Shotgun Metagenome Analysis of Two Schizaphis graminum Biotypes over Time With and Without Carried Cereal Yellow Dwarf Virus
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Execution
2.2. Bioinformatic Processing
3. Results
3.1. Overview
3.2. Diversity
3.3. Generic Composition
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMullen, J.G., II; Peters-Schulze, G.; Cai, J.; Patterson, A.D.; Douglas, A.E. How gut microbiome interactions affect nutritional traits of Drosophila melanogaster. J. Exp. Biol. 2020, 223, jeb227843. [Google Scholar] [CrossRef] [PubMed]
- Voirol, L.R.P.; Frago, E.; Kaltenpoth, M.; Hilker, M.; Fatouros, N.E. Bacterial symbionts in lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 2018, 9, 556. [Google Scholar] [CrossRef]
- Singh, S.; Singh, A.; Baweja, V.; Roy, A.; Chakraborty, A.; Singh, I.K. Molecular rationale of insect-microbes symbiosis—From insect behaviour to mechanism. Microorganisms 2021, 9, 2422. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Yao, Z.; Raza, M.F.; Cai, Z.; Zhang, H. Regulatory mechanisms of microbial homeostasis in insect gut. Insect Sci. 2021, 28, 286–301. [Google Scholar] [CrossRef]
- Negroni, M.A.; Segers, F.H.I.D.; Vogelweith, F.; Foitzik, S. Immune challenge reduces gut microbial diversity and triggers fertility-dependent gene expression changes in a social insect. BMC Genom. 2020, 21, 816. [Google Scholar] [CrossRef]
- Haider, K.; Sufian, M.; Abbas, D.; Kabir, K.; Ali, M.S.; Kausar, Y.; Ghafar, M.A. The role of gut microbiota in shaping immune responses in Tephritidae fruit fly and prospective implications for management. Neotrop. Entomol. 2025, 54, 34. [Google Scholar] [CrossRef]
- Korsa, A.; Lo, L.K.; Gandhi, S.; Bang, C.; Kurtz, J. Oral immune priming treatment alters microbiome composition in the red flour beetle Tribolium castaneum. Front. Microbiol. 2022, 13, 793143. [Google Scholar] [CrossRef]
- Mondal, S.; Somani, J.; Roy, S.; Babu, A.; Pandey, A.K. Insect microbial symbionts: Ecology, interactions, and biological significance. Microorganisms 2023, 11, 2665. [Google Scholar] [CrossRef]
- Pang, X.; Xiao, X.; Liu, Y.; Zhang, R.; Liu, J.; Liu, Q.; Wang, P.; Cheng, G. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat. Microbiol. 2016, 1, 16023. [Google Scholar] [CrossRef]
- Gossner, M.M.; Beenken, L.; Arend, K.; Begerow, D.; Persoh, D. Insect herbivory facilitates the establishment of an invasive plant pathogen. ISME Commun. 2021, 1, 6. [Google Scholar] [CrossRef]
- Limayem, A.; Martin, E.M.; Shankar, S. Study on the citrus greening disease: Current challenges and novel therapies. Microb. Pathog. 2024, 192, 106688. [Google Scholar] [CrossRef] [PubMed]
- Nancarrow, N.; Aftab, M.; Hollaway, G.; Rodoni, B.; Trebicki, P. Yield losses caused by barley yellow dwarf virus-PAV infection in wheat and barley: A three-year field study in south-eastern Australia. Microorganisms 2021, 9, 645. [Google Scholar] [CrossRef] [PubMed]
- Sisterton, M.S.; Burbank, L.P.; Krugner, R.; Haviland, D.; Stenger, D.C. Xylella fastidiosa and glassy-winged sharpshooter population dynamics in the southern San Joaquin Valley of California. Plant Dis. 2020, 104, 2994–3001. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, S.J.; Hartson, S.D.; Puterka, G.J. Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J. Proteomics 2012, 75, 2252–2268. [Google Scholar] [CrossRef]
- Nicolis, V.F.; Burger, N.F.V.; Botha, A.-M. Whole-body transcriptome mining for candidate effectors from Diuraphis noxia. BMC Genom. 2022, 23, 493. [Google Scholar] [CrossRef]
- Crane, Y.M.; Crane, C.F.; Schemerhorn, B.J. Differential gene expression between viruliferous and non-viruliferous Schizaphis graminum (Rondani). PLoS ONE 2023, 8, 32. [Google Scholar] [CrossRef]
- Royer, T.A.; Pendleton, B.B.; Elliott, N.C.; Giles, K.L. Greenbug (Hemiptera: Aphididae) biology, ecology, and management in wheat and sorghum. J. Integr. Pest Manag. 2015, 6, 19. [Google Scholar] [CrossRef]
- Webster, J.A.; Kenkel, P. Benefits of managing small-grain pests with plant resistance. In Economic, Environmental, and Social Benefits of Resistance in Field Crops; Wiseman, B.R., Webster, J.A., Eds.; Entomological Society of America: Lanham, MD, USA, 1999; pp. 87–114. [Google Scholar]
- Pendleton, B.B.; Copeland, A.L.; Michels, G.J., Jr. Effect of biotype and temperature on fitness of greenbug (Hemiptera: Aphididae) on sorghum. J. Econ. Entomol. 2009, 102, 1624–1627. [Google Scholar] [CrossRef]
- Burrows, M.E.; Caillaud, M.C.; Smith, D.M.; Gray, S.M. Biometrical genetic analysis of luteovirus transmission in the aphid Schizaphis graminum. Heredity 2007, 98, 106–113. [Google Scholar] [CrossRef]
- Mayo, M.A.; D’Arcy, C.J. Family Luteoviridae: A reclassification of luteoviruses. In The Luteoviridae; Smith, H.G., Barker, H., Eds.; CABI Publishing: Wallingford, UK, 1999; pp. 15–22. [Google Scholar]
- Lotos, L.; Efthimiou, K.; Maliogka, V.I.; Katis, N.I. Generic detection of poleroviruses using an RT-PCR assay targeting the RdRp coding sequence. J. Virol. Methods 2014, 198, 1–11. [Google Scholar] [CrossRef]
- Jousselin, E.; d’Acier, A.C.; Clamens, A.-L.; Galan, M.; Cruaud, C.; Barbe, V.; Manzano-Marín, A. Discordance between mitochondrial, nuclear, and symbiont genomes in aphid phylogenetics: Who is telling the truth? Zool. J. Linn. Soc. 2024, 201, zlae098. [Google Scholar] [CrossRef]
- Zepeda-Paulo, F.; Ortiz-Martinez, S.; Silva, A.X.; Lavandero, B. Low bacterial community diversity in two introduced aphid pests revealed with 16S rRNA amplicon sequencing. Peer J. 2018, 6, e4725. [Google Scholar] [CrossRef] [PubMed]
- Fakhour, S.; Ambroise, J.; Renoz, F.; Foray, V.; Gala, J.-L.; Hance, T. A large-scale field study of bacterial communities in cereal aphid populations across Morocco. FEMS Microbiol. Ecol. 2018, 94, fiy003. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-J.; He, H.-P.; Zhao, H.-M.; Xian, Y.-D.; Guo, H.; Liu, B.; Xue, K. Microbiome diversity of cotton aphids (Aphis gossypii) is associated with host alternation. Sci. Rep. 2021, 11, 5260. [Google Scholar] [CrossRef]
- Guo, S.-K.; Gong, Y.-J.; Chen, J.-C.; Shi, P.; Cao, L.-J.; Yang, Q.; Hoffmann, A.A.; Wei, S.-J. Increased density of endosymbiotic Buchnera related to pesticide resistance in yellow morph of melon aphid. J. Pest Sci. 2020, 93, 1281–1294. [Google Scholar] [CrossRef]
- Gallo-Franco, J.J.; Duque-Gamboa, D.N.; Toro-Perea, N. Bacterial communities of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae) from pepper crops (Capsicum sp.). Sci. Rep. 2019, 9, 5766. [Google Scholar] [CrossRef]
- Smith, A.H.; O’connor, M.P.; Deal, B.; Kotzer, C.; Lee, A.; Wagner, B.; Joffe, J.; Woloszynek, S.; Oliver, K.M.; Russell, J.A. Does getting defensive get you anywhere?—Seasonal balancing selection, temperature, and parasitoids shape real-world, protective endosymbiont dynamics in the pea aphid. Mol. Ecol. 2021, 30, 2449–2472. [Google Scholar] [CrossRef]
- Enders, L.S.; Miller, N.J. Stress-induced changes in abundance differ among obligate and facultative endosymbionts of the soybean aphid. Ecol. Evol. 2016, 6, 818–829. [Google Scholar] [CrossRef]
- He, B.; Chen, X.; Yang, H.; Cernava, T. Microbiome structure of the aphid Myzus persicae (Sulzer) is shaped by different Solanaceae plant diets. Front. Microbiol. 2021, 12, 667257. [Google Scholar] [CrossRef]
- Ban, L.; Didon, A.; Jonsson, L.M.V.; Glinwood, R.; Delp, G. An improved detection method for the Rhopalosiphum padi virus (RhPV) allows monitoring of its presence in aphids and movement within plants. J. Virol. Methods 2007, 142, 136–142. [Google Scholar] [CrossRef]
- Putri, G.H.; Anders, S.; Pyl, P.T.; Pimanda, J.E.; Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022, 38, 2943–2945. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. In Lawrence Berkeley Nat. Lab. LBNL Rep; LBL Publications: Berkeley, CA, USA, 2014; LBNL-7065E; Available online: https://escholarship.org/uc/item/1h3515gn (accessed on 15 January 2024).
- Edwards, J.A.; Edwards, R.A. fastq-pair: Efficient synchronization of paired-end fastq files. bioRxiv 2019, 552885. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- McDonald, D.; Clemente, J.C.; Kuczynski, J.; Rideout, J.R.; Stombaugh, J.; Wendel, D.; Wilke, A.; Huse, S.; Hufnagle, J.; Meyer, F.; et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 2012, 1, 7. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Solymos, P.; Stevens, M.H.H.; Wagner, H.; et al. Vegan: Community Ecology Package. 2018. Available online: https://CRAN.R-project.org/package=vegan (accessed on 10 May 2025).
- Manzano-Marin, A.; Coeur d’Acier, A.; Clamens, A.L.; Cruaud, C.; Barbe, V.; Jousselin, E. Co-obligate symbioses have repeatedly evolved across aphids, but partner identity and nutritional contributions vary across lineages. Peer Community J. 2023, 3, e46. [Google Scholar] [CrossRef]
- Komaki, K.; Ishikawa, H. Genomic copy number of intracellular bacterial symbionts of aphids varies in response to developmental stage and morph of their host. Insect Biochem. Mol. Biol. 2000, 30, 253–258. [Google Scholar] [CrossRef]
- Silva, F.J.; Latorre, A.; Moya, A. Genome size reduction through multiple events of gene disintegration in Buchnera APS. Trends Genet. 2001, 17, 615–618. [Google Scholar] [CrossRef]
- Sharawi, S.E. Morphological and molecular identification of novel green peach aphids (Myzus persicae) and their microbiome diversity in Taif Governorate. Indian J. Anim. Res. 2023, 57, 1177–1185. [Google Scholar] [CrossRef]
- Douglas, A.E. On the source of sterols in the green peach aphid, Myzus persicae, reared on holidic diet. J. Insect Physiol. 1988, 34, 403–408. [Google Scholar] [CrossRef]
- Cernava, T.; Erlacher, A.; Soh, J.; Sensen, C.W.; Grube, M.; Berg, G. Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome 2019, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Mhaske, P.; Xiao, J.; Tang, L.; Qian, L.; Zheng, Y. Phyllosphere bacterial communities in wheat and faba bean intercropping: Structural and functional mechanisms in response to stripe rust infection. Phytobiomes J. 2025, 2471–2906. [Google Scholar] [CrossRef]
- Michels, G.J., Jr. Graminaceous North American host plants of the greenbug with notes on biotypes. SW Entomol. 1986, 11, 55–66. [Google Scholar]
- Olmedo-Velarde, A.; Wilson, J.R.; Stallone, M.; DeBlasio, S.L.; Chappie, J.S.; Heck, M. Potato leafroll virus molecular interactions with plants and aphids: Gaining a new tactical advantage on an old foe. Physiol. Mol. Plant Pathol. 2023, 125, 102015. [Google Scholar] [CrossRef]
- Valles, S.M.; Chen, Y.; Firth, A.E.; Guérin, D.A.M.; Hashimoto, Y.; Herrero, S.; de Miranda, J.R.; Ryabov, E. ICTV virus taxonomy profile: Dicistroviridae. J. Gen. Virol. 2017, 98, 355–356. [Google Scholar] [CrossRef]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef]
- Blow, F.; Douglas, A.E. The hemolymph microbiome of insects. J. Insect Physiol. 2019, 115, 33–39. [Google Scholar] [CrossRef]
- Ament-Velásquez, S.L.; Tuovinen, V.; Bergström, L.; Spribille, T.; Vanderpool, D.; Nascimbene, J.; Yamamoto, Y.; Thor, G.; Johannesson, H. The plot thickens: Haploid and triploid-like thalli, hybridization, and biased mating type ratios in Letharia. Front. Fungal Biol. 2021, 2, 656386. [Google Scholar] [CrossRef]
Factor * | r2 | p-Value |
---|---|---|
rel_time | 0.459 | 0.001 |
biotype | 0.007 | 0.567 |
viral_status | 0.006 | 0.690 |
biotype:rel_time | 0.014 | 0.067 |
viral_status:rel_time | 0.014 | 0.068 |
biotype:viral_status | 0.010 | 0.408 |
Genera | Maximum Fraction of Counts |
---|---|
Mucor | 0.9846 |
Letharia | 0.9785 |
Fibrisoma | 0.9589 |
Variovorax | 0.8873 |
Pantoea | 0.8093 |
Serratia | 0.7483 |
Rhopalosiphum padi virus | 0.5483 |
Vibrio | 0.4438 |
Malassezia | 0.3932 |
Legionella | 0.3622 |
Anaerococcus | 0.3426 |
Corynebacterium | 0.3395 |
Novosphingobium | 0.3354 |
Alkalispirochaeta | 0.3174 |
Micrococcus | 0.3162 |
Desulfovibrio | 0.2465 |
Erwinia | 0.2308 |
Kocuria | 0.2276 |
Nocardioides | 0.2204 |
Buchnera | 0.2060 |
Pelomonas | 0.1734 |
Arthrobacter | 0.1578 |
Microcystis | 0.1565 |
Streptococcus | 0.1545 |
Staphylococcus | 0.1502 |
Propionibacterium | 0.1388 |
Klebsiella | 0.1315 |
Caulobacter | 0.1308 |
Brevundimonas | 0.1246 |
Clostridium | 0.0996 |
Sphingomonas | 0.0869 |
Bradyrhizobium | 0.0799 |
Microbacterium | 0.0796 |
Pseudomonas | 0.0687 |
Acidovorax | 0.0679 |
Providencia | 0.0610 |
Betaproteobacterium FWI2 | 0.0608 |
Rheinheimera | 0.0602 |
Streptomyces | 0.0590 |
Flavobacterium | 0.0585 |
Actinomadura | 0.0559 |
Afipia | 0.0552 |
Stenotrophomonas | 0.0552 |
Marinobacterium | 0.0545 |
Enterobacter | 0.0532 |
Shigella | 0.0530 |
Aquabacterium | 0.0506 |
Lamprocystis | 0.0506 |
Ralstonia | 0.0504 |
Escherichia | 0.0497 |
Methylobacterium | 0.0480 |
Pusillimonas | 0.0465 |
Terrisporobacter | 0.0460 |
Acinetobacter | 0.0446 |
Citrobacter | 0.0445 |
Gilbertella | 0.0425 |
Bacillus | 0.0384 |
Burkholderia | 0.0350 |
Genus | Total Count | Mean Days 0–10 | Mean Days 15–20 |
---|---|---|---|
Shigella | 36,995,790 | 0.6859 | 0.0661 |
Escherichia | 10,750,123 | 0.6825 | 0.0711 |
Citrobacter | 2,335,059 | 0.4983 | 0.0670 |
Enterobacter | 1,621,481 | 0.4626 | 0.0742 |
Klebsiella | 264,331 | 0.5574 | 0.1801 |
Salmonella | 72,442 | 0.2627 | 0.3421 |
Kluyvera | 41,571 | 0.1827 | 0.3337 |
Raoultella | 12,306 | 0.4437 | 0.0908 |
Blochmannia | 11,825 | 0.0302 | 0.0770 |
Leclercia | 11,269 | 0.0954 | 0.3715 |
Cedecea | 10,269 | 0.2655 | 0.0082 |
Taxon | Variable | Direction | Base_Mean | Log2_Fold_Change | Adj_p-Value |
---|---|---|---|---|---|
Shigella | time | down | 210,548.6 | −4.57 | 8.59 × 10−136 |
Escherichia | time | down | 61,277.55 | −4.5 | 2.19 × 10−124 |
Citrobacter | time | down | 14,367.69 | −4.19 | 3.17 × 10−74 |
Shigella | rel_time | down | 210,548.6 | −4.6 | 1.31 × 10−146 |
Escherichia | rel_time | down | 61,277.55 | −4.48 | 2.38 × 10−134 |
Citrobacter | rel_time | down | 14,367.69 | −4.07 | 1.99 × 10−82 |
Letharia | biotype | down | 146.68 | −3.69 | 1.73 × 10−7 |
Aequitasia | biotype | down | 109.78 | −6.26 | 1.18 × 10−5 |
Salipaludibacillus | biotype | down | 74.46 | −2.71 | 1.86 × 10−5 |
Microvirga | virus | down | 228.96 | −2.46 | 5.66 × 10−6 |
Salipaludibacillus | virus | down | 74.46 | −2.61 | 4.20 × 10−5 |
Letharia | virus | down | 101.13 | −2.57 | 6.54 × 10−4 |
Aquabacterium | time | Up | 1382.08 | 2.14 | 3.32 × 10−68 |
Herbaspirillum | time | Up | 591.39 | 2.05 | 1.74 × 10−55 |
Delftia | time | Up | 511.92 | 1.54 | 6.12 × 10−51 |
Aquabacterium | rel_time | Up | 1382.08 | 2.3 | 9.23 × 10−73 |
Herbaspirillum | rel_time | Up | 591.39 | 1.85 | 1.20 × 10−57 |
Delftia | rel_time | Up | 511.92 | 1.75 | 9.20 × 10−55 |
Microvirga | biotype | Up | 140.13 | 1.57 | 2.03 × 10−3 |
Massilia | biotype | Up | 397.05 | 0.91 | 2.09 × 10−2 |
Porphyromonas | biotype | Up | 55.79 | 1.09 | 3.33 × 10−2 |
Blochmannia | virus | Up | 14.48 | 5 | 1.12 × 10−12 |
Izhakiella | virus | Up | 17.35 | 5.94 | 1.83 × 10−11 |
Chryseobacterium | virus | Up | 293.1 | 0.91 | 2.07 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crane, Y.M.; Crane, C.F.; Subramanyam, S.; Schemerhorn, B.J. Shotgun Metagenome Analysis of Two Schizaphis graminum Biotypes over Time With and Without Carried Cereal Yellow Dwarf Virus. Insects 2025, 16, 554. https://doi.org/10.3390/insects16060554
Crane YM, Crane CF, Subramanyam S, Schemerhorn BJ. Shotgun Metagenome Analysis of Two Schizaphis graminum Biotypes over Time With and Without Carried Cereal Yellow Dwarf Virus. Insects. 2025; 16(6):554. https://doi.org/10.3390/insects16060554
Chicago/Turabian StyleCrane, Yan M., Charles F. Crane, Subhashree Subramanyam, and Brandon J. Schemerhorn. 2025. "Shotgun Metagenome Analysis of Two Schizaphis graminum Biotypes over Time With and Without Carried Cereal Yellow Dwarf Virus" Insects 16, no. 6: 554. https://doi.org/10.3390/insects16060554
APA StyleCrane, Y. M., Crane, C. F., Subramanyam, S., & Schemerhorn, B. J. (2025). Shotgun Metagenome Analysis of Two Schizaphis graminum Biotypes over Time With and Without Carried Cereal Yellow Dwarf Virus. Insects, 16(6), 554. https://doi.org/10.3390/insects16060554