Flupyradifurone Exhibits Greater Toxicity to the Asian Bumblebee Bombus lantschouensis Compared to the European Bumblebee Bombus terrestris
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Chemical
2.2. Test Organisms
2.3. Oral Toxicity Test
2.4. Risk Assessment
2.5. Statistical Analysis
3. Results
3.1. Acute Oral Toxicity of Flupyradifurone to the Two Bumblebee Species
3.2. Chronic Oral Toxicity of Flupyradifurone to the Two Bumblebee Species
3.3. Risk Assessment of Flupyradifurone to the Two Bumblebee Species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, S.A.; Sadd, B.M. Global trends in bumble bee health. Annu. Rev. Entomol. 2020, 65, 209–232. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Lye, G.C.; Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 2008, 53, 191–208. [Google Scholar] [CrossRef]
- Cameron, S.A.; Lozier, J.D.; Strange, J.P.; Koch, J.B.; Cordes, N.; Solter, L.F.; Griswold, T.L. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 2011, 108, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Liu, M.; Huang, J.; Ding, G.; Potapov, G.; Jung, C.; An, J. Vulnerability of East Asian bumblebee species to future climate and land cover changes. Agr. Ecosyst. Environ. 2019, 277, 11–20. [Google Scholar] [CrossRef]
- Hemberger, J.; Crossley, M.S.; Gratton, C. Historical decrease in agricultural landscape diversity is associated with shifts in bumble bee species occurrence. Ecol. Lett. 2021, 24, 1800–1813. [Google Scholar] [CrossRef]
- Ghisbain, G.; Thiery, W.; Massonnet, F.; Erazo, D.; Rasmont, P.; Michez, D.; Dellicour, S. Projected decline in European bumblebee populations in the twenty-first century. Nature 2024, 628, 337–341. [Google Scholar] [CrossRef]
- Naeem, M.; Huang, J.; Zhang, S.; Luo, S.; Liu, Y.; Zhang, H.; Luo, Q.; Zhou, Z.; Ding, G.; An, J. Diagnostic indicators of wild pollinators for biodiversity monitoring in long-term conservation. Sci. Total Environ. 2020, 708, 135231. [Google Scholar] [CrossRef] [PubMed]
- Eddy, S.R. Climate change predicted to exacerbate declines in bee populations. Nature 2024, 628, 271–273. [Google Scholar] [CrossRef]
- Baron, G.L.; Jansen, V.A.A.; Brown, M.J.F.; Raine, N.E. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nat. Ecol. Evol. 2017, 1, 1308–1316. [Google Scholar] [CrossRef]
- Nicholson, C.C.; Knapp, J.; Kiljanek, T.; Albrecht, M.; Chauzat, M.; Costa, C.; De la Rúa, P.; Klein, A.; Mänd, M.; Potts, S.G.; et al. Pesticide use negatively affects bumble bees across European landscapes. Nature 2024, 628, 355–358. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botias, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Neonicotinoids: A critical assessment of the global research landscape of the most extensively used insecticide. Environ. Res. 2022, 213, 113727. [Google Scholar] [CrossRef] [PubMed]
- Alsafran, M.; Rizwan, M.; Usman, K.; Saleem, M.H.; Jabri, H.A. Neonicotinoid insecticides in the environment: A critical review of their distribution, transport, fate, and toxic effects. J. Environ. Chem. Eng. 2022, 10, 108485. [Google Scholar] [CrossRef]
- Dirilgen, T.; Herbertsson, L.; O’ Reilly, A.D.; Mahon, N.; Stanley, D.A. Moving past neonicotinoids and honeybees: A systematic review of existing research on other insecticides and bees. Environ. Res. 2023, 235, 116612. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, B.A.; Bullock, J.M.; Shore, R.F.; Heard, M.S.; Pereira, M.G.; Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P.; et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 2017, 356, 1393–1395. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, R.; Pei, Y.; Liao, C.; Wu, X. Exposure to acetamiprid influences the development and survival ability of worker bees (Apis mellifera L.) from larvae to adults. Environ. Pollut. 2020, 266, 115345. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef]
- Demortain, D. The science behind the ban: The outstanding impact of ecotoxicological research on the regulation of neonicotinoids. Curr. Opin. Insect Sci. 2021, 46, 78–82. [Google Scholar] [CrossRef]
- Haas, J.; Zaworra, M.; Glaubitz, J.; Hertlein, G.; Kohler, M.; Lagojda, A.; Lueke, B.; Maus, C.; Almanza, M.; Davies, T.G.E.; et al. A toxicogenomics approach reveals characteristics supporting the honey bee (Apis mellifera L.) safety profile of the butenolide insecticide flupyradifurone. Ecotoxicol. Environ. Saf. 2021, 217, 112247. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R.; Gutbrod, O.; Beck, M.E.; Matthiesen, S.; Haas, M.; Velten, R. Flupyradifurone (Sivanto™) and its novel butenolide pharmacophore: Structural considerations. Pestic. Biochem. Physiol. 2015, 121, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.W.; Cabrera, A.R.; Stanley-Stahr, C.; Ellis, J.D. An evaluation of the honey bee (Hymenoptera: Apidae) safety profile of a new systemic insecticide, flupyradifurone, under field conditions in Florida. J. Econ. Entomol. 2016, 109, 1967–1972. [Google Scholar] [CrossRef] [PubMed]
- Hesselbach, H.; Seeger, J.; Schilcher, F.; Ankenbrand, M.; Scheiner, R.; Beggs, J. Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera. J. Appl. Ecol. 2020, 57, 609–618. [Google Scholar] [CrossRef]
- Al Naggar, Y.; Paxton, R.J. The novel insecticides flupyradifurone and sulfoxaflor do not act synergistically with viral pathogens in reducing honey bee (Apis mellifera) survival but sulfoxaflor modulates host immunocompetence. Microb. Biotechnol. 2021, 14, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Chen, W.; Dong, S.; Liu, X.; Wang, Y.; Nieh, J.C. A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Sci. Rep. 2015, 5, 10989. [Google Scholar] [CrossRef]
- Tong, L.; Nieh, J.C.; Tosi, S. Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation. Chemosphere 2019, 237, 124408. [Google Scholar] [CrossRef]
- Chakrabarti, P.; Carlson, E.A.; Lucas, H.M.; Melathopoulos, A.P.; Sagili, R.R. Field rates of Sivanto™ (flupyradifurone) and Transform® (sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). PLoS ONE 2020, 15, e0233033. [Google Scholar] [CrossRef]
- Siviter, H.; Muth, F. Exposure to the novel insecticide flupyradifurone impairs bumblebee feeding motivation, learning, and memory retention. Environ. Pollut. 2022, 307, 119575. [Google Scholar] [CrossRef]
- Richardson, L.I.; Siviter, H.; Jha, S.; Muth, F. Field-realistic exposure to the novel insecticide flupyradifurone reduces reproductive output in a bumblebee (Bombus impatiens). J. Appl. Ecol. 2024, 61, 1932–1943. [Google Scholar] [CrossRef]
- Fischer, L.R.; Ramesh, D.; Weidenmüller, A. Sub-lethal but potentially devastating-The novel insecticide flupyradifurone impairs collective brood care in bumblebees. Sci. Total Environ. 2023, 903, 166097. [Google Scholar] [CrossRef]
- Gray, L.K.; Hulsey, M.; Siviter, H. A novel insecticide impairs bumblebee memory and sucrose responsiveness across high and low nutrition. R. Soc. Open Sci. 2024, 11, 231798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Q.; Zhai, Y.; Zheng, H.; Wang, X. Impacts of imidacloprid and flupyradifurone insecticides on the gut microbiota of Bombus terrestris. Agriculture 2022, 12, 389. [Google Scholar] [CrossRef]
- An, J.; Huang, J.; Shao, Y.; Zhang, S.; Wang, B.; Liu, X.; Wu, J.; Williams, P.H. The bumblebees of North China (Apidae, Bombus Latreille). Zootaxa 2014, 3830, 1–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, Z.; An, J. Pollen release dynamics and daily patterns of pollen-collecting activity of honeybee Apis mellifera and bumblebee Bombus lantschouensis in solar greenhouse. Insects 2019, 10, 216. [Google Scholar] [CrossRef]
- Zhang, H.; Han, C.; Breeze, T.D.; Li, M.; Mashilingi, S.K.; Hua, J.; Zhang, W.; Zhang, X.; Zhang, S.; An, J. Bumblebee pollination enhances yield and flavor of tomato in Gobi Desert greenhouses. Agriculture 2022, 12, 795. [Google Scholar] [CrossRef]
- OECD. OECD Guideline for the Testing of Chemicals, No. 247: Bumblebee, Acute Oral Toxicity Test; OECD: Paris, France, 2017. [Google Scholar]
- OECD. Guideline for the Testing of Chemicals, No. 245: Honey Bee (Apis mellifera L.), Chronic Oral Toxicity Test (10-Day Feeding); OECD: Paris, France, 2017. [Google Scholar]
- EPPO. Environmental Risk Assessment Scheme for Plant Protection Products Chapter 10: Honeybees; EPPO: Luxembourg, 2010; pp. 323–331. [Google Scholar]
- EFSA. EFSA Guidance Document on the Risk Assessment of Plant Protection Products on Bees (Apis mellifera, Bombus spp. and Solitary Bees); EFSA: Parma, Italy, 2013.
- Dai, P.; Jack, C.J.; Mortensen, A.N.; Ellis, J.D. Acute toxicity of five pesticides to Apis mellifera larvae reared in vitro. Pest. Manag. Sci. 2017, 73, 2282–2286. [Google Scholar] [CrossRef]
- Arena, M.; Sgolastra, F. meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 2014, 23, 324–334. [Google Scholar] [CrossRef]
- Mundy-Heisz, K.A.; Prosser, R.S.; Raine, N.E. Acute oral toxicity and risks of four classes of systemic insecticide to the common eastern bumblebee (Bombus impatiens). Chemosphere 2022, 295, 133771. [Google Scholar] [CrossRef]
- Wang, H.; Han, B.; Wang, Y.; Han, S.; Wang, R.; Li, D. Toxicity and risk assessment of eleven pesticides to workers of Bombus terrestris (Hymenoptera: Apidae). Acta Entomol. Sin. 2021, 64, 1350–1358. [Google Scholar] [CrossRef]
- Wang, S.; Xie, L.; Chen, H.; Wu, G.; Zhou, H.; Wang, Y.; Yu, Y.; Zheng, L.; Zhai, Y.; Yan, Y. Toxicity and risk assessment of eight neonicotinoid insecticides to workers of Bombus terrestris (Hymenoptera: Apoidae). Acta Entomol. Sin. 2020, 63, 29–35. [Google Scholar]
- Dornhaus, A.; Chittka, L. Bumble bees (Bombus terrestris) store both food and information in honeypots. Behav. Ecol. 2005, 16, 661–666. [Google Scholar] [CrossRef]
- Princen, S.A.; Van Oystaeyen, A.; van Zweden, J.S.; Wenseleers, T. Worker dominance and reproduction in the bumblebee Bombus terrestris: When does it pay to bare one’s mandibles? Anim. Behav. 2020, 166, 41–50. [Google Scholar] [CrossRef]
- Bass, C.; Hayward, A.; Troczka, B.J.; Haas, J.; Nauen, R. The molecular determinants of pesticide sensitivity in bee pollinators. Sci. Total Environ. 2024, 915, 170174. [Google Scholar] [CrossRef] [PubMed]
- Velthuis, H.H.; van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 2006, 37, 421–451. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.; Huang, J.; Yuan, X.; Ding, G.; An, J. Queen traits and colony size of four bumblebee species of China. Insectes Soc. 2018, 65, 537–547. [Google Scholar] [CrossRef]
- Pamminger, T. Extrapolating Acute Contact Bee Sensitivity to Insecticides Based on Body Weight Using a Phylogenetically Informed Interspecies Scaling Framework. Environ. Toxicol. Chem. 2021, 40, 2042–2050. [Google Scholar] [CrossRef]
- Dewaele, J.; Barraud, A.; Hellström, S.; Paxton, R.J.; Michez, D. A new exposure protocol adapted for wild bees reveals species-specific impacts of the sulfoximine insecticide sulfoxaflor. Ecotoxicology 2024, 33, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Jütte, T.; Wernecke, A.; Klaus, F.; Pistorius, J.; Dietzsch, A.C. Risk assessment requires several bee species to address species-specific sensitivity to insecticides at field-realistic concentrations. Sci. Rep. 2023, 13, 22533. [Google Scholar] [CrossRef]
- Baas, J.; Knautz, T.; Barme, A.; Sekine, T.; Jaklofsky, M.; Belgers, D.; Jansen, N.; Boerwinkel, M.; Roessink, I. Bee sensitivity derived from acute contact tests biased by standardised protocols? Ecotoxicol. Environ. Saf. 2024, 285, 117062. [Google Scholar] [CrossRef]
Species | n | R2 | LC50 (95%CI) a (μg/mL) | LD50 (95%CI) b (μg/bee) | Toxic Regression Equations |
---|---|---|---|---|---|
Bombus terrestris | 210 | 0.89 | 1400 (1100~1700) | 28 (22~35) | y = 3.72x − 6.68 |
Bombus lantschouensis | 210 | 0.96 | 250 (180~330) | 5.1 (3.7~7.0) | y = 1.71x + 0.88 |
Species | n | R2 | LDD50 (95%CI) a (μg/bee/day) | Toxic Regression Equations |
---|---|---|---|---|
Bombus terrestris | 240 | 0.96 | 3.3 (2.2~4.8) | y = 1.98x + 0.62 |
Bombus lantschouensis | 240 | 0.96 | 0.7 (0.5~0.8) | y = 2.84x + 0.69 |
Species | AR (g/ha) | LD50 (μg/bee) | HQ Value | Risk Level |
---|---|---|---|---|
Bombus terrestris | 102 | 28 | 4 | Low |
Bombus lantschouensis | 5.1 | 20 | Low |
Assessment Type | Species | Application Method | Exposure Toxicity Ratio | Trigger Value | |
---|---|---|---|---|---|
Screening Step Assessment | First Tier Assessment | ||||
Acute oral exposure | Bombus terrestris | Down-ward | 0.0408 | 0.0408 | 0.036 |
Side-ward | 0.0485 | 0.0485 | |||
Bombus lantschouensis | Down-ward | 0.224 | 0.224 | ||
Side-ward | 0.266 | 0.266 | |||
Chronic oral exposure | Bombus terrestris | Down-ward | 0.346 | 0.249 | 0.0048 |
Side-ward | 0.411 | 0.296 | |||
Bombus lantschouensis | Down-ward | 1.632 | 1.175 | ||
Side-ward | 1.938 | 1.395 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, C.; Zhang, H.; Zhou, Z.; Miao, Z.; Han, B.; Guo, B.; Guo, Y.; Hu, X.; Iqbal, S.; Wei, B.; et al. Flupyradifurone Exhibits Greater Toxicity to the Asian Bumblebee Bombus lantschouensis Compared to the European Bumblebee Bombus terrestris. Insects 2025, 16, 455. https://doi.org/10.3390/insects16050455
Jie C, Zhang H, Zhou Z, Miao Z, Han B, Guo B, Guo Y, Hu X, Iqbal S, Wei B, et al. Flupyradifurone Exhibits Greater Toxicity to the Asian Bumblebee Bombus lantschouensis Compared to the European Bumblebee Bombus terrestris. Insects. 2025; 16(5):455. https://doi.org/10.3390/insects16050455
Chicago/Turabian StyleJie, Chunting, Hong Zhang, Ziyu Zhou, Zhengying Miao, Bo Han, Baodi Guo, Yi Guo, Xiao Hu, Shahid Iqbal, Bingshuai Wei, and et al. 2025. "Flupyradifurone Exhibits Greater Toxicity to the Asian Bumblebee Bombus lantschouensis Compared to the European Bumblebee Bombus terrestris" Insects 16, no. 5: 455. https://doi.org/10.3390/insects16050455
APA StyleJie, C., Zhang, H., Zhou, Z., Miao, Z., Han, B., Guo, B., Guo, Y., Hu, X., Iqbal, S., Wei, B., Huang, J., Dai, P., & An, J. (2025). Flupyradifurone Exhibits Greater Toxicity to the Asian Bumblebee Bombus lantschouensis Compared to the European Bumblebee Bombus terrestris. Insects, 16(5), 455. https://doi.org/10.3390/insects16050455