New Insights into the Biology, Ecology, and Management of Mosquitoes
- Ιn semi-field conditions, interspecific larval competition between Ae. aegypti and Anopheles arabiensis, An. gambiae s.s., or An. funestus remarkably affected both tested genera; however, the effects on Anopheles species were more profound compared to on Ae. aegypti (Contribution 1);
- Mosquito surveillance in Kastellorizo (Greek island), revealed the presence of Ae. albopictus, Aedes cretinus, and Cx. pipiens, and indicated the necessity of community awareness and education for the effective management of mosquito populations (Contribution 2);
- Mosquito surveillance for two years in the Attica region of Greece revealed the widespread distribution of Ae. albopictus and Cx. pipiens s.l. in the region, indicating the differences in the distribution of mosquito species across different locations throughout the season (Contribution 3);
- The development of a low-cost attractant sticky trap for the surveillance of Ae. aegypti populations indoors (Contribution 4);
- The performance of gamma-ray-sterilized males was evaluated in a Mark–Release–Recapture field trial conducted in Sri Lanka against Ae. albopictus to be used in future SIT trials (Contribution 5);
- The captive cohort method was used for the first time to assess the biological dynamics of sterile mosquitoes in SIT programs, underscoring the necessity of continuous research to optimize mass rearing, sterilization, and transportation methods for the production of sterile males to be used in SIT programs (Contribution 6);
- The X-ray machine typically employed in cancer treatment can be applied as an alternative radiation source for the sterilization of male mosquitoes to be used in SIT mosquito control programs (Contribution 7);
- A novel 3D textile was developed based on the mosquito head structure of Ae. aegypti; when charged with 15 volts, it was 100% effective in preventing mosquito blood feeding across an artificial membrane (Contribution 8);
- Binary mixtures of two monoterpenes, namely geranial and trans-cinnamaldehyde, were more effective than single formulations or temephos against the larvae of Ae. aegypti, and did not affect the non-target aquatic predator, guppies (Poecilia reticulata) (Contribution 9);
- In laboratory bioassays, the larvicidal properties of the crude S. ebulus leaf extract and gallic acid against Ae. albopictus and the crude S. ebulus flower extract against Cx. pipiens were identified (Contribution 10);
- In Leticia, Amazonas, Colombia, a plethora of bacteria genera were found in breeding sites and the developmental stages of Ae. aegypti, and a close relationship was identified between the bacterial composition in the water body of breeding sites and the physicochemical characteristics of the different types of breeding sites (Contribution 11);
- In Leticia, Amazonas, Colombia, a high richness in bacterial diversity was recorded across different mosquito life stages in two Anopheles species, underscoring the potential of these microorganisms as agents for biotechnological interventions aiming at mosquito control (Contribution 12);
- The gut microbiota may be involved in the insecticide resistance of Ae. aegypti to temephos and deltamethrin (Contribution 13);
- After exposing Ae. aegypti mosquitoes to imidacloprid, some microRNAs were expressed in wild mosquitoes following insecticide exposure, suggesting that specific microRNAs may be associated with insecticide response and potentially linked to resistance mechanisms (Contribution 14).
Conflicts of Interest
List of Contributions
- Lushasi, S.C.; Mwalugelo, Y.A.; Swai, J.K.; Mmbando, A.S.; Muyaga, L.L.; Nyolobi, N.K.; Mutashobya, A.; Mmbaga, A.T.; Kunambi, H.J.; Twaha, S.; et al. The Interspecific Competition Between Larvae of Aedes aegypti and Major African Malaria Vectors in a Semi-Field System in Tanzania. Insects 2025, 16, 34. https://doi.org/10.3390/insects16010034.
- Bisia, M.; Balatsos, G.; Beleri, S.; Tegos, N.; Zavitsanou, E.; LaDeau, S.L.; Sotiroudas, V.; Patsoula, E.; Michaelakis, A. Mitigating the Threat of Invasive Mosquito Species Expansion: A Comprehensive Entomological Surveillance Study on Kastellorizo, a Remote Greek Island. Insects 2024, 15, 724. https://doi.org/10.3390/insects15090724.
- Bisia, M.; Balatsos, G.; Sakellariou Sofianou, M.; Beleri, S.; Tegos, N.; Zavitsanou, E.; Karras, V.; Kollia, D.; Michaelakis, A.; Patsoula, E. Two-Year Entomological Survey of Mosquito Fauna in the Attica Region, Greece: Species Composition. Insects 2025, 16, 406. https://doi.org/10.3390/insects16040406.
- Paiz-Moscoso, K.E.; Cisneros-Vázquez, L.A.; Danís-Lozano, R.; Rodríguez-Rojas, J.J.; Rebollar-Téllez, E.A.; Sánchez-Casas, R.M.; Fernández-Salas, I. Design and Evaluation of a Sticky Attractant Trap for Intra-Domiciliary Surveillance of Aedes aegypti Populations in Mexico. Insects 2023, 14, 940. https://doi.org/10.3390/insects14120940.
- Hapugoda, M.; Gunawardena, N.S.; Ranathunge, T.; Bouyer, J.; Maiga, H.; Karunathilake, K.; Withanage, G.P.; Weerasinghe, I.; Sow, B.B.D.; Harishchandra, J. Mark–Release–Recapture (MRR) of Sterile Male Aedes albopictus (Skuse) in Sri Lanka: Field Performance of Sterile Males and Estimation of the Wild Mosquito Population Density. Insects 2024, 15, 466. https://doi.org/10.3390/insects15070466.
- Balatsos, G.; Blanco-Sierra, L.; Karras, V.; Puggioli, A.; Osório, H.C.; Bellini, R.; Papachristos, D.P.; Bouyer, J.; Bartumeus, F.; Papadopoulos, N.T.; et al. Residual Longevity of Recaptured Sterile Mosquitoes as a Tool to Understand Field Performance and Reveal Quality. Insects 2024, 15, 826. https://doi.org/10.3390/insects15110826.
- Wang, L.; Liu, T.; Xiao, L.; Zhang, H.; Wang, C.; Zhang, W.; Zhang, M.; Wang, Y.; Deng, S. Investigating the Potential of X-Ray-Based Cancer Treatment Equipment for the Sterile Insect Technique in Aedes aegypti Control Programs. Insects 2024, 15, 898. https://doi.org/10.3390/insects15110898.
- Luan, K.; McCord, M.G.; West, A.J.; Cave, G.; Travanty, N.V.; Apperson, C.S.; Roe, R.M. Mosquito Blood Feeding Prevention Using an Extra-Low DC Voltage Charged Cloth. Insects 2023, 14, 405. https://doi.org/10.3390/insects14050405.
- Sittichok, S.; Passara, H.; Sinthusiri, J.; Moungthipmalai, T.; Puwanard, C.; Murata, K.; Soonwera, M. Synergistic Larvicidal and Pupicidal Toxicity and the Morphological Impact of the Dengue Vector (Aedes aegypti) Induced by Geranial and trans-Cinnamaldehyde. Insects 2024, 15, 714. https://doi.org/10.3390/insects15090714.
- Farina, P.; Pisuttu, C.; Tani, C.; Bedini, S.; Nali, C.; Landi, M.; Lauria, G.; Conti, B.; Pellegrini, E. Leaf and Flower Extracts from the Dwarf Elder (Sambucus ebulus): Toxicity and Repellence against Cosmopolitan Mosquito-Borne Diseases Vectors. Insects 2024, 15, 482. https://doi.org/10.3390/insects15070482.
- Castañeda-Espinosa, A.; Duque-Granda, D.; Cadavid-Restrepo, G.; Murcia, L.M.; Junca, H.; Moreno-Herrera, C.X.; Vivero-Gómez, R.J. Study of Bacterial Communities in Water and Different Developmental Stages of Aedes aegypti from Aquatic Breeding Sites in Leticia City, Colombian Amazon Biome. Insects 2025, 16, 195. https://doi.org/10.3390/insects16020195.
- Duque-Granda, D.; Vivero-Gómez, R.J.; González Ceballos, L.A.; Junca, H.; Duque, S.R.; Aroca Aguilera, M.C.; Castañeda-Espinosa, A.; Cadavid-Restrepo, G.; Gómez, G.F.; Moreno-Herrera, C.X. Exploring the Diversity of Microbial Communities Associated with Two Anopheles Species During Dry Season in an Indigenous Community from the Colombian Amazon. Insects 2025, 16, 269. https://doi.org/10.3390/insects16030269.
- Viafara-Campo, J.D.; Vivero-Gómez, R.J.; Fernando-Largo, D.; Manjarrés, L.M.; Moreno-Herrera, C.X.; Cadavid-Restrepo, G. Diversity of Gut Bacteria of Field-Collected Aedes aegypti Larvae and Females, Resistant to Temephos and Deltamethrin. Insects 2025, 16, 181. https://doi.org/10.3390/insects16020181.
- Trujillo-Rodríguez, G.; Jiménez-Martínez, M.L.; Flores-Contreras, E.; González Gonzalez, E.; Ramírez Ahuja, M.d.L.; Garza Veloz, I.; Flores Suarez, A.E.; Correa Morales, F.; Dzul Manzanilla, F.; Rodriguez Sanchez, I.P.; et al. miRNA Expression Response of Aedes aegypti (Linnaeus 1762) (Diptera: Culicidae) to Imidacloprid Exposure. Insects 2025, 16, 460. https://doi.org/10.3390/insects16050460.
References
- Becker, N.; Petrić, D.; Zgomba, M.; Boase, C.; Madon, M.B.; Dahl, C.; Kaiser, A. Mosquitoes: Identification, Ecology and Control, 3rd ed.; Springer Nature: Cham, Switzerland, 2020; p. 570. [Google Scholar]
- Giatropoulos, A.; Papachristos, D.; Michaelakis, A.; Kapranas, A.; Emmanouel, N. Laboratory Study on Larval Competition between Two Related Mosquito Species: Aedes (Stegomyia) albopictus and Aedes (Stegomyia) cretinus. Acta Trop. 2022, 230, 106389. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, W.J. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int. J. Environ. Res. Public Health 2013, 10, 249–277. [Google Scholar] [CrossRef] [PubMed]
- Muturi, E.J.; Kim, C.H.; Jacob, B.; Murphy, S.; Novak, R.J. Interspecies predation between Anopheles gambiae s.s. and Culex quinquefasciatus larvae. J. Med. Entomol. 2010, 47, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Clements, A.; Williams, G.; Tong, S. Dengue fever and El Nino/Southern Oscillation in Queensland, Australia: A time series predictive model. Occup. Environ. Med. 2010, 67, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Lees, R.S.; Gilles, J.R.; Hendrichs, J.; Vreysen, M.J.; Bourtzis, K. Back to the future: The sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 2015, 10, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Gordon, U.; Tanveer, F.; Rose, A.; Paaijmans, K. CHAPTER 6—Repelling mosquitoes with electric fields. In Advances in Arthropod Repellents; Corona, C., Debboun, M., Coats, J., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 95–112. [Google Scholar]
- Ntalli, N.; Koliopoulos, G.; Giatropoulos, A.; Menkissoglu-Spiroudi, U. Plant secondary metabolites against arthropods of medical importance. Phytochem. Rev. 2019, 18, 1255–1275. [Google Scholar] [CrossRef]
- Giatropoulos, A.; Koliopoulos, G.; Pantelakis, P.-N.; Papachristos, D.; Michaelakis, A. Evaluating the Sublethal Effects of Origanum vulgare Essential Oil and Carvacrol on the Biological Characteristics of Culex pipiens biotype molestus (Diptera: Culicidae). Insects 2023, 14, 400. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.K.J.; de Oliveira, M.R.; Marinotti, O.; Rocha, E.M.; Håkansson, S.; Tadei, W.P.; de Souza, A.Q.L.; Terenius, O. Characterization of Bacterial Communities in Breeding Waters of Anopheles Darlingi in Manaus in the Amazon Basin Malaria-Endemic Area. Microb. Ecol. 2019, 78, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Dada, N.; Sheth, M.; Liebman, K.; Pinto, J.; Lenhart, A. Whole Metagenome Sequencing Reveals Links between Mosquito Microbiota and Insecticide Resistance in Malaria Vectors. Sci. Rep. 2018, 8, 2084. [Google Scholar] [CrossRef] [PubMed]
- Arévalo-Cortés, A.; Mejia-Jaramillo, A.M.; Granada, Y.; Coatsworth, H.; Lowenberger, C.; Triana-Chavez, O. The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-Cyhalothrin. Insects 2020, 11, 584. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.; Cheng, P.; Wang, Y.; Liu, H.; Wang, H.; Wang, H.; Gong, M. Differences in the Intestinal Microbiota between Insecticide-Resistant and -Sensitive Aedes albopictus Based on Full-Length 16S RRNA Sequencing. Microbiologyopen 2021, 10, e1177. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Du, Y.; Yu, J.; Guo, J. MicroRNAs as Potential Biomarkers of Insecticide Exposure: A Review. Chem. Res. Toxicol. 2019, 32, 2169–2181. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giatropoulos, A. New Insights into the Biology, Ecology, and Management of Mosquitoes. Insects 2025, 16, 577. https://doi.org/10.3390/insects16060577
Giatropoulos A. New Insights into the Biology, Ecology, and Management of Mosquitoes. Insects. 2025; 16(6):577. https://doi.org/10.3390/insects16060577
Chicago/Turabian StyleGiatropoulos, Athanasios. 2025. "New Insights into the Biology, Ecology, and Management of Mosquitoes" Insects 16, no. 6: 577. https://doi.org/10.3390/insects16060577
APA StyleGiatropoulos, A. (2025). New Insights into the Biology, Ecology, and Management of Mosquitoes. Insects, 16(6), 577. https://doi.org/10.3390/insects16060577