Short-Term Evolutionary Features and Circadian Clock-Modulated Gene Expression Analysis of Piezo, nanchung, and αTubulin at 67C in a Romanian Population of Drosophila suzukii
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. D. suzukii Husbandry
2.2. Circadian Rhythms Experimentation
2.3. Incubator Design
2.4. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR) Reactions
2.5. Evolutionary Changes and Phylogenetic Analyses
2.6. Biostatistics
3. Results
3.1. Phylogenetic Analysis
3.2. Gene Expression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest. Manag. Sci. 2011, 67, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Kanzawa, T. Studies on Drosophila suzukii Mats. Rev. Appl. Entomol. 1939, 29, 622. [Google Scholar]
- Cini, A.; Ioriatti, C.; Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectology 2012, 65, 149–160. [Google Scholar]
- Asplen, M.K.; Anfora, G.; Biondi, A.; Choi, D.S.; Chu, D.; Daane, K.M.; Gibert, P.; Gutierrez, A.P.; Hoelmer, K.A.; Hutchison, W.D.; et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 2015, 88, 469–494. [Google Scholar] [CrossRef]
- Walsh, D.B.; Bolda, M.P.; Goodhue, R.E.; Dreves, A.J.; Lee, J.; Bruck, D.J.; Walton, V.M.; O’Neal, S.D.; Zalom, F.G. Drosophila suzukii (Diptera: Drosophilidae): Invasive Pest of Ripening Soft Fruit Expanding its Geographic Range and Damage Potential. J. Integr. Pest Manag. 2011, 2, G1–G7. [Google Scholar] [CrossRef]
- Mazzi, D.; Bravin, E.; Meraner, M.; Finger, R.; Kuske, S. Economic Impact of the Introduction and Establishment of Drosophila suzukii on Sweet Cherry Production in Switzerland. Insects 2017, 8, 18. [Google Scholar] [CrossRef]
- Cini, A.; Anfora, G.; Escudero-Colomar, L.A.; Grassi, A.; Santosuosso, U.; Seljak, G.; Papini, A. Tracking the invasion of the alien fruit pest in Europe. J. Pest Sci. 2014, 87, 559–566. [Google Scholar] [CrossRef]
- Fowler, M.A.; Montell, C. TRP channels and animal behavior. Life Sci. 2013, 92, 394–403. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Wang, R.; Yin, C.; Dong, Q.; Hing, H.; Kim, C.; Welsh, M.J. Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 2007, 450, 294–298. [Google Scholar] [CrossRef]
- Katz, B.; Minke, B. The Drosophila light-activated TRP and TRPL channels—Targets of the phosphoinositide signaling cascade. Prog. Retin. Eye Res. 2018, 66, 200–219. [Google Scholar] [CrossRef]
- Lazopulo, S.; Lazopulo, A.; Baker, J.D.; Syed, S. Daytime colour preference in Drosophila depends on the circadian clock and TRP channels. Nature 2019, 574, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.F.; Son, W.S.; Chung, Y.D.; Kim, J.W.; Shin, D.W.; McClung, C.A.; Lee, Y.; Lee, H.W.; Chang, D.J.; Kaang, B.K.; et al. Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci. 2004, 24, 9059–9066. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Coste, B.; Chadha, A.; Cook, B.; Patapoutian, A. The role of Drosophila Piezo in mechanical nociception. Nature 2012, 483, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Moroni, M.; Servin-Vences, M.R.; Fleischer, R.; Sánchez-Carranza, O.; Lewin, G.R. Voltage gating of mechanosensitive PIEZO channels. Nat. Commun. 2018, 9, 1096. [Google Scholar] [CrossRef]
- Yamanouchi, H.M.; Tanaka, R.; Kamikouchi, A. Piezo-mediated mechanosensation contributes to stabilizing copulation posture and reproductive success in Drosophila males. iScience 2023, 26, 106617. [Google Scholar] [CrossRef]
- Nässel, D.R.; Zandawala, M. Endocrine cybernetics: Neuropeptides as molecular switches in behavioural decisions. Open Biol. 2022, 12, 220174. [Google Scholar] [CrossRef]
- Eiman, M.N.; Kumar, S.; Negron, Y.L.S.; Tansey, T.R.; Harbison, S.T. Genome-wide association in Drosophila identifies a role for Piezo and Proc-R in sleep latency. Sci. Rep. 2024, 14, 260. [Google Scholar] [CrossRef]
- Coste, B.; Xiao, B.L.; Santos, J.S.; Syeda, R.; Grandl, J.; Spencer, K.S.; Kim, S.E.; Schmidt, M.; Mathur, J.; Dubin, A.E.; et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 2012, 483, 176-U172. [Google Scholar] [CrossRef]
- Zhang, L.W.; Yu, J.; Guo, X.; Wei, J.H.; Liu, T.; Zhang, W. Parallel Mechanosensory Pathways Direct Oviposition Decision-Making in Drosophila. Curr. Biol. 2020, 30, 3075–3088.e4. [Google Scholar] [CrossRef]
- Durkin, S.M.; Chakraborty, M.; Abrieux, A.; Lewald, K.M.; Gadau, A.; Svetec, N.; Peng, J.H.; Kopyto, M.; Langer, C.B.; Chiu, J.C.; et al. Behavioral and Genomic Sensory Adaptations Underlying the Pest Activity of Drosophila suzukii. Mol. Biol. Evol. 2021, 38, 2532–2546. [Google Scholar] [CrossRef]
- Li, B.; Li, S.; Zheng, H.; Yan, Z. Nanchung and Inactive define pore properties of the native auditory transduction channel in Drosophila. Proc. Natl. Acad. Sci. USA 2021, 118, e2106459118. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.X.; Liu, Z.Y.; Lin, P.X.; Su, S.C.; Gao, C.F.; Wu, S.F. Reverse genetic study reveals the molecular targets of chordotonal organ TRPV channel modulators. Pestic. Biochem. Physiol. 2023, 196, 105584. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Z.; Liu, T.; Zhang, W. Piezo-like Gene Regulates Locomotion in Drosophila Larvae. Cell Rep. 2019, 26, 1369–1377 e1364. [Google Scholar] [CrossRef] [PubMed]
- Hehlert, P.; Zhang, W.; Gopfert, M.C. Drosophila Mechanosensory Transduction. Trends Neurosci. 2021, 44, 323–335. [Google Scholar] [CrossRef]
- McKelvey, E.G.Z.; Gyles, J.P.; Michie, K.; Barquin Pancorbo, V.; Sober, L.; Kruszewski, L.E.; Chan, A.; Fabre, C.C.G. Drosophila females receive male substrate-borne signals through specific leg neurons during courtship. Curr. Biol. 2021, 31, 3894–3904 e3895. [Google Scholar] [CrossRef]
- Sehadova, H.; Glaser, F.T.; Gentile, C.; Simoni, A.; Giesecke, A.; Albert, J.T.; Stanewsky, R. Temperature entrainment of Drosophila’s circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 2009, 64, 251–266. [Google Scholar] [CrossRef]
- Dunlap, J.C.; Loros, J.J.; DeCoursey, P.J. Chronobiology: Biological Timekeeping; Sinauer Associates Inc.: Sunderland, MA, USA, 2004. [Google Scholar]
- Ratiu, A.C.; Ionascu, A.; Constantin, N.D. The Impact of Oxford Nanopore Technologies Based Methodologies on the Genome Sequencing and Assembly of Romanian Strains of Drosophila suzukii. Insects 2025, 16, 2. [Google Scholar] [CrossRef]
- Tao, X.Q.; Dou, Y.Q.; Huang, G.Y.; Sun, M.Z.; Lu, S.; Chen, D.S. α-Tubulin Regulates the Fate of Germline Stem Cells in Drosophila Testis. Sci. Rep. 2021, 11, 10644. [Google Scholar] [CrossRef]
- Zhai, Y.F.; Lin, Q.C.; Zhou, X.H.; Zhang, X.Y.; Liu, T.L.; Yu, Y. Identification and Validation of Reference Genes for Quantitative Real-Time PCR in Drosophila suzukii (Diptera: Drosophilidae). PLoS ONE 2014, 9, e106800. [Google Scholar] [CrossRef]
- Ionascu, A.; Ecovoiu, A.A.; Chifiriuc, M.C.; Ratiu, A.C. qDATA—An R application implementing a practical framework for analyzing quantitative real-time PCR data. Biotechniques 2024, 76, 559–573. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Goujon, M.; McWilliam, H.; Li, W.Z.; Valentin, F.; Squizzato, S.; Paern, J.; Lopez, R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010, 38, W695–W699. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.Z.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Öztürk-Çolak, A.; Marygold, S.J.; Antonazzo, G.; Attrill, H.; Goutte-Gattat, D.; Jenkins, V.K.; Matthews, B.B.; Millburn, G.; dos Santos, G.; Tabone, C.J.; et al. FlyBase: Updates to the Drosophila genes and genomes database. Genetics 2024, 227, iyad211. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial-DNA in Humans and Chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Mummery-Widmer, J.L.; Yamazaki, M.; Stoeger, T.; Novatchkova, M.; Bhalerao, S.; Chen, D.; Dietzl, G.; Dickson, B.J.; Knoblich, J.A. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 2009, 458, 987–992. [Google Scholar] [CrossRef]
- Honjo, K.; Mauthner, S.E.; Wang, Y.; Skene, J.H.P.; Tracey, W.D. Nociceptor-Enriched Genes Required for Normal Thermal Nociception. Cell Rep. 2016, 16, 295–303. [Google Scholar] [CrossRef]
- Tsubouchi, A.; Caldwell, J.C.; Tracey, W.D. Dendritic Filopodia, Ripped Pocket, NOMPC, and NMDARs Contribute to the Sense of Touch in Drosophila Larvae. Curr. Biol. 2012, 22, 2124–2134. [Google Scholar] [CrossRef] [PubMed]
- Máthé, E.; Boros, I.; Jósvay, K.; Li, K.J.; Puro, J.; Kaufman, T.C.; Szabad, J. The Tomaj mutant alleles of αtubulin67c reveal a requirement for the encoded maternal specific tubulin isoform in the sperm aster, the cleavage spindle apparatus and neurogenesis during embryonic development in Drosophila. J. Cell Sci. 1998, 111, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Venkei, Z.; Szabad, J. The KavarD dominant female-sterile mutations of Drosophila reveal a role for the maternally provided α-tubulin4 isoform in cleavage spindle maintenance and elongation. Mol. Genet. Genom. 2005, 273, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Gáspár, I.; Szabad, J. In Vivo Analysis of MT-Based Vesicle Transport by Confocal Reflection Microscopy. Cell Motil. Cytoskelet. 2009, 66, 68–79. [Google Scholar] [CrossRef]
- Neumüller, R.A.; Richter, C.; Fischer, A.; Novatchkova, M.; Neumüller, K.G.; Knoblich, J.A. Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi. Cell Stem Cell 2011, 8, 580–593. [Google Scholar] [CrossRef]
- Lyu, Y.P.; Wu, X.Q.; Ren, H.; Zhou, F.Y.; Zhou, H.Z.; Zhang, X.J.; Yang, H.T. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress. J. Microbiol. Methods 2017, 141, 28–31. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, M.; Pandher, S.; Kaur, G.; Rathore, P.; Palli, S.R. Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida). PLoS ONE 2018, 13, e0191116. [Google Scholar] [CrossRef]
- Lv, W.H.; Zheng, J.J.; Luan, M.W.; Shi, M.; Zhu, H.J.; Zhang, M.M.; Lv, H.C.; Shang, Z.W.; Duan, L.; Zhang, R.; et al. Comparing the evolutionary conservation between human essential genes, human orthologs of mouse essential genes and human housekeeping genes. Brief. Bioinform. 2015, 16, 922–931. [Google Scholar] [CrossRef]
- Wei, K.; Zhang, T.T.; Ma, L. Divergent and convergent evolution of housekeeping genes in human-pig lineage. Peerj 2018, 6, e4840. [Google Scholar] [CrossRef]
- Joshi, C.J.; Ke, W.F.; Drangowska-Way, A.; O’Rourke, E.J.; Lewis, N.E. What are housekeeping genes? PLoS Comput. Biol. 2022, 18, e1010295. [Google Scholar] [CrossRef]
- Tu, Z.D.; Wang, L.; Xu, M.; Zhou, X.H.; Chen, T.; Sun, F.Z. Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genom. 2006, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Podder, S.; Ghosh, T.C. Exploring the Differences in Evolutionary Rates between Monogenic and Polygenic Disease Genes in Human. Mol. Biol. Evol. 2010, 27, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Frigola, J.; Sabarinathan, R.; Mularoni, L.; Muiños, F.; Gonzalez-Perez, A.; López-Bigas, N. Reduced mutation rate in exons due to differential mismatch repair. Nat. Genet. 2017, 49, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Galindo, M.; Casillas, S.; Weghorn, D.; Barbadilla, A. Germline de novo mutation rates on exons versus introns in humans. Nat. Commun. 2020, 11, 3304. [Google Scholar] [CrossRef]
- Girardini, K.N.; Olthof, A.M.; Kanadia, R.N. Introns: The “dark matter” of the eukaryotic genome. Front. Genet. 2023, 14, 1150212. [Google Scholar] [CrossRef]
- Olazcuaga, L.; Loiseau, A.; Parrinello, H.; Paris, M.; Fraimout, A.; Guedot, C.; Diepenbrock, L.M.; Kenis, M.; Zhang, J.P.; Chen, X.; et al. A Whole-Genome Scan for Association with Invasion Success in the Fruit Fly Drosophila suzukii Using Contrasts of Allele Frequencies Corrected for Population Structure. Mol. Biol. Evol. 2020, 37, 2369–2385. [Google Scholar] [CrossRef]
- Feng, S.Y.; Degrey, S.P.; Guédot, C.; Schoville, S.D.; Pool, J.E. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. Genome Biol. Evol. 2024, 16, evae195. [Google Scholar] [CrossRef]
- Ometto, L.; Cestaro, A.; Ramasamy, S.; Grassi, A.; Revadi, S.; Siozios, S.; Moretto, M.; Fontana, P.; Varotto, C.; Pisani, D.; et al. Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol. Evol. 2013, 5, 745–757. [Google Scholar] [CrossRef]
- Joye, D.A.M.; Evans, J.A. Sex differences in daily timekeeping and circadian clock circuits. Semin. Cell Dev. Biol. 2022, 126, 45–55. [Google Scholar] [CrossRef]
- Iyer, A.R.; Scholz-Carlson, E.; Bell, E.; Biondi, G.; Richhariya, S.; Fernandez, M.P. The circadian neuropeptide PDF has sexually dimorphic effects on activity rhythms. bioRxiv 2024. [Google Scholar]
- Montell, C. Drosophila TRP channels. Pflug. Arch. 2005, 451, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Z.S.; Li, H.S.; Guggino, W.B.; Montell, C. Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 1997, 89, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Li, L.J. Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Front. Cell Infect. Mi 2021, 11, 696554. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Huang, L.L.; Zhao, J.J.; Chen, S.; Liu, J.R.; Li, G.F. The circadian clock and inflammation: A new insight. Clin. Chim. Acta 2021, 512, 12–17. [Google Scholar] [CrossRef]
- Cheng, W.Y.; Chan, P.L.; Ong, H.Y.; Wong, K.H.; Chang, R.C.C. Systemic Inflammation Disrupts Circadian Rhythms and Diurnal Neuroimmune Dynamics. Int. J. Mol. Sci. 2024, 25, 7458. [Google Scholar] [CrossRef]
- Borbiro, I.; Rohacs, T. Regulation of Piezo Channels by Cellular Signaling Pathways. Curr. Top. Membr. 2017, 79, 245–261. [Google Scholar] [CrossRef]
- Lone, S.R.; Potdar, S.; Venkataraman, A.; Sharma, N.; Kulkarni, R.; Rao, S.; Mishra, S.; Sheeba, V.; Sharma, V.K. Mechanosensory Stimulation via nanchung Expressing Neurons Can Induce Daytime Sleep in Drosophila. J. Neurosci. 2021, 41, 9403–9418. [Google Scholar] [CrossRef]
- Mrosovsky, N.; Salmon, P.A. A behavioural method for accelerating re-entrainment of rhythms to new light-dark cycles. Nature 1987, 330, 372–373. [Google Scholar] [CrossRef]
- van Oosterhout, F.; Lucassen, E.A.; Houben, T.; vanderLeest, H.T.; Antle, M.C.; Meijer, J.H. Amplitude of the SCN Clock Enhanced by the Behavioral Activity Rhythm. PLoS ONE 2012, 7, e39693. [Google Scholar] [CrossRef]
- Simoni, A.; Wolfgang, W.; Topping, M.P.; Kavlie, R.G.; Stanewsky, R.; Albert, J.T. A Mechanosensory Pathway to the Drosophila Circadian Clock. Science 2014, 343, 525–528. [Google Scholar] [CrossRef]
- Takenaka, N.; Takahashi, Y. Adaptation to nighttime light via gene expression regulation in Drosophila suzukii. bioRxiv 2025. [Google Scholar] [CrossRef]
- Roessingh, S.; Stanewsky, R. The Drosophila TRPA1 Channel and Neuronal Circuits Controlling Rhythmic Behaviours and Sleep in Response to Environmental Temperature. Int. J. Mol. Sci. 2017, 18, 2028. [Google Scholar] [CrossRef] [PubMed]
- Woodard, G.; Rosado, J.A.; Li, H. The physiological role of TRP channels in sleep and circadian rhythm. J. Cell Mol. Med. 2024, 28, e18274. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, T.; Colinet, H. Cold acclimation triggers major transcriptional changes in Drosophila suzukii. BMC Genom. 2019, 20, 413. [Google Scholar] [CrossRef]
- Plantamp, C.; Henri, H.; Andrieux, T.; Regis, C.; Mialdea, G.; Dray, S.; Gibert, P.; Desouhant, E. Phenotypic plasticity in the invasive pest Drosophila suzukii: Activity rhythms and gene expression in response to temperature. J. Exp. Biol. 2019, 222, jeb199398. [Google Scholar] [CrossRef]
Gene | Marked Conflictual Single Coordinates | Introns Fraction | Fisher’s Exact Test | MAT | ||
---|---|---|---|---|---|---|
Total (%) | Exons (%) | Introns (%) | ||||
Piezo (all) | 1891 (100) | 195 (10.31) | 1696 (89.69) | 69.14% | p < 0.0001 | 1.297 |
Piezo (partial) | 1230 (100) | 195 (15.85) | 1035 (84.15) | 50.25% | p < 0.0001 | 1.675 |
nan | 307 (100) | 103 (33.55) | 204 (66.45) | 21.74% | p < 0.0001 | 3.057 |
αTub | 190 (100) | 58 (30.53) | 132 (69.47) | 22.03% | p < 0.0001 | 3.153 |
Gene | Piezo | |||
---|---|---|---|---|
Experimental Group | A1 | A2 | B1 | B2 |
Log2FC | +1.54 | +1.242 | −1.613 | +1.040 |
p value (vs. control) | 0.011 | 7.809 × 10−6 | 3.484 × 10−8 | 7.899 × 10−3 |
A | B | |||
Log2FC | +3.339 | +0.798 | ||
p value (vs. control) | 1.783 × 10−3 | 0.784 | ||
p value (B vs. A) | 9.106 × 10−5 | |||
Gene | nan | |||
Experimental group | A1 | A2 | B1 | B2 |
Log2FC | +2.077 | +3.512 | −1.974 | +0.473 |
p value (vs. control) | 0.271 | 2.566 × 10−6 | 3.233 × 10−8 | 0.324 |
A | B | |||
Log2FC | +5.65 | +1.582 | ||
p value (vs. control) | 0.012 | 0.168 | ||
p value (B vs. A) | 2.666 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musca, A.-S.; Ratiu, A.C.; Ionascu, A.; Constantin, N.-D.; Zahan, M. Short-Term Evolutionary Features and Circadian Clock-Modulated Gene Expression Analysis of Piezo, nanchung, and αTubulin at 67C in a Romanian Population of Drosophila suzukii. Insects 2025, 16, 591. https://doi.org/10.3390/insects16060591
Musca A-S, Ratiu AC, Ionascu A, Constantin N-D, Zahan M. Short-Term Evolutionary Features and Circadian Clock-Modulated Gene Expression Analysis of Piezo, nanchung, and αTubulin at 67C in a Romanian Population of Drosophila suzukii. Insects. 2025; 16(6):591. https://doi.org/10.3390/insects16060591
Chicago/Turabian StyleMusca, Adriana-Sebastiana, Attila Cristian Ratiu, Adrian Ionascu, Nicoleta-Denisa Constantin, and Marius Zahan. 2025. "Short-Term Evolutionary Features and Circadian Clock-Modulated Gene Expression Analysis of Piezo, nanchung, and αTubulin at 67C in a Romanian Population of Drosophila suzukii" Insects 16, no. 6: 591. https://doi.org/10.3390/insects16060591
APA StyleMusca, A.-S., Ratiu, A. C., Ionascu, A., Constantin, N.-D., & Zahan, M. (2025). Short-Term Evolutionary Features and Circadian Clock-Modulated Gene Expression Analysis of Piezo, nanchung, and αTubulin at 67C in a Romanian Population of Drosophila suzukii. Insects, 16(6), 591. https://doi.org/10.3390/insects16060591