Dual Role of Sitophilus zeamais: A Maize Storage Pest and a Potential Edible Protein Source
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Pest Culture
2.2. Food Safety Analysis
2.3. Extraction of Salt-Soluble Proteins
2.4. Protein Quantification
2.5. Protein Quality
2.6. Statistical Analysis
3. Results
3.1. Food Safety Analysis
3.2. Protein Quantification
3.3. Protein Quality and Amino Acid Composition
4. Discussion
4.1. Food Safety Analysis
4.2. Protein Quantification
4.3. Protein Quality and Amino Acid Composition
4.4. Pest Control and Sustainable Utilization Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Lara, S.; Saldivar, S.O.S. Insect Pests. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 432–436. [Google Scholar]
- Arrahman, A.; Mirsam, H.; Djaenuddin, N.; Suriani; Pakki, S.; Saenong, M.S.; Sebayang, A. An In-Depth Study on Sitophilus zeamais Motsch (Coleoptera: Curculionidae) Pests on Corn Plants. IOP Conf. Ser. Earth Env. Sci. 2022, 1107, 012060. [Google Scholar] [CrossRef]
- Teshome, A.; Tefera, T. Susceptibility of Sitophilus zeamais (Mostch.) (Coleoptera: Curculionidae) to Beauveria bassiana and Metarhizium anisopliae. SINET Ethiop. J. Sci. 2009, 32, 21–28. [Google Scholar] [CrossRef]
- Arbogast, R.T.; Mullen, M.A. Interaction of Maize weevil (Coleoptera: Curculionidae) and Parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae) in a Small Bulk of Stored Corn. J. Econ. Entomol. 1990, 83, 2462–2468. [Google Scholar] [CrossRef]
- Cortese, D.; Oliveira, G.S.; de Fernandes, M.G. Resistance Evaluation of Maize Varieties to Sitophilus zeamais Infestation across Two Generations: Insights for Integrated Pest Management. J. Stored Prod. Res. 2024, 109, 102473. [Google Scholar] [CrossRef]
- Liceaga, A.M.; Aguilar-Toalá, J.E.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Insects as an Alternative Protein Source. Annu. Rev. Food Sci. Technol. 2022, 13, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Mao, C.; Li, X.; Jiang, L.; Zhang, W.; Li, M.; Liu, H.; Fang, Y.; Liu, S.; Yang, G.; et al. Edible Insects: A New Sustainable Nutritional Resource Worth Promoting. Foods 2023, 12, 4073. [Google Scholar] [CrossRef] [PubMed]
- FAO. ‘Worm’ Up to the Idea of Edible Insects. Available online: https://www.fao.org/newsroom/story/-Worm-up-to-the-idea-of-edible-insects/en (accessed on 24 January 2025).
- Payne, C.; Van Itterbeeck, J. Ecosystem Services from Edible Insects in Agricultural Systems: A Review. Insects 2017, 8, 24. [Google Scholar] [CrossRef]
- Adepoju, O.T.; Ajayi, K. Assessment of Quality and Safety of Winged Termites (Macrotermes bellicosus) Enriched Locally Formulated Complementary Foods. J. Food Res. 2017, 6, 117. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Thanpandiyan, K.; Adli, D.N.; Yudhistira, B.; Fernando, I.; De Palo, P. Overview of the African Palm Weevil (Rhynchophorus phoenicis) as Food and Feed—A Critical Review. J. Insects Food Feed. 2024, 11, 593–620. [Google Scholar] [CrossRef]
- Abd-El Wahed, S.; Ahmad, A. Variations in Chemical Composition Value of Adults and Nymphs Desert Locust, Schistocerca gregaria Forskal (Orthoptera: Acrididae). J. Plant Prot. Pathol. 2019, 10, 677–681. [Google Scholar] [CrossRef]
- Aydoğan, Z.; Gürol, A.; İncekara, Ü.; Tahidu, O.D. Element Content Analysis of Edible Insect of Ghana (Curculionidae: Sitophilus zeamais) Using EDXRF Spectrometer. Erzincan Üniversitesi Fen Bilim. Enstitüsü Derg. 2016, 9, 86–94. [Google Scholar] [CrossRef]
- Adeyeye, E.I.; Olaleye, A.A. Chemical Composition and Mineral Safety Index of Five Insects Commonly Eaten in South West Nigeria. FUW Trends Sci. Technol. J. 2016, 1, 139–144. [Google Scholar]
- Feresin, C.; Močinić, S.; Tatković, N. Is Insect Eating Festival a Viable Strategy in Promoting Entomophagy? An Investigation in Marawi City, Philippines. Int. J. Humanit. Soc. Sci. 2018, 10, 72–78. [Google Scholar]
- García-Lara, S.; Khairallah, M.M.; Vargas, M.; Bergvinson, D.J. Mapping of QTL Associated with Maize Weevil Resistance in Tropical Maize. Crop Sci. 2009, 49, 139–149. [Google Scholar] [CrossRef]
- NOM-122-SSA1-1994; Productos de La Carne. Productos Cárnicos Curados y Cocidos, y Curados Emulsionados y Cocidos. Especificaciones Sanitarias. Secretaria de Salud: Acapulco, Mexico, 1994. Available online: https://salud.gob.mx/unidades/cdi/nom/122ssa14.html (accessed on 1 February 2025).
- NOM-092-SSA1-1994; Método Para La Cuenta de Bacterias Aerobias En Placa. Sanitarias. Secretaria de Salud: Acapulco, Mexico, 1994. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=4886029&fecha=12/12/1995#gsc.tab=0 (accessed on 1 February 2025).
- NOM-111-SSA1-1994; Método Para La Cuenta de Mohos y Levaduras En Alimentos. Sanitarias. Secretaria de Salud: Acapulco, Mexico, 1994. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4881226&fecha=13/09/1995#gsc.tab=0 (accessed on 1 February 2025).
- NOM-112-SSA1-1994; Determinación de Bacterias Coliformes. Sanitarias. Secretaria de Salud: Acapulco, Mexico, 1994. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4728925&fecha=15/08/1994#gsc.tab=0 (accessed on 1 February 2025).
- NOM-115-SSA1-1994; Método Para La Determinación de Staphylococcus Aureus En Alimentos. Sanitarias. Secretaria de Salud: Acapulco, Mexico, 1994. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=4869580&fecha=20/02/1995#gsc.tab=0 (accessed on 1 February 2025).
- NOM-114-SSA1-1994; Método Para La Determinación de Salmonella En Alimentos. Sanitarias. Secretaria de Salud: Acapulco, Mexico, 1994. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=4881851&fecha=22/09/1995#gsc.tab=0 (accessed on 1 February 2025).
- Kim, T.-K.; Yong, H.I.; Jeong, C.H.; Han, S.G.; Kim, Y.-B.; Paik, H.-D.; Choi, Y.-S. Technical Functional Properties of Water- and Salt-Soluble Proteins Extracted from Edible Insects. Food Sci. Anim. Resour. 2019, 39, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Boulos, S.; Tännler, A.; Nyström, L. Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. Molitor, A. Domesticus, and L. Migratoria. Front. Nutr. 2020, 7, 89. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Michałowski, T.; Navas, M.J.; Asuero, A.G.; Wybraniec, S. An Overview of the Kjeldahl Method of Nitrogen Determination. Part I. Early History, Chemistry of the Procedure, and Titrimetric Finish. Crit. Rev. Anal. Chem. 2013, 43, 178–223. [Google Scholar] [CrossRef]
- Eakkanaluksamee, K.; Anuntagool, J. Optimization of High-Protein Glutinous Rice Flour Production Using Response Surface Method. Rice Sci. 2020, 27, 75–80. [Google Scholar] [CrossRef]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition Report of an FAO Expert Consultation. In FAO Food and Nutrition Paper; FAO: Rome, Italy, 2013; Volume 92. [Google Scholar]
- Grabowski, N.T.; Klein, G. Microbiology of Processed Edible Insect Products—Results of a Preliminary Survey. Int. J. Food Microbiol. 2017, 243, 103–107. [Google Scholar] [CrossRef]
- Lange, K.W.; Nakamura, Y. Edible Insects as Future Food: Chances and Challenges. J. Future Foods 2021, 1, 38–46. [Google Scholar] [CrossRef]
- Cohnstaedt, L.W.; Lado, P.; Ewing, R.; Cherico, J.; Brabec, D.; Shults, P.; Arsi, K.; Donoghue, A.M.; Wagner, R.; Chaskopoulou, A. Harvesting Insect Pests for Animal Feed: Potential to Capture an Unexploited Resource. J. Econ. Entomol. 2024, 117, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Van Boekel, M.A.J.S.; Boeren, S.; Lakemond, C.M.M. Protein Identification and in Vitro Digestion of Fractions from Tenebrio Molitor. Eur. Food Res. Technol. 2016, 242, 1285–1297. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A Systematic Review of Nutrient Composition Data Available for Twelve Commercially Available Edible Insects, and Comparison with Reference Values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Nsevolo Miankeba, P.; Taofic, A.; Kiatoko, N.; Mutiaka, K.; Francis, F.; Caparros Megido, R. Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic Republic of Congo Relevant for Transboundary Trade across Africa. Insects 2022, 13, 994. [Google Scholar] [CrossRef]
- Dimina, L.; Rémond, D.; Huneau, J.-F.; Mariotti, F. Combining Plant Proteins to Achieve Amino Acid Profiles Adapted to Various Nutritional Objectives—An Exploratory Analysis Using Linear Programming. Front. Nutr. 2022, 8, 809685. [Google Scholar] [CrossRef]
- van Huis, A. Harvesting Desert Locusts for Food and Feed May Contribute to Crop Protection but Will Not Suppress Upsurges and Plagues. J. Insects Food Feed. 2021, 7, 245–248. [Google Scholar] [CrossRef]
- El-Shafie, H.A.F. Utilization of Edible Insects as Food and Feed with Emphasis on the Red Palm Weevil. In Food and Nutrition Security in the Kingdom of Saudi Arabia, Vol. 2: Macroeconomic Policy and Its Implication on Food and Nutrition Security; Springer: Cham, Switzerland, 2024. [Google Scholar]
- John, B.; Lawrence, T.; Francis, S.; Alfonce, L.; Peter, E.J. Opportunities, Challenges and Policy Gaps for Sustainable Consumption of Edible Long-Horned Grasshopper, Ruspolia Differens, in Uganda: A Review. Int. J. Trop. Insect Sci. 2024, 44, 2665–2675. [Google Scholar] [CrossRef]
Microorganism | Result (UFC/g) ** | Maximum Limit (UFC/g) * |
---|---|---|
Aerobic mesophilic bacteria | 590 | 100,000 |
Fungi | <10 | <10 |
Yeast | <10 | <10 |
Total coliform | None | 100 |
Staphylococcus aureus | <10 | 100 |
Salmonella spp. | None | Negative |
Escherichia coli | None | Negative |
Protein | Content (%) * |
---|---|
Salt-soluble fraction | 6.6 ± 1.3 |
Total Content | 48.1 ± 0.3 |
Amino Acid | Reference (mg/g Protein) * | S. zeamais (mg/g Protein) ** | Difference | Amino Acid Score *** |
---|---|---|---|---|
Isoleucine | 30 | 42 | +12 | 1.4 |
Leucine | 61 | 55.4 | −5.6 | 0.9 |
Lysine | 48 | 40.6 | −7.4 | 0.8 |
Methionine | - | 10.9 | - | |
Cysteine | - | 5.6 | - | |
Sulfur AA (Met + Cys) | 23 | 16.5 | −6.5 | 0.7 |
Phenylalanine | - | 30.5 | - | |
Tyrosine | - | 53.3 | - | |
Aromatic AA (Phe + Tyr) | 41 | 83.8 | +43 | 2.0 |
Tryptophan | 6.6 | 4.8 | −1.8 | 0.7 |
Valine | 40 | 66.3 | +24 | 1.7 |
Threonine | 25 | 30.9 | +5.9 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora Vásquez, S.; García-Lara, S. Dual Role of Sitophilus zeamais: A Maize Storage Pest and a Potential Edible Protein Source. Insects 2025, 16, 531. https://doi.org/10.3390/insects16050531
Mora Vásquez S, García-Lara S. Dual Role of Sitophilus zeamais: A Maize Storage Pest and a Potential Edible Protein Source. Insects. 2025; 16(5):531. https://doi.org/10.3390/insects16050531
Chicago/Turabian StyleMora Vásquez, Soledad, and Silverio García-Lara. 2025. "Dual Role of Sitophilus zeamais: A Maize Storage Pest and a Potential Edible Protein Source" Insects 16, no. 5: 531. https://doi.org/10.3390/insects16050531
APA StyleMora Vásquez, S., & García-Lara, S. (2025). Dual Role of Sitophilus zeamais: A Maize Storage Pest and a Potential Edible Protein Source. Insects, 16(5), 531. https://doi.org/10.3390/insects16050531