Infection, Choice Behavior, and Cross-Infectivity of the Sculpted Damsel Bug, Nabis roseipennis, Offered the Tarnished Plant Bug, Lygus lineolaris, Infected with Entomopathogenic Nematodes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Source and Rearing
2.2. EPN Cultivation and Insect Inoculation
2.3. Lab and Greenhouse Prey Preference Trials
2.4. Data Analysis
3. Results
3.1. Infection and Mortality of Tarnished Plant Bug Nymphs
3.2. Infection and Mortality of Adult Nabids
3.3. Predator Preference
3.4. Greenhouse No Choice Assay and Cross-Infectivity
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- George, J.; Glover, J.P.; Gore, J.; Crow, W.D.; Reddy, G.V.P. Biology, ecology, and pest management of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) in southern row crops. Insects 2021, 12, 807. [Google Scholar] [CrossRef] [PubMed]
- Parys, K.A.; Snodgrass, G.L. Host plants of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois). In Proceedings of the Beltwide Cotton Conferences, New Orleans, LA, USA, 6–8 January 2014; pp. 765–766. [Google Scholar]
- Snodgrass, G.L.; Gore, J.; Abel, C.A.; Jackson, R. Acephate resistance in populations of the tarnished plant bug (Heteroptera: Miridae) from the Mississippi River Delta. J. Econ. Èntomol. 2009, 102, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Catchot, A.; Musser, F.; Gore, J.; Cook, D.; Daves, C.; Lorenz, G.; Akin, S.; Studebaker, G. Midsouth Multistate Evaluation; University of Arkansas: Fayetteville, AR, USA, 2009. [Google Scholar]
- Wood, W.; Gore, J.; Catchot, A.; Cook, D.; Dodds, D.; Krutz, L.J. Susceptibility of flowering cotton to damage and yield loss from tarnished plant bug (Hemiptera: Miridae). J. Econ. Entomol. 2016, 109, 1188–1195. [Google Scholar] [CrossRef]
- Pfannenstiel, R.S.; Yeargan, K.V. Ovipositional preference and distribution of eggs in selected field and vegetable crops by Nabis roseipennis (Hemiptera: Nabidae). J. Èntomol. Sci. 1998, 33, 82–89. [Google Scholar] [CrossRef]
- Irwin, M.E.; Shepard, M. Sampling predaceous Hemiptera on soybean. In Sampling Methods in Soybean Entomology; Springer: New York, NY, USA, 1980; pp. 505–531. [Google Scholar]
- Shepard, M.; Carner, G.R.; Turnipseed, S.G. Seasonal abundance of predaceous arthropods in soybeans. Environ. Èntomol. 1974, 3, 985–988. [Google Scholar] [CrossRef]
- Dinkins, R.L.; Brazzel, J.R.; Wilson, C.A. Seasonal incidence of major predaceous arthropods in Mississippi cotton fields. J. Econ. Èntomol. 1970, 63, 814–817. [Google Scholar] [CrossRef]
- Braman, S.K.; Yeargan, K.V. Phenology and abundance of Nabis americoferus, N. roseipennis, and N. rufusculus (Hemiptera: Nabidae) and their parasitoids in alfalfa and soybean. J. Econ. Èntomol. 1990, 83, 823–830. [Google Scholar] [CrossRef]
- Godfrey, K.E.; Whitcomb, W.H.; Stimac, J.L. Arthropod predators of velvetbean caterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), eggs and larvae. Environ. Èntomol. 1989, 18, 118–123. [Google Scholar] [CrossRef]
- Coscarón, M.d.C.; Braman, S.K.; Cornelis, M. Damsel bugs (Nabidae). In True Bugs (Heteroptera) of the Neotropics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 287–305. [Google Scholar] [CrossRef]
- Stewart, S.D.; Layton, B.; Catchot, A. Common Beneficial Arthropods Found in Field Crops. University of Tennessee Extension. 2007. Available online: http://msucares.com/pubs/publications/e0020.pdf (accessed on 12 February 2025).
- Conti, E.; Avila, G.; Barratt, B.; Cingolani, F.; Colazza, S.; Guarino, S.; Hoelmer, K.; Laumann, R.A.; Maistrello, L.; Martel, G.; et al. Biological control of invasive stink bugs: Review of global state and future prospects. Entomol. Exper. App. 2021, 169, 28–51. [Google Scholar] [CrossRef]
- Haseeb, M.; Gordon, T.L.; Kanga, L.H.B.; Legaspi, J.C. Abundance of natural enemies of Nezara viridula (Hemiptera: Pentatomidae) on three cultivars of sweet alyssum. J. Appl. Èntomol. 2018, 142, 847–853. [Google Scholar] [CrossRef]
- Bueno, V.H.P.; van Lenteren, J.C. Predatory bugs (Heteroptera). In Insect Bioecology and Nutrition for IPM; Panizzi, A.R., Parra, J., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 539–569. [Google Scholar]
- Perkins, P.V.; Watson, T.F. Biology of Nabis alternatus (Hemiptera: Nabidae). Ann. Èntomol. Soc. Am. 1972, 65, 54–57. [Google Scholar] [CrossRef]
- Georgis, R.; Kaya, H.K.; Gaugler, R. Effect of Steinernematid and Heterorhahditid nematodes (Rhahditida: Steinernematidae and Heterorhahditidae) on nontarget arthropods. Environ. Èntomol. 1991, 20, 815–822. [Google Scholar] [CrossRef]
- Kaya, H.K. Entomopathogenic Nematodes in Biological Control; CRC Press: Boca Raton, FL, USA, 1990; Volume 227. [Google Scholar]
- Toepfer, S.; Peters, A.; Ehlers, R.; Kuhlmann, U. Comparative assessment of the efficacy of entomopathogenic nematode species at reducing western corn rootworm larvae and root damage in maize. J. Appl. Èntomol. 2008, 132, 337–348. [Google Scholar] [CrossRef]
- Ansari, M.A.; Shah, F.A.; Butt, T.M. Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Èntomol. Exp. Appl. 2008, 129, 340–347. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Sousa, A.L. Long-term suppression of turfgrass insect pests with native persistent entomopathogenic nematodes. J. Invertebr. Pathol. 2024, 204, 108123. [Google Scholar] [CrossRef]
- Fallet, P.; Bazagwira, D.; Ruzzante, L.; Ingabire, G.; Levivier, S.; Bustos-Segura, C.; Kajuga, J.; Toepfer, S.; Turlings, T.C.J. Entomopathogenic nematodes as an effective and sustainable alternative to control the fall armyworm in Africa. PNAS Nexus 2024, 3, 122. [Google Scholar] [CrossRef]
- Steenman, E.; Hennig, E.I.; Jaccard, G.; Mihailescu, E.; Fischer, S.; Sutter, L. The potential of entomopathogenic nematodes for the management of the mirid bugs Lygus rugulipennis (Poppuis), Liocoris tripustulatus (Fabricius) and Macrolophus pygmaeus (Rambur). J. Nat. Pestic. Res. 2023, 6, 100054. [Google Scholar] [CrossRef]
- Dumont, F.; Solà, M.; Provost, C.; Lucas, E. The potential of Nabis americoferus and Orius insidiosus as biological control agents of Lygus lineolaris in strawberry fields. Insects 2023, 14, 385. [Google Scholar] [CrossRef]
- Sandhi, R.K.; Reddy, G.V.P. Effects of entomopathogenic nematodes and symbiotic bacteria on non-target arthropods. In Microbes for Sustainable Insect Pest Management: An Eco-Friendly Approach; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1, pp. 247–273. [Google Scholar]
- Matuska-Łyżwa, J.; Duda, S.; Nowak, D.; Kaca, W. Impact of Abiotic and Biotic Environmental Conditions on the Development and Infectivity of Entomopathogenic Nematodes in Agricultural Soils. Insects 2024, 15, 421. [Google Scholar] [CrossRef]
- Kallali, N.S.; Ouijja, A.; Goura, K.; Laasli, S.-E.; Kenfaoui, J.; Benseddik, Y.; Blenzar, A.; Joutei, A.B.; El Jarroudi, M.; Mokrini, F.; et al. From soil to host: Discovering the tripartite interactions between entomopathogenic nematodes, symbiotic bacteria and insect pests and related challenges. J. Nat. Pestic. Res. 2023, 7, 100065. [Google Scholar] [CrossRef]
- Portilla, M.; Snodgrass, G.; Streett, D. Effect of modification of the NI artificial diet on the biological fitness parameters of mass reared western tarnished plant bug, Lygus hesperus. J. Insect Sci. 2011, 11, 149. [Google Scholar] [CrossRef]
- Zhang, M.; Spaulding, N.; Reddy, G.V.; Shapiro-Ilan, D.I. The efficacy of entomopathogenic nematodes plus an adjuvant against Helicoverpa zea and Chrysodeixis includens in aboveground applications. J. Nematol. 2024, 56, 20240018. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.K.; Stock, S.P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology; Academic Press: London, UK, 1997; pp. 281–324. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.I.; Leite, L.G.; Han, R. Production of entomopathogenic nematodes. In Mass Production of Beneficial Organisms; Academic Press: London, UK, 2023; pp. 293–315. [Google Scholar] [CrossRef]
- Avery, P.B.; George, J.; Markle, L.; Martini, X.; Rowley, A.L.; Meagher, R.L.; Barger, R.E.; Duren, E.B.; Dawson, J.S.; Cave, R.D. Choice behavior of the generalist pentatomid predator Podisus maculiventris when offered lepidopteran larvae infected with an entomopathogenic fungus. BioControl 2022, 67, 201–211. [Google Scholar] [CrossRef]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed]
- Piedra-Buena, A.; López-Cepero, J.; Campos-Herrera, R. Entomopathogenic nematode production and application: Regulation, ecological impact and non–target effects. In Nematode Pathogenesis of Insects and Other Pests: Ecology and Applied Technologies for Sustainable Plant and Crop Protection; Springer International Publishing: Cham, Switzerland, 2015; pp. 255–282. [Google Scholar]
- Baur, M.; Kaya, H.; Strong, D. Foraging ants as scavengers on entomopathogenic nematode-killed insects. Biol. Control 1998, 12, 231–236. [Google Scholar] [CrossRef]
- Mertz, N.R.; Agudelo, E.J.G.; Sales, F.S.; Junior, A.M. Effects of entomopathogenic nematodes on the predator Calosoma granulatum in the laboratory. J. Insect Behav. 2015, 28, 312–327. [Google Scholar] [CrossRef]
EPN Species | EPN Origin | EPN Strain | Codex |
---|---|---|---|
Heterorhabditis georgiana | Georgia, USA | Kesha | Hg |
Heterorhabditis bacteriophora | Utah, USA | HP88 | Hb-HP88 |
Heterorhabditis bacteriophora | Georgia, USA | HVS | Hb-HVS |
Steinernema rarum | Combined from isolates found in Louisiana, USA and Mississippi, USA | 17c+e | Sra |
Steinernema feltiae | France | SN | Sf |
Steinernema carpocapsae | Arkansas, USA | Cxrd | Sc-Cxrd |
Steinernema riobrave | Texas, USA | 355 | Sri-355 |
Steinernema carpocapsae | Georgia, USA | A11 | Sc-A11 |
Steinernema riobrave | Texas, USA | 7–12 | Sri-712 |
Heterorhabditis floridensis | Georgia, USA | K22 | Hf |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glover, J.P.; Spaulding, N.; Nufer, M.I.; George, J.; Portilla, M.; Reddy, G.V.P. Infection, Choice Behavior, and Cross-Infectivity of the Sculpted Damsel Bug, Nabis roseipennis, Offered the Tarnished Plant Bug, Lygus lineolaris, Infected with Entomopathogenic Nematodes. Insects 2025, 16, 475. https://doi.org/10.3390/insects16050475
Glover JP, Spaulding N, Nufer MI, George J, Portilla M, Reddy GVP. Infection, Choice Behavior, and Cross-Infectivity of the Sculpted Damsel Bug, Nabis roseipennis, Offered the Tarnished Plant Bug, Lygus lineolaris, Infected with Entomopathogenic Nematodes. Insects. 2025; 16(5):475. https://doi.org/10.3390/insects16050475
Chicago/Turabian StyleGlover, James P., Nathan Spaulding, Marissa I. Nufer, Justin George, Maribel Portilla, and Gadi V. P. Reddy. 2025. "Infection, Choice Behavior, and Cross-Infectivity of the Sculpted Damsel Bug, Nabis roseipennis, Offered the Tarnished Plant Bug, Lygus lineolaris, Infected with Entomopathogenic Nematodes" Insects 16, no. 5: 475. https://doi.org/10.3390/insects16050475
APA StyleGlover, J. P., Spaulding, N., Nufer, M. I., George, J., Portilla, M., & Reddy, G. V. P. (2025). Infection, Choice Behavior, and Cross-Infectivity of the Sculpted Damsel Bug, Nabis roseipennis, Offered the Tarnished Plant Bug, Lygus lineolaris, Infected with Entomopathogenic Nematodes. Insects, 16(5), 475. https://doi.org/10.3390/insects16050475