Fecal Transmission of Nucleopolyhedroviruses: A Neglected Route to Disease?
Simple Summary
Abstract
Abbreviation | Common Name | Species Name a |
AcMNPV | Autographa californica multiple nucleopolyhedrovirus | Alphabaculovirus aucalifornicae |
AgMNPV | Anticarsia gemmatalis multiple nucleopolyhedrovirus | Alphabaculovirus angemmatalis |
BmNPV | Bombyx mori nucleopolyhedrovirus | Alphabaculovirus bomori |
ChinNPV | Chrysodeixis includens nucleopolyhedrovirus | Alphabaculovirus alterchrincludentis |
HearNPV | Helicoverpa armigera nucleopolyhedrovirus | Alphabaculovirus helarmigerae |
HypuNPV | Hyblaea puera nucleopolyhedrovirus | – |
LdMNPV | Lymantria dispar multiple nucleopolyhedrovirus | Alphabaculovirus lydisparis |
MbMNPV | Mamestra brassicae multiple nucleopolyhedrovirus | Alphabaculovirus mabrassicae |
SeMNPV | Spodoptera exigua multiple nucleopolyhedrovirus | Alphabaculovirus spexiguae |
SfMNPV | Spodoptera frugiperda multiple nucleopolyhedrovirus | Alphabaculovirus spofrugiperdae |
TnSNPV | Trichoplusia ni single nucleopolyhedrovirus | Alphabaculovirus trini |
a Species names are as defined by the International Committee on Taxonomy of Viruses [1] |
1. Introduction
2. Evidence for OBs in Lepidopteran Feces
Host/Virus | Larval Instar Used to Produce Feces (Instar Used to Bioassay Feces) | Day at Which Feces Sampled Post-Inoculation | Range of Virus- Induced Mortality Observed in Bioassay (%) | Estimated Quantity of OBs in Feces (OB/g) | Reference |
---|---|---|---|---|---|
B. mori/BmNPV | 4th (3rd) | 5 | 100 a | ~1 × 105 b | [27] |
H. zea/HearNPV c | 4th (1st) | 1–4 | 1.7–23.6 (diet) 0.6–9.5 (leaf disk) | - | [26] |
H. puera/HypuNPV | 5th (5th) | 0–2.5 d | 0–77 | 5 × 100−2 × 107 e | [29] |
M. brassicae/MbMNPV | 4th (2nd) | 1–6 | 0–11 f | - | [11] |
S. frugiperda/SfMNPV | 4th (2nd) | 2–6 | 3.9–68.3 | 5.4 × 103−4.4 × 106 | [30] |
T. ni/TnSNPV | 3rd (3rd) | 1–5 | 11–25 g | - | [25] |
3. How Does Fecal Inoculum Compare to “Conventional” Transmission?
4. Are the Quantities of Virus in Feces Biologically Significant?
5. How Does Virus Activity Appear in Feces?
6. Importance of Fecal Contamination Compared to Other Alternative Transmission Routes
7. Future Lines of Research
7.1. Virus Activity in Feces Reflects Midgut Replication
7.2. Feeding Behavior Will Affect the Transmission of Fecal OBs
7.3. Plant Architecture and Larval Feeding Habits Will Determine the Accumulation of Fecal OBs
7.4. Physical and Chemical Properties of Feces May Affect OB Persistence
7.5. Conspecific Attraction to Fecal Material
8. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ICTV. International Committee on Taxonomy of Viruses. Family Baculoviridae. 2025. Available online: https://ictv.global/report/chapter/baculoviridae (accessed on 12 April 2025).
- Possee, R.D.; Chambers, A.C.; Graves, L.P.; Aksular, M.; King, L.A. Recent developments in the use of baculovirus expression vectors. Curr. Issues Mol. Biol. 2019, 34, 215–230. [Google Scholar] [PubMed]
- Moore, S.; Jukes, M. Advances in microbial control in IPM: Entomopathogenic viruses. In Integrated Management of Insect Pests; Kogan, M., Heinrichs, E.A., Eds.; Burleigh Dodds Science Publishing: Sawston, UK, 2019; pp. 593–648. [Google Scholar]
- Rohrmann, G.F. Baculovirus Molecular Biology, 4th ed.; National Center for Biotechnology Information: Bethesda, MD, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK543458 (accessed on 10 April 2025).
- Erlandson, M.A.; Toprak, U.; Hegedus, D.D. Role of the peritrophic matrix in insect-pathogen interactions. J. Insect Physiol. 2019, 117, 103894. [Google Scholar] [CrossRef]
- Cory, J.S.; Myers, J.H. The ecology and evolution of insect baculoviruses. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 239–272. [Google Scholar] [CrossRef]
- Williams, T. Viruses. In Ecology of Invertebrate Diseases; Hajek, A.E., Shapiro-Ilan, D.I., Eds.; Wiley: Chichester, UK, 2018; pp. 215–285. [Google Scholar]
- Slansky Jr, F.; Feeny, P. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 1977, 47, 209–228. [Google Scholar] [CrossRef]
- Moreira, L.F.; Teixeira, N.C.; Santos, N.A.; Valim, J.O.S.; Maurício, R.M.; Guedes, R.N.C.; Oliveira, M.G.A.; Campos, W.G. Diamondback moth performance and preference for leaves of Brassica oleracea of different ages and strata. J. Appl. Entomol. 2016, 140, 627–635. [Google Scholar] [CrossRef]
- Zunzunegui, I.; Martín-García, J.; Santamaría, Ó.; Poveda, J. Insect frass as an agricultural resource against abiotic and biotic crop stresses: Mechanisms of action and possible negative effects. Appl. Sci. 2025, 15, 3606. [Google Scholar] [CrossRef]
- Vasconcelos, S.D. Alternative routes for the horizontal transmission of a nucleopolyhedrovirus. J. Invertebr. Pathol. 1996, 68, 269–274. [Google Scholar] [CrossRef]
- Rebolledo, D.; Lasa, R.; Guevara, R.; Murillo, R.; Williams, T. Baculovirus-induced climbing behavior favors intraspecific necrophagy and efficient disease transmission in Spodoptera exigua. PLoS ONE 2015, 10, e0136742. [Google Scholar] [CrossRef]
- Del-Angel, C.; Lasa, R.; Mercado, G.; Rodríguez-del-Bosque, L.A.; Caballero, P.; Williams, T. Acquisition of lethal infection, hypermobility and modified climbing behavior in nucleopolyhedrovirus infected larvae of Anticarsia gemmatalis. Biol. Control 2018, 125, 90–97. [Google Scholar] [CrossRef]
- Belloncik, S.; Mori, H. Cypoviruses. In The Insect Viruses; Miller, L.K., Ball, L.A., Eds.; Springer: Boston, MA, USA, 1998; pp. 337–369. [Google Scholar] [CrossRef]
- Arif, B.; Escasa, S.; Pavlik, L. Biology and genomics of viruses within the genus Gammabaculovirus. Viruses 2011, 3, 2214. [Google Scholar] [CrossRef]
- Graves, R.; Quiring, D.T.; Lucarotti, C.J. Transmission of a Gammabaculovirus within cohorts of balsam fir sawfly (Neodiprion abietis) larvae. Insects 2012, 3, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Akhanaev, Y.B.; Pavlushin, S.V.; Kharlamova, D.D.; Odnoprienko, D.; Subbotina, A.O.; Belousova, I.A.; Ignatieva, A.N.; Kononchuk, A.G.; Tokarev, Y.S.; Martemyanov, V.V. The Impact of a cypovirus on parental and filial generations of Lymantria dispar L. Insects 2023, 14, 917. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, G. The roles of density, stage, and patchiness in the transmission of an insect virus. Ecology 1991, 72, 559–574. [Google Scholar] [CrossRef]
- Goulson, D.; Hails, R.S.; Williams, T.; Hirst, M.L.; Vasconcelos, S.D.; Green, B.M.; Carty, T.M.; Cory, J.S. Transmission dynamics of a virus in a stage-structured insect population. Ecology 1995, 76, 392–401. [Google Scholar] [CrossRef]
- D’Amico, V.; Elkinton, J.S.; Dwyer, G.; Burand, J.P.; Buonaccorsi, J.P. Virus transmission in gypsy moths is not a simple mass action process. Ecology 1996, 77, 201–206. [Google Scholar] [CrossRef]
- Parker, B.J.; Elderd, B.D.; Dwyer, G. Host behaviour and exposure risk in an insect–pathogen interaction. J. Anim. Ecol. 2010, 79, 863–870. [Google Scholar] [CrossRef]
- Elderd, B.D. Developing models of disease transmission: Insights from ecological studies of insects and their baculoviruses. PLoS Pathog. 2013, 9, e1003372. [Google Scholar] [CrossRef]
- Hewson, I.; Brown, J.M.; Gitlin, S.A.; Doud, D.F. Nucleopolyhedrovirus detection and distribution in terrestrial, freshwater, and marine habitats of Appledore Island, Gulf of Maine. Microb. Ecol. 2011, 62, 48–57. [Google Scholar] [CrossRef]
- Thorne, C.M.; Otvos, I.S.; Conder, N.; Levin, D.B. Development and evaluation of methods to detect nucleopolyhedroviruses in larvae of the Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough). Appl. Environ. Microbiol. 2007, 73, 1101–1106. [Google Scholar] [CrossRef]
- Jaques, R.P. The transmission of nuclear-polyhedrosis virus in laboratory populations of Trichoplusia ni (Hübner). J. Invertebr. Pathol. 1962, 4, 433–445. [Google Scholar]
- Ali, M.I.; Young, S.Y.; Yearian, W.C. Nuclear polyhedrosis virus transmission by infected Heliothis zea (Boddie) (Lepidoptera: Noctuidae) prior to death. J. Entomol. Sci. 1987, 22, 289–294. [Google Scholar] [CrossRef]
- Arakawa, T. Bioassay of nucleopolyhedrovirus of a silkworm, Bombyx mori L.,(BmNPV) discriminating the pathogenicity caused by free virion from that caused by viral occlusion body. Appl. Entomol. Zool. 2007, 42, 439–448. [Google Scholar] [CrossRef]
- Arakawa, T.; Nozawa, M. A sensitive bioassay for a nucleopolyhedrovirus using silkworms, Bombyx mori L., previously treated with a chitin synthesis inhibitor. Appl. Entomol. Zool. 2005, 40, 105–111. [Google Scholar] [CrossRef]
- Bindu, T.N.; Balakrishnan, P.; Sajeev, T.V.; Sudheendrakumar, V.V. Role of soil and larval excreta in the horizontal transmission of the baculovirus HpNPV and its implications in the management of teak defoliator Hyblaea puera. Curr. Sci. 2022, 122, 1321–1326. [Google Scholar] [CrossRef]
- Avila-Hernández, E.; Molina-Ruiz, C.S.; Díaz-Gómez, J.S.; Williams, T. Fecal transmission of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV; Baculoviridae). Viruses 2025, 17, 298. [Google Scholar] [CrossRef]
- Harrison, R.L.; Herniou, E.A.; Jehle, J.A.; Theilmann, D.A.; Burand, J.P.; Becnel, J.J.; Krell, P.J.; van Oers, M.M.; Mowery, J.D.; Bauchan, G.R. ICTV virus taxonomy profile: Baculoviridae. J. Gen. Virol. 2019, 99, 1185–1186. [Google Scholar] [CrossRef]
- Biji, C.P.; Sudheendrakumar, V.V.; Sajeev, T.V. Quantitative estimation of Hyblaea puera NPV production in three larval stages of the teak defoliator, Hyblaea puera (Cramer). J. Virol. Meth. 2006, 136, 78–82. [Google Scholar] [CrossRef]
- Rios-Velasco, C.; Gallegos-Morales, G.; Berlanga-Reyes, D.; Cambero-Campos, J.; Romo-Chacón, A. Mortality and production of occlusion bodies in Spodoptera frugiperda larvae (Lepidoptera: Noctuidae) treated with nucleopolyhedrovirus. Fla. Entomol. 2012, 95, 752–757. [Google Scholar] [CrossRef]
- Young, S.Y.; Yearian, W.C. Secondary transmission of nuclear polyhedrosis virus by Pseudoplusia includens and Anticarsia gemmatalis larvae on semisynthetic diet. J. Invertebr. Pathol. 1988, 51, 133–138. [Google Scholar] [CrossRef]
- Grant, J.B. Diversification of gut morphology in caterpillars is associated with defensive behavior. J. Exp. Biol. 2006, 209, 3018–3024. [Google Scholar] [CrossRef]
- Barrett, J.W.; Brownwright, A.J.; Primavera, M.J.; Retnakaran, A.; Palli, S.R. Concomitant primary infection of the midgut epithelial cells and the hemocytes of Trichoplusia ni by Autographa californica nucleopolyhedrovirus. Tissue Cell 1998, 30, 602–616. [Google Scholar] [CrossRef]
- D’Amico, V.; Elkinton, J.S.; Podgwaite, J.D.; Buonaccorsi, J.P.; Dwyer, G. Pathogen clumping: An explanation for non-linear transmission of an insect virus. Ecol. Entomol. 2005, 30, 383–390. [Google Scholar] [CrossRef]
- Heimpel, A.M.; Adams, J.R. A new nuclear polyhedrosis of the cabbage looper, Trichoplusia ni. J. Invertebr. Pathol. 1966, 8, 340–346. [Google Scholar] [CrossRef]
- Mathad, S.B.; Splittstoesser, C.M.; McEwen, F.L. Histopathology of the cabbage looper, Trichoplusia ni, infected with a nuclear polyhedrosis. J. Invertebr. Pathol. 1968, 11, 456–464. [Google Scholar] [CrossRef]
- Teakle, R.E. A nuclear-polyhedrosis virus from Heliothis punctigera Wallengren (Lepidoptera: Noctuidae). Qld. J. Agric. Anim. Sci. 1973, 30, 161–177. [Google Scholar]
- Matos, T.G.; Giugliano, L.G.; Ribeiro, B.M.; Báo, S.N. Structural and ultrastructural studies of Anticarsia gemmatalis midgut cells infected with the baculovirus A. gemmatalis nucleopolyhedrovirus. Int. J. Insect Morphol. Embryol. 1999, 28, 195–201. [Google Scholar] [CrossRef]
- Javed, M.A.; Harris, S.; Willis, L.G.; Theilmann, D.A.; Donly, B.C.; Erlandson, M.A.; Hegedus, D.D. Microscopic investigation of AcMNPV infection in the Trichoplusia ni midgut. J. Invertebr. Pathol. 2016, 141, 24–33. [Google Scholar] [CrossRef]
- Passarelli, A.L. Barriers to success: How baculoviruses establish efficient systemic infections. Virology 2011, 411, 383–392. [Google Scholar] [CrossRef]
- Pazmiño-Ibarra, V.; Herrero, S.; Sanjuan, R. Spatially segregated transmission of co-occluded baculoviruses limits virus–virus interactions mediated by cellular coinfection during primary infection. Viruses 2022, 14, 1697. [Google Scholar] [CrossRef]
- Xia, J.; Fei, S.; Huang, Y.; Lai, W.; Yu, Y.; Liang, L.; Wu, H.; Swevers, L.; Sun, J.; Feng, M. Single-nucleus sequencing of silkworm larval midgut reveals the immune escape strategy of BmNPV in the midgut during the late stage of infection. Insect Biochem. Mol. Biol. 2024, 164, 104043. [Google Scholar] [CrossRef]
- Keddie, B.; Aponte, G.; Volkman, L.E. The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 1989, 243, 1728–1730. [Google Scholar] [CrossRef] [PubMed]
- Washburn, J.O.; Trudeau, D.; Wong, J.F.; Volkman, L.E. Early pathogenesis of Autographa californica multiple nucleopolyhedrovirus and Helicoverpa zea single nucleopolyhedrovirus in Heliothis virescens: A comparison of the ‘M’ and ‘S’ strategies for establishing fatal infection. J. Gen. Virol. 2003, 84, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Nagata, M.; Nakao, R.; Hamada, K.; Aoki, F. Inactivation of Bombyx mori nucleopolyhedrovirus by reducing agents. J. Seric. Sci. Jpn. 2003, 72, 49–54, (In Japanese with figures and tables in English). [Google Scholar]
- Gomes, F.M.; Carvalho, D.B.; Machado, E.A.; Miranda, K. Ultrastructural and functional analysis of secretory goblet cells in the midgut of the lepidopteran Anticarsia gemmatalis. Cell Tissue Res. 2013, 352, 313–326. [Google Scholar] [CrossRef]
- Caccia, S.; Casartelli, M.; Tettamanti, G. The amazing complexity of insect midgut cells: Types, peculiarities, and functions. Cell Tissue Res. 2019, 377, 505–525. [Google Scholar] [CrossRef]
- Dow, J.A. pH gradients in lepidopteran midgut. J. Exp. Biol. 1992, 172, 355–375. [Google Scholar] [CrossRef]
- Klein, U.; Koch, A.; Moffett, D.F. Ion transport in Lepidoptera. In Biology of the Insect Midgut; Lehane, M.J., Billingsley, P.F., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 236–264. [Google Scholar]
- Shrestha, A.; Bao, K.; Chen, W.; Wang, P.; Fei, Z.; Blissard, G.W. Transcriptional responses of the Trichoplusia ni midgut to oral infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus. J. Virol. 2019, 93, e00353-19. [Google Scholar] [CrossRef]
- Kong, W.W.; Yan, Y.L.; Hou, C.P.; Hong, T.; Wang, Y.S.; Xu, X.; Liu, S.H.; Xu, J.P. A novel digestive protease chymotrypsin-like serine contributes to anti-BmNPV activity in silkworm (Bombyx mori). Dev. Comp. Immunol. 2025, 162, 105301. [Google Scholar] [CrossRef]
- Erlandson, M.A.; Hegedus, D.D.; Baldwin, D.; Noakes, A.; Toprak, U. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor. Arch. Insect Biochem. Physiol. 2010, 75, 70–91. [Google Scholar] [CrossRef]
- Awais, M.M.; Fei, S.; Xia, J.; Feng, M.; Sun, J. Insights into midgut cell types and their crucial role in antiviral immunity in the lepidopteran model Bombyx mori. Front. Immunol. 2024, 15, 1349428. [Google Scholar] [CrossRef]
- Selot, R.; Kumar, V.; Shukla, S.; Chandrakuntal, K.; Brahmaraju, M.; Dandin, S.B.; Laloraya, M.; Kumar, P.G. Identification of a soluble NADPH oxidoreductase (BmNOX) with antiviral activities in the gut juice of Bombyx mori. Biosci. Biotechnol. Biochem. 2007, 71, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhu, F.; Chen, K. The mechanisms of silkworm resistance to the baculovirus and antiviral breeding. Annu. Rev. Entomol. 2023, 68, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Gringorten, J.L.; Crawford, D.N.; Harvey, W.R. High pH in the ectoperitrophic space of the larval lepidopteran midgut. J. Exp. Biol. 1993, 183, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Noland, J.E.; Breitenbach, J.E.; Popham, H.J.R.; Hum-Musser, S.M.; Vogel, H.; Musser, R.O. Gut transcription in Helicoverpa zea is dynamically altered in response to baculovirus infection. Insects 2013, 4, 506–520. [Google Scholar] [CrossRef]
- Chapman, J.W.; Williams, T.; Escribano, A.; Caballero, P.; Cave, R.D.; Goulson, D. Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecol. Entomol. 1999, 24, 268–275. [Google Scholar] [CrossRef]
- Van Allen, B.G.; Dillemuth, F.; Dukic, V.; Elderd, B.D. Viral transmission and infection prevalence in a cannibalistic host–pathogen system. Oecologia 2023, 201, 499–511. [Google Scholar] [CrossRef]
- Dhandapani, N.; Jayaraj, S.; Rabindra, R.J. Cannibalism on nuclear polyhedrosis virus infected larvae by Heliothis armigera (Hubn.) and its effect on viral infection. Int. J. Trop. Ins. Sci. 1993, 14, 427–430. [Google Scholar] [CrossRef]
- Orrock, J.L.; Guiden, P.W.; Pan, V.S.; Karban, R. Plant induced defenses that promote cannibalism reduce herbivory as effectively as highly pathogenic herbivore pathogens. Oecologia 2022, 199, 397–405. [Google Scholar] [CrossRef]
- Abbas, M.S.T.; Boucias, D.G. Interaction between nuclear polyhedrosis virus-infected Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae and predator Podisus maculiventris (Say) (Hemiptera: Pentatomidae). Environ. Entomol. 1984, 13, 599–602. [Google Scholar] [CrossRef]
- Young, S.Y.; Yearian, W.C. Nabis roseipennis adults (Hemiptera: Nahidae) as disseminators of nuclear polyhedrosis virus to Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae. Environ. Entomol. 1987, 16, 1330–1333. [Google Scholar] [CrossRef]
- Moscardi, F.; Pollato, S.L.; Corrêa-Ferreira, B.S. Atividade do vírus de poliedrose nuclear de Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) após sua passagem pelo aparelho digestivo de insetos predadores. An. Soc. Entomológica Brasil 1996, 25, 315–320. [Google Scholar] [CrossRef]
- Castillejos, V.; García, L.; Cisneros, J.; Goulson, D.; Caballero, P.; Cave, R.D.; Williams, T. The potential of Chrysoperla rufilabris and Doru taeniatum as agents for dispersal of Spodoptera frugiperda nucleopolyhedrovirus in maize. Entomol. Exp. Appl. 2001, 98, 353–359. [Google Scholar] [CrossRef]
- Vasconcelos, S.D.; Williams, T.; Hails, R.S.; Cory, J.S. Prey selection and baculovirus dissemination by carabid predators of Lepidoptera. Ecol. Entomol. 1996, 21, 98–104. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gani, M.; Jasrotia, P.; Srivastava, K.; Kaul, V. A comparison of infectivity between polyhedra of the Spodoptera litura multiple nucleopolyhedrovirus before and after passage through the gut of the stink bug, Eocanthecona furcellata. J. Insect Sci. 2014, 14, 96. [Google Scholar] [CrossRef]
- Biever, K.D.; Andrews, P.L.; Andrews, P.A. Use of a predator, Podisus maculiventris, to distribute virus and initiate epizootics. J. Econ. Entomol. 1982, 75, 150–152. [Google Scholar] [CrossRef]
- Martínez, A.M.; Zamudio-López, S.; Guzmán-Pedraza, A.O.; Morales-Alonso, S.I.; Valle, J.; Ramos-Ortiz, S.; Zamora-Avilés, N.; Figueroa, J.I.; Pineda, S. Engytatus varians as agent for dispersal of Spodoptera exigua nucleopolyhedrovirus. J. Pest Sci. 2022, 95, 1621–1630. [Google Scholar] [CrossRef]
- Cossentine, J.E. The parasitoid factor in the virulence and spread of lepidopteran baculoviruses. Virol. Sinica 2009, 24, 305–314. [Google Scholar] [CrossRef]
- Beegle, C.C.; Oatman, E.R. Effect of a nuclear polyhedrosis virus on the relationship between Trichoplusia ni (Lepidoptera: Noctuidae) and the parasite, Hyposoter exiguae (Hymenoptera: Ichneumonidae). J. Invertebr. Pathol. 1975, 25, 59–71. [Google Scholar] [CrossRef]
- Morel, A.; Leigh, B.; Muñoz, D.; Caballero, P.; Medina, P.; Dáder, B. The parasitoid Hyposoter didymator can transmit a broad host range baculovirus in a two host system. Horticulturae 2023, 9, 170. [Google Scholar] [CrossRef]
- Young, S.Y.; Yearian, W.C. Transmission of nuclear polyhedrosis virus by the parasitoid Microplitis croceipes (Hymenoptera: Braconidae) to Heliothis virescens (Lepidoptera: Noctuidae) on soybean. Environ. Entomol. 1990, 19, 251–256. [Google Scholar] [CrossRef]
- Stoianova, E.E.; Balevski, N.A. Transmission of different nucleopolyhedroviruses by two ectoparasitoids: Bracon hebetor say (Hymenoptera: Braconidae) and Euplectrus plathypenae (Howard) (Hymenoptera: Eulophidae). Pest. Fitomed. 2010, 25, 133–137. [Google Scholar] [CrossRef]
- Jiang, J.; Zeng, A.; Ji, X.; Wan, N.; Chen, X. Combined effect of nucleopolyhedrovirus and Microplitis pallidipes for the control of the beet armyworm, Spodoptera exigua. Pest Manag. Sci. 2011, 67, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiang, J.X.; Chen, Y.J.; Wang, J.Y.; Ji, X.Y.; Wan, N.F. Contribution of a parasitoid species to multiplication and transmission of a multiple nucleopolyhedrovirus in caterpillars. J. Appl. Entomol. 2020, 144, 308–314. [Google Scholar] [CrossRef]
- Irabagon, T.A.; Brooks, W.M. Interaction of Campoletis sonorensis and a nuclear polyhedrosis virus in larvae of Heliothis virescens. J. Econ. Entomol. 1974, 67, 229–231. [Google Scholar] [CrossRef]
- Young, S.Y.; Yearian, W.C. Contamination of arthropod predators with Heliothis nuclear polyhedrosis virus after Elcar™ applications to soybean for control of Heliothis spp.(Lepidoptera: Noctuidae). J. Entomol. Sci. 1990, 25, 486–492. [Google Scholar] [CrossRef]
- Fuxa, J.R.; Richter, A.R.; Strother, M.S. Detection of Anticarsia gemmatalis nuclear polyhedrosis virus in predatory arthropods and parasitoids after viral release in Louisiana soybean. J. Entomol. Sci. 1993, 28, 51–60. [Google Scholar]
- Fuxa, J.R.; Richter, A.R. Distance and rate of spread of Anticarsia gemmatalis (Lepidoptera: Noctuidae) nuclear polyhedrosis virus released into soybean. Environ. Entomol. 1994, 23, 1308–1316. [Google Scholar] [CrossRef]
- Lee, Y.; Fuxa, J. Transport of wild-type and recombinant nucleopolyhedroviruses by scavenging and predatory arthropods. Microb. Ecol. 2000, 39, 301–313. [Google Scholar]
- Boucias, D.G.; Abbas, M.S.T.; Rathbone, L.; Hostettler, N. Predators as potential dispersal agents of the nuclear polyhedrosis virus of Anticarsia gemmatalis [Lep.: Noctuidae] in soybean. Entomophaga 1987, 32, 97–108. [Google Scholar] [CrossRef]
- Qian, C.; Wen, C.; Guo, X.; Yang, X.; Wen, X.; Ma, T.; Wang, C. Gregariousness in lepidopteran larvae. Insect Sci. 2024, 31, 1353–1364. [Google Scholar] [CrossRef]
- Hochberg, M.E. Viruses as costs to gregarious feeding behaviour in the Lepidoptera. Oikos 1991, 61, 291–296. [Google Scholar] [CrossRef]
- Williams, T. Soil as an environmental reservoir for baculoviruses: Persistence, dispersal and role in pest control. Soil Syst. 2023, 7, 29. [Google Scholar] [CrossRef]
- Coley, P.D.; Bateman, L.M.; Kursar, T.A. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 2006, 115, 219–228. [Google Scholar] [CrossRef]
- Kursar, T.A.; Wolfe, B.T.; Epps, M.J.; Coley, P.D. Food quality, competition, and parasitism influence feeding preference in a neotropical lepidopteran. Ecology 2006, 87, 3058–3069. [Google Scholar] [CrossRef]
- Begon, M.; Daud, K.B.H.; Young, P.; Howells, R.E. The invasion and replication of a granulosis virus in the Indian meal moth, Plodia interpunctella: An electron microscope study. J. Invertebr. Pathol. 1993, 61, 281–295. [Google Scholar] [CrossRef]
- Shapiro, M.; Farrar Jr, R.R.; Domek, J.; Javaid, I. Effects of virus concentration and ultraviolet irradiation on the activity of corn earworm and beet armyworm (Lepidoptera: Noctuidae) nucleopolyhedroviruses. J. Econ. Entomol. 2002, 95, 243–249. [Google Scholar] [CrossRef]
- Lasa, R.; Guerrero-Analco, J.A.; Monribot-Villanueva, J.L.; Mercado, G.; Williams, T. Why do Spodoptera exigua multiple nucleopolyhedrovirus occlusion bodies lose insecticidal activity on amaranth (Amaranthus hypocondriacus L.)? Biol. Control 2018, 126, 74–82. [Google Scholar] [CrossRef]
- Aminu, A.; Stevenson, P.C.; Grzywacz, D. Reduced efficacy of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) on chickpea (Cicer arietinum) and other legume crops, and the role of organic acid exudates on occlusion body inactivation. Biol. Control 2023, 180, 105171. [Google Scholar] [CrossRef]
- Seifert, C.L.; Moos, M.; Volf, M. Different fates of metabolites and small variation in chemical composition characterise frass chemistry in a specialist caterpillar. Physiol. Entomol. 2024, 49, 110–117. [Google Scholar] [CrossRef]
- Shapiro, M.; El Salamouny, S.; Shepard, B.M.; Jackson, D.M. Plant phenolics as radiation protectants for the beet armyworm (Lepidoptera: Noctuidae) nucleopolyhedrovirus. J. Agric. Urban Entomol. 2009, 26, 1–10. [Google Scholar] [CrossRef]
- Weiss, M.R. Defecation behavior and ecology of insects. Annu. Rev. Entomol. 2006, 51, 635–661. [Google Scholar] [CrossRef] [PubMed]
- Revadi, S.V.; Giannuzzi, V.A.; Vetukuri, R.R.; Walker, W.B., III; Becher, P.G. Larval response to frass and guaiacol: Detection of an attractant produced by bacteria from Spodoptera littoralis frass. J. Pest Sci. 2021, 94, 1105–1118. [Google Scholar] [CrossRef]
- Jakubowska, A.K.; Vogel, H.; Herrero, S. Increase in gut microbiota after immune suppression in baculovirus-infected larvae. PLoS Pathog. 2013, 9, e1003379. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.G.; Shikano, I.; Mason, C.J.; Peiffer, M.; Felton, G.W.; Hoover, K. Effects of baculovirus-killed cadavers on plant defenses and insect behavior. Arthropod-Plant Interact. 2025, 19, 22. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, T. Fecal Transmission of Nucleopolyhedroviruses: A Neglected Route to Disease? Insects 2025, 16, 562. https://doi.org/10.3390/insects16060562
Williams T. Fecal Transmission of Nucleopolyhedroviruses: A Neglected Route to Disease? Insects. 2025; 16(6):562. https://doi.org/10.3390/insects16060562
Chicago/Turabian StyleWilliams, Trevor. 2025. "Fecal Transmission of Nucleopolyhedroviruses: A Neglected Route to Disease?" Insects 16, no. 6: 562. https://doi.org/10.3390/insects16060562
APA StyleWilliams, T. (2025). Fecal Transmission of Nucleopolyhedroviruses: A Neglected Route to Disease? Insects, 16(6), 562. https://doi.org/10.3390/insects16060562