assess Maize Development for Optimal Offspring Survival" Insects 16, no. 6: 592. https://doi.org/10.3390/insects16060592
APA StyleLi, H., Wan, P., Zhu, Z., Xu, D., Cong, S., Xu, M., & Yin, H. (2025). Spodoptera frugiperda Uses Specific Volatiles to Assess Maize Development for Optimal Offspring Survival. Insects, 16(6), 592. https://doi.org/10.3390/insects16060592