The Delineation of Management Zones of the Halyomorpha halys (Hemiptera: Pentatomidae) Population Based on Its Spatiotemporal Distribution for Precision Agriculture Purposes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Sites and Traps
2.2. Plant Canopy Characteristics
2.3. Delineation of Management Zones
2.4. Statistical Analysis
3. Results
3.1. Population Densities and Remotely Sensed Indices
3.2. Management Zones
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghimire, N.; Woodward, R.T. Under- and over-use of pesticides: An international analysis. Ecol. Econ. 2013, 89, 73–81. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed]
- Rajmohan, K.S.; Chandrasekaran, R.; Varjani, S. A review on occurrence of pesticides in environment and current technologies for their remediation and management, Indian. J. Microbiol. 2020, 60, 125–138. [Google Scholar]
- Marković, D.; Vujičić, D.; Tanasković, S.; Đorđević, B.; Ranđić, S.; Stamenković, Z. Prediction of pest insect appearance using sensors and machine learning. Sensors 2021, 21, 4846. [Google Scholar] [CrossRef] [PubMed]
- Strickland, M.R.; Ess, D.R.; Parsons, S.D. Precision farming and precision pest management: The power of new crop production technologies. J. Nematol. 1998, 30, 431–435. [Google Scholar]
- Ye, X.; Sakai, K.; Manago, M.; Asada, S.-I.; Sasao, A. Prediction of citrus yield from airborne hyperspectral imagery. Precis. Agric. 2007, 8, 111–125. [Google Scholar] [CrossRef]
- Venette, R.C.; Kriticos, D.J.; Magarey, R.D.; Koch, F.H.; Baker, R.H.A.; Worner, S.P.; Raboteaux, G. Pest risk maps for invasive alien species: A roadmap for improvement. BioScience 2010, 60, 349–362. [Google Scholar] [CrossRef]
- Bazzi, C.L.S.; Kelyn, B.; Nelson, M.; Gavioli, A. A software for the delineation of crop management zones (SDUM). Aust. J. Crop Sci. 2019, 13, 26–34. [Google Scholar] [CrossRef]
- Córdoba, M.A.; Bruno, C.I.; Costa, J.L.; Peralta, N.R.; Balzarini, M.G. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosyst. Eng. 2016, 143, 95–107. [Google Scholar] [CrossRef]
- Kalisperakis, I.; Stentoumis, C.; Grammatikopoulos, L.; Karantzalos, K. Leaf area index estimation in vineyards from UAV hyperspectral data, 2D image mosaics and 3D canopy surface models. ISPRS—Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci. 2015, XL-1/W4, 299–303. [Google Scholar] [CrossRef]
- Mahlein, A.-K. Plant disease detection by imaging sensors—Parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2015, 100, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Marques da Silva, J.R.; Damásio, C.V.; Sousa, A.M.O.; Bugalho, L.; Pessanha, L.; Quaresma, P. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 40–50. [Google Scholar] [CrossRef]
- Hartkamp, A.; Dewi, A.; Stein, W.; Jeffrey, W. Interpolation Techniques for Climate Variables; NRG-GIS Series 99-01; CIMMYT: Texcoco, Mexico, 1999; Available online: https://www.researchgate.net/publication/40194440_Interpolation_Techniques_for_Climate_Variables#fullTextFileContent (accessed on 10 February 2025).
- Liakos, V.; Navrozidis, I.E.; Koutsogeorgiou, E.I.; Gogolashvili, N.E.; Samourgkanidou, E.; Faraslis, I.; Gravalos, I.; Thomidis, T.; Andreadis, S.S. Analyzing On-Farm Spatiotemporal Distribution of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) Populations from a Precision Agriculture Perspective. Plants 2023, 12, 2282. [Google Scholar] [CrossRef]
- Leskey, T.C.; Hamilton, G.C.; Nielsen, A.L.; Polk, D.F.; Rodriguez-Saona, C.; Bergh, J.C.; Herbert, D.A.; Kuhar, T.P.; Pfeiffer, D.; Dively, G.P.; et al. Pest status of the brown marmorated stink bug, Halyomorpha halys (Stål); in the USA. Outlooks Pest Manag. 2012, 23, 218–226. [Google Scholar] [CrossRef]
- Rice, K.B.; Bergh, C.J.; Bergman, E.J.; Biddinger, D.J.; Dieckhoff, C.; Dively, G.; Fraser, H.; Gariepy, T.; Hamilton, G.; Haye, T.; et al. Biology, ecology, and management of brown marmorated stink bug (Halyomorpha halys). J. Integr. Pest Manag. 2014, 5, 1–13. [Google Scholar] [CrossRef]
- Leskey, T.C.; Nielsen, A.L. Impact of the invasive brown marmorated stink bug in North America and Europe: History; biology; ecology; and management. Annu. Rev. Entomol. 2018, 63, 599–618. [Google Scholar] [CrossRef]
- Bakken, A.; Schoof, S.; Bickerton, M.; Kamminga, K.; Jenrette, J.; Malone, S.; Abney, M.; Herbert, D.; Reisig, D.; Kuhar, T. Occurrence of brown marmorated stink bug (Hemiptera: Pentatomidae) on wild hosts in nonmanaged woodlands and soybean fields in North Carolina and Virginia. Environ. Entomol. 2015, 44, 1011–1021. [Google Scholar] [CrossRef]
- Bergmann, E.J.; Venugopal, P.D.; Martinson, H.M.; Raupp, M.J.; Shrewsbury, P.M. Host plant use by the invasive Halyomorpha halys (Stål) on woody ornamental trees and shrubs. PLoS ONE 2016, 11, e0149975. [Google Scholar] [CrossRef]
- Nielsen, A.L.; Hamilton, G.C. Seasonal occurrence and impact of Halyomorpha halys (Hemiptera: Pentatomidae) in tree fruit. J. Econ. Entomol. 2009, 102, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Wermelinger, B.; Wyniger, D.; Forster, B. First records of an invasive bug in Europe: Halyomorpha halys Stål (Heteroptera: Pentatomidae), a new pest on woody ornamentals and fruit trees? Bull. Soc. Entomol. Suisse 2008, 81, 1–8. [Google Scholar]
- Bariselli, M.; Bugiani, R.; Maistrello, L. Distribution and damage caused by Halyomorpha halys in Italy. EPPO Bull. 2016, 46, 332–334. [Google Scholar]
- Maistrello, L.; Vaccari, G.; Caruso, S.; Costi, E.; Bortolini, S.; Macavei, L.; Foca, G.; Ulrici, A.; Bortolotti, P.; Nannini, R.; et al. Monitoring of the invasive Halyomorpha halys, a new key pest of fruit orchards in northern Italy. J. Pest Sci. 2017, 90, 1231–1244. [Google Scholar]
- Rot, M.; Devetak, M.; Carlevaris, B.; Žežlina, J.; Žežlina, I. First record of brown marmorated stink bug (Halyomorpha halys Stål, 1855) (Hemiptera: Pentatomidae) in Slovenia. Acta Entomol. Slov. 2018, 26, 5–12. [Google Scholar]
- Moore, L.; Tirello, P.; Scaccini, D.; Toews, M.D.; Duso, C.; Pozzebon, A. Characterizing damage potential of the brown marmorated stink bug in cherry orchards in Italy. Entomol. Gen. 2019, 39, 271–283. [Google Scholar]
- Stoeckli, S.; Felber, R.; Haye, T. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. Int. J. Biometeorol. 2020, 64, 2019–2032. [Google Scholar]
- Vétek, G.; Korányi, D. Severe damage to vegetables by the invasive brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), in Hungary. Period. Biol. 2017, 119, 131–135. [Google Scholar]
- Andreadis, S.S.; Navrozidis, E.I.; Farmakis, A.; Pisalidis, A. First evidence of Halyomorpha halys (Hemiptera: Pentatomidae) infesting kiwi fruit (Actinidia chinensis) in Greece. J. Entomol. Sci. 2018, 53, 402–405. [Google Scholar]
- Bosco, L.; Moraglio, S.T.; Tavella, L. Halyomorpha halys, a serious threat for hazelnut in newly invaded areas. J. Pest Sci. 2018, 91, 661–670. [Google Scholar] [CrossRef]
- Inkley, D.B. Characteristics of home invasion by the brown marmorated stink bug (Hemiptera: Pentatomidae). J. Entomol. Sci. 2012, 47, 125–130. [Google Scholar] [CrossRef]
- Blaauw, B.R.; Polk, D.; Nielsen, A.L. IPM-CPR for peaches: Incorporating behaviorally-based methods to manage Halyomorpha halys and key pests in peach. Pest Manag. Sci. 2015, 71, 1513–1522. [Google Scholar] [PubMed]
- Morrison, W.R., III; Cullum, J.P.; Leskey, T.C. Evaluation of trap designs and deployment strategies for capturing Halyomorpha halys (Hemiptera: Pentatomidae). J. Econ. Entomol. 2015, 108, 1683–1692. [Google Scholar]
- Short, B.D.; Khrimian, A.; Leskey, T.C. Pheromone-based decision support tools for management of Halyomorpha halys in apple orchards: Development of a trap-based treatment threshold. J. Pest Sci. 2017, 90, 1191–1204. [Google Scholar]
- Akotsen-Mensah, C.; Blaauw, B.; Short, B.; Leskey, T.C.; Bergh, J.C.; Polk, D.; Nielsen, A.L. Using IPM-CPR as a management program for apple orchards. J. Econ. Entomol. 2020, 113, 1894–1902. [Google Scholar]
- Leskey, T.C.; Short, B.D.; Ludwick, D.C. Comparison and refinement of integrated pest management tactics for Halyomorpha halys (Hemiptera: Pentatomidae) management in apple orchards. J. Econ. Entomol. 2020, 113, 1725–1734. [Google Scholar] [PubMed]
- Leskey, T.C.; Agnello, A.; Bergh, J.C.; Dively, G.P.; Hamilton, G.C.; Jentsch, P.; Khrimian, A.; Krawczyk, G.; Kuhar, T.P.; Lee, D.H.; et al. Attraction of the invasive Halyomorpha halys (Hemiptera: Pentatomidae) to traps baited with semiochemical stimuli across the United States. Environ. Entomol. 2015, 44, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Acebes-Doria, A.L.; Morrison, W.R., III; Short, B.D.; Rice, K.B.; Bush, H.G.; Kuhar, T.P.; Duthie, C.; Leskey, T.C. Monitoring and biosurveillance tools for the brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae). Insects 2018, 9, 82. [Google Scholar] [CrossRef]
- Acebes-Doria, A.L.; Agnello, A.M.; Alston, D.G.; Andrews, H.; Beers, E.H.; Bergh, J.C.; Bessin, R.; Blaauw, B.R.; Buntin, G.D.; Burkness, E.C.; et al. Season-long monitoring of the brown marmorated stink bug (Hemiptera: Pentatomidae) throughout the United States using commercially available traps and lures. J. Econ. Entomol. 2020, 113, 159–171. [Google Scholar] [PubMed]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 6th ed.; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Yang, Z.; Rao, M.N.; Elliott, N.C.; Kindler, S.D.; Popham, T.W. Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Comput. Electron. Agric. 2005, 47, 121–135. [Google Scholar]
- Elliott, N.C.; Mirik, M.; Yang, Z.; Dvorak, T.; Rao, M.; Michels, J.; Walker, T.; Catana, V.; Phoofolo, M.; Giles, K. Airborne multi-spectral remote sensing of Russian wheat aphid injury to wheat. Southwest. Entomol. 2007, 32, 213–219. [Google Scholar]
- Elliott, N.C.; Mirik, M.; Yang, Z.; Jones, D.; Phoofolo, M.; Catana, V.; Giles, K.; Michels, G.J., Jr. Airborne remote sensing to detect greenbug stress to wheat. Southwest. Entomol. 2009, 34, 205–211. [Google Scholar]
- Reisig, D.D.; Godfrey, L.D. Remote sensing for detection of cotton aphid- (Homoptera: Aphididae) and spider mite-(Acari: Tetranychidae) infested cotton in the San Joaquin Valley. Environ. Entomol. 2006, 35, 1635–1646. [Google Scholar] [CrossRef]
- Reisig, D.D.; Godfrey, L.D. Remotely sensing arthropod and nutrient stressed plants: A case study with nitrogen and cotton aphid (Hemiptera: Aphididae). Environ. Entomol. 2010, 39, 1255–1263. [Google Scholar] [PubMed]
- Genovese, G.; Vignolles, C.; Negre, T.; Passera, G. A methodology for a combined use of normalized difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting. A case study on Spain. Agronomie 2001, 21, 91–111. [Google Scholar] [CrossRef]
- Meng, J.; Du, X.; Wu, B. Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation. Int. J. Dig. Earth 2013, 6, 203–218. [Google Scholar]
- Willers, J.L.; Seal, M.R.; Luttrell, R.L. Remote sensing, line-intercept sampling for tarnished plant bugs (Heteroptera: Miridae) in mid-south cotton. J. Cotton Sci. 1999, 3, 160–170. [Google Scholar]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar]
- Boles, S.H.; Xiao, X.; Liu, J.; Zhang, Q.; Munktuya, S.; Chen, S.; Ojima, D. Land cover characterization of temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sens. Environ. 2004, 90, 477–489. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Liu, M. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 2002, 82, 335–348. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121. [Google Scholar] [CrossRef]
- McFeeters, S.K. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef]
- Jokar, M.; López-Bernal, A.; Kamkar, B. The effect of spring flooding on management and distribution of cotton bollworm (Helicoverpa armigera) by flood mapping using SAR sentinel-1 and optical imagery landsat-8; a case study in golestan province, Iran. Int. J. Pest Manag. 2022, 70, 778–788. [Google Scholar] [CrossRef]
- Prabhakar, M.; Gopinath, K.; Kumar, N.; Thirupathi, M.; Sravan, U.; Kumar, G.; Siva, G.; Meghalakshmi, G.; Vennila, S. Detecting the invasive fall armyworm pest incidence in farm fields of southern India using Sentinel-2A satellite data. Geocarto Int. 2022, 37, 3801–3816. [Google Scholar] [CrossRef]
- Basnet, S.; Kuhar, T.P.; Laub, C.A.; Pfeiffer, D.G. Seasonality and distribution pattern of brown marmorated stink bug (Hemiptera: Pentatomidae) in Virginia vineyards. J. Econ. Entomol. 2015, 108, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Milonas, P.; Gogou, C.; Papadopoulou, A.; Fountas, S.; Liakos, V.; Papadopoulos, N.T. Spatio-temporal distribution of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) in a cotton production area. Neotrop. Entomol. 2016, 45, 240–251. [Google Scholar] [CrossRef]
- Rossi, M.; Guzzetti, F.; Reichenbach, P.; Mondini, A.C.; Peruccacci, S. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 2010, 114, 129–142. [Google Scholar] [CrossRef]
- Zhu, G.; Bu, W.; Gao, Y.; Liu, G. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLoS ONE 2012, 7, e31246. [Google Scholar] [CrossRef]
- Reisig, D.D.; Reay-Jones, F.P.F.; Meijer, A.D. Aggregation and association of NDVI, boll injury, and stink bugs in North Carolina cotton. J. Insect Sci. 2015, 15, 134. [Google Scholar] [CrossRef]
- Toyama, M.; Ihara, F.; Yaginuma, K. Photo-response of the brown marmorated stink bug, Halyomorpha halys (Stål) (Heteroptera: Pentatomidae), and its role in the hiding behavior. Appl. Entomol. Zool. 2011, 46, 37–40. [Google Scholar] [CrossRef]
- Cullum, J.P.; Nixon, L.J.; Morrison, W.R.; Raupp, M.J.; Shrewsbury, P.M.; Venugopal, P.D.; Martinson, H.; Bergh, J.C.; Leskey, T.C. Influence of landscape factors and abiotic conditions on dispersal behavior and overwintering site selection by Halyomorpha halys (Hemiptera: Pentatomidae). J. Econ. Entomol. 2020, 113, 2016–2021. [Google Scholar] [CrossRef]
- Baek, S.; Hwang, A.; Kim, H.; Lee, H.; Lee, J.-H. Temperature-dependent development and oviposition models of Halyomorpha halys (Hemiptera: Pentatomidae). J. Asia-Pac. Entomol. 2017, 20, 367–375. [Google Scholar]
- Mermer, S.; Maslen, E.A.; Dalton, D.T.; Nielsen, A.L.; Rucker, A.; Lowenstein, D.; Wiman, N.; Bhattarai, M.; Soohoo-Hui, A.; Harris, E.T.; et al. Temperature-dependent life table parameters of Brown Marmorated Stink Bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) in the United States. Insects 2023, 14, 248. [Google Scholar] [CrossRef] [PubMed]
- Weisz, R.; Fleischer, S.; Smilowitz, Z. Site-specific integrated pest management for high-value crops: Impact on potato pest management. J. Econ. Entomol. 1996, 89, 501–509. [Google Scholar] [CrossRef]
- Park, Y.-L.; Krell, K.; Carroll, M. Theory, technology, and practice of site-specific insect pest management. J. Asia-Pac. Entomol. 2007, 10, 89–101. [Google Scholar]
Prefecture | Location | Longitude | Latitude | Size (ha) |
---|---|---|---|---|
Pieria | Dion | 22.491933 | 40.170259 | 0.69 |
Nea Efessos | 22.489333 | 40.221147 | 0.56 | |
Imathia | Episkopi | 22.127619 | 40.689933 | 0.70 |
Meliki | 22.404548 | 40.519695 | 2.36 |
Months | Season | ||
---|---|---|---|
Early | Mid- | Late | |
May–June | X | ||
July–August | X | ||
September–October | X |
Early Season | |||||||||
2021 | 2022 | 2023 | |||||||
Density | NDVI | NDWI | Density | NDVI | NDWI | Density | NDVI | NDWI | |
Density | 1 | 1 | 1 | ||||||
NDVI | 0.72 * | 1 | 0.75 * | 1 | 0.79 * | 1 | |||
NDWI | 0.68 | 0.79 * | 1 | 0.71 * | 0.73 * | 1 | 0.70 * | 0.72 * | 1 |
Mid-Season | |||||||||
2021 | 2022 | 2023 | |||||||
Density | NDVI | NDWI | Density | NDVI | NDWI | Density | NDVI | NDWI | |
Density | 1 | 1 | 1 | ||||||
NDVI | 0.75 * | 1 | 0.80 ** | 1 | 0.72 * | 1 | |||
NDWI | 0.81 ** | 0.75 * | 1 | 0.79 ** | 0.78 * | 1 | 0.72 * | 0.77 * | 1 |
Late Season | |||||||||
2021 | 2022 | 2023 | |||||||
Density | NDVI | NDWI | Density | NDVI | NDWI | Density | NDVI | NDWI | |
Density | 1 | 1 | 1 | ||||||
NDVI | 0.80 ** | 1 | 0.82 ** | 1 | 0.85 ** | 1 | |||
NDWI | 0.72 * | 0.70 ** | 1 | 0.75 ** | 0.79 ** | 1 | 0.82 ** | 0.84 ** | 1 |
Field | Year | 2021 | 2022 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Early | Mid- | Late | ||||||||
Low | Medium | High | Low | Medium | High | Low | Medium | High | ||
Dion | 2021 | 0.03 | 0.04 | 0.62 | 0.03 | 0.35 | 0.31 | 0.03 | 0.37 | 0.29 |
2022 | 0.03 | 0.34 | 0.32 | 0.05 | 0.25 | 0.39 | 0.04 | 0.26 | 0.39 | |
2023 | 0.05 | 0.25 | 0.39 | 0.04 | 0.23 | 0.42 | 0.03 | 0.17 | 0.49 | |
Avg (%) | 5.3 | 30.4 | 64.3 | 5.8 | 40.1 | 54.1 | 4.8 | 38.6 | 56.5 | |
Nea Efessos | 2021 | 0.02 | 0.05 | 0.49 | 0.02 | 0.05 | 0.49 | 0.02 | 0.05 | 0.49 |
2022 | 0.03 | 0.03 | 0.50 | 0.01 | 0.04 | 0.51 | 0.02 | 0.05 | 0.49 | |
2023 | 0.04 | 0.04 | 0.48 | 0.06 | 0.15 | 0.35 | 0.02 | 0.05 | 0.49 | |
Avg (%) | 5.4 | 7.1 | 87.5 | 5.4 | 14.3 | 80.4 | 3.6 | 8.9 | 87.5 | |
Meliki | 2021 | 0.10 | 0.07 | 2.19 | 0.08 | 0.07 | 2.21 | 0.61 | 0.13 | 1.62 |
2022 | 0.47 | 0.50 | 1.39 | 0.48 | 0.50 | 1.38 | 0.50 | 0.35 | 1.51 | |
2023 | 0.47 | 0.50 | 1.39 | 0.51 | 0.49 | 1.36 | 0.51 | 0.49 | 1.36 | |
Avg (%) | 14.7 | 15.1 | 70.2 | 15.1 | 15.0 | 69.9 | 22.9 | 13.7 | 63.4 | |
Episkopi | 2021 | 0.20 | 0.12 | 0.38 | 0.18 | 0.15 | 0.37 | 0.20 | 0.09 | 0.41 |
2022 | 0.03 | 0.42 | 0.23 | 0.02 | 0.23 | 0.45 | 0.03 | 0.23 | 0.44 | |
2023 | 0.02 | 0.23 | 0.45 | 0.02 | 0.21 | 0.47 | 0.02 | 0.18 | 0.50 | |
Avg (%) | 11.9 | 36.7 | 50.5 | 10.5 | 28.1 | 61.4 | 11.9 | 23.8 | 64.3 |
Location | Year | Early–Mid | Mid–Late | Early–Late |
---|---|---|---|---|
Dion | 2021 | 0.63 | 0.94 | 0.62 |
2022 | 0.45 | 0.98 | 0.47 | |
2023 | 0.96 | 0.63 | 0.68 | |
Nea Efessos | 2021 | 0.99 | 0.99 | 0.99 |
2022 | 0.88 | 0.94 | 0.96 | |
2023 | 0.74 | 0.63 | 0.71 | |
Meliki | 2021 | 0.98 | 0.68 | 0.69 |
2022 | 0.98 | 0.85 | 0.87 | |
2023 | 0.97 | 0.98 | 0.98 | |
Episkopi | 2021 | 0.93 | 0.90 | 0.95 |
2022 | 0.65 | 0.73 | 0.60 | |
2023 | 0.92 | 0.89 | 0.91 |
Location | Season | 2021–2022 | 2022–2023 | 2021–2023 |
---|---|---|---|---|
Dion | Early | 0.62 | 0.65 | 0.63 |
Mid | 0.64 | 0.96 | 0.62 | |
Late | 0.61 | 0.57 | 0.64 | |
Nea Efessos | Early | 0.79 | 0.96 | 0.78 |
Mid | 0.95 | 0.77 | 0.75 | |
Late | 0.97 | 0.97 | 0.97 | |
Meliki | Early | 0.82 | 0.98 | 0.81 |
Mid | 0.71 | 0.96 | 0.72 | |
Late | 0.61 | 0.94 | 0.60 | |
Episkopi | Early | 0.34 | 0.35 | 0.56 |
Mid | 0.57 | 0.89 | 0.59 | |
Late | 0.58 | 0.62 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liakos, V.; Koutsogeorgiou, E.I.; Charouli, S.; Navrozidis, I.E.; Proias, G.; Andreadis, S.S. The Delineation of Management Zones of the Halyomorpha halys (Hemiptera: Pentatomidae) Population Based on Its Spatiotemporal Distribution for Precision Agriculture Purposes. Insects 2025, 16, 336. https://doi.org/10.3390/insects16040336
Liakos V, Koutsogeorgiou EI, Charouli S, Navrozidis IE, Proias G, Andreadis SS. The Delineation of Management Zones of the Halyomorpha halys (Hemiptera: Pentatomidae) Population Based on Its Spatiotemporal Distribution for Precision Agriculture Purposes. Insects. 2025; 16(4):336. https://doi.org/10.3390/insects16040336
Chicago/Turabian StyleLiakos, Vasileios, Eleni I. Koutsogeorgiou, Sofia Charouli, Ioannis E. Navrozidis, Georgios Proias, and Stefanos S. Andreadis. 2025. "The Delineation of Management Zones of the Halyomorpha halys (Hemiptera: Pentatomidae) Population Based on Its Spatiotemporal Distribution for Precision Agriculture Purposes" Insects 16, no. 4: 336. https://doi.org/10.3390/insects16040336
APA StyleLiakos, V., Koutsogeorgiou, E. I., Charouli, S., Navrozidis, I. E., Proias, G., & Andreadis, S. S. (2025). The Delineation of Management Zones of the Halyomorpha halys (Hemiptera: Pentatomidae) Population Based on Its Spatiotemporal Distribution for Precision Agriculture Purposes. Insects, 16(4), 336. https://doi.org/10.3390/insects16040336