Comparison Between Worker and Soldier Transcriptomes of Termite Neotermes binovatus Reveals Caste Specialization of Host–Flagellate Symbiotic System
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. RNA Extraction and Transcriptome Sequencing
2.2. Transcriptome Assembly, Protein Prediction, and Functional Annotation
2.3. Abundance Quantification and Differential Expression Analysis
2.4. Sequence Source Identification
2.5. Co-Expression Network Construction
3. Results
3.1. General Features of Transcriptome of N. binovatus
3.2. Differential Expression of Termite Host Transcripts Between Workers and Soldier
3.3. Differences in Flagellate Transcript Abundance Between Workers and Soldiers
3.4. Co-Expression Patterns of Host–Flagellate Transcripts in Workers and Soldiers
4. Discussion
4.1. Caste-Biased Transcript Expression Patterns of the Host Worker and Soldier Termites
4.2. Flagellate Community Composition in Worker and Soldier Termites
4.3. Host–Flagellate Co-Expression Correlation in Worker and Soldier Termites
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Ahmad, W. Termites and Sustainable Management: Volume 1–Biology, Social Behaviour and Economic Importance; Springer International Publishing: Cham, Switzerland, 2018; p. 265. [Google Scholar]
- Miura, T.; Maekawa, K. The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol. Dev. 2020, 22, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, K.; Hayashi, Y.; Lo, N. Termite sociogenomics: Evolution and regulation of caste-specific expressed genes. Curr. Opin. Insect Sci. 2022, 50, 100880. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.W.; Du, Y.L.; Li, Z.Y.; Guo, R.Y.; Li, Y.Y.; Wei, J.Z.; Yin, X.M.; Su, L.J. Soldier Caste-Specific Protein 1 Is Involved in Soldier Differentiation in Termite Reticulitermes aculabialis. Insects 2022, 13, 502. [Google Scholar] [CrossRef]
- Shigenobu, S.; Hayashi, Y.; Watanabe, D.; Tokuda, G.; Hojo, M.Y.; Toga, K.; Saiki, R.; Yaguchi, H.; Masuoka, Y.; Suzuki, R.; et al. Genomic and transcriptomic analyses of the subterranean termite Reticulitermes speratus: Gene duplication facilitates social evolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2110361119. [Google Scholar] [CrossRef]
- Campanini, E.B.; Pedrino, M.; Martins, L.A.; Athaide Neta, O.S.; Carazzolle, M.F.; Ciancaglini, I.; Malavazi, I.; Costa-Leonardo, A.M.; de Melo Freire, C.C.; Nunes, F.M.F.; et al. Expression profiles of neotropical termites reveal microbiota-associated, caste-biased genes and biotechnological targets. Insect Mol. Biol. 2021, 30, 152–164. [Google Scholar] [CrossRef]
- Rasheed, H.; Ye, C.X.; Meng, Y.F.; Ran, Y.H.; Li, J.; Su, X.H. Comparative transcriptomic analysis and endocuticular protein gene expression of alate adults, workers and soldiers of the termite Reticulitermes aculabialis. BMC Genom. 2019, 20, 742. [Google Scholar] [CrossRef]
- Suzuki, R.H.; Hanada, T.; Hayashi, Y.; Shigenobu, S.; Maekawa, K.; Hojo, M.K. Gene expression profiles of chemosensory genes of termite soldier and worker antennae. Insect Mol. Biol. 2023, 32, 424–435. [Google Scholar] [CrossRef]
- Wu, T.; Dhami, G.K.; Thompson, G.J. Soldier-biased gene expression in a subterranean termite implies functional specialization of the defensive caste. Evol. Dev. 2018, 20, 3–16. [Google Scholar] [CrossRef]
- Mitaka, Y.; Kobayashi, K.; Mikheyev, A.; Tin, M.M.Y.; Watanabe, Y.; Matsuura, K. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite. PLoS ONE 2016, 11, e0146125. [Google Scholar] [CrossRef]
- Terrapon, N.; Li, C.; Robertson, H.M.; Ji, L.; Meng, X.H.; Booth, W.; Chen, Z.S.; Childers, C.P.; Glastad, K.M.; Gokhale, K.; et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 2014, 5, 3636. [Google Scholar] [CrossRef]
- Masuoka, Y.; Yaguchi, H.; Toga, K.; Shigenobu, S.; Maekawa, K. TGFβ signaling related genes are involved in hormonal mediation during termite soldier differentiation. PLoS Genet. 2018, 14, e1007338. [Google Scholar] [CrossRef] [PubMed]
- Bucek, A.; Šobotník, J.; He, S.L.; Shi, M.; McMahon, D.P.; Holmes, E.C.; Roisin, Y.; Lo, N.; Bourguignon, T. Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies. Curr. Biol. 2019, 29, 3728–3734. [Google Scholar] [CrossRef] [PubMed]
- Gile, G.H. Protist symbionts of termites: Diversity, distribution, and coevolution. Biol. Rev. 2024, 99, 622–652. [Google Scholar] [CrossRef]
- Nalepa, C.A. Origin of Mutualism Between Termites and Flagellated Gut Protists: Transition From Horizontal to Vertical Transmission. Front. Ecol. Evol. 2020, 8, 14. [Google Scholar] [CrossRef]
- Nishimura, Y.; Otagiri, M.; Yuki, M.; Shimizu, M.; Inoue, J.; Moriya, S.; Ohkuma, M. Division of functional roles for termite gut protists revealed by single-cell transcriptomes. ISME J. 2020, 14, 2449–2460. [Google Scholar] [CrossRef]
- Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 2014, 12, 168–180. [Google Scholar] [CrossRef]
- Lewis, J.L.; Forschler, B.T. Protist Communities from Four Castes and Three Species of Reticulitermes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 2004, 97, 1242–1251. [Google Scholar] [CrossRef]
- Shimada, K.; Lo, N.; Kitade, O.; Wakui, A.; Maekawa, K. Cellulolytic Protist Numbers Rise and Fall Dramatically in Termite Queens and Kings during Colony Foundation. Eukaryot. Cell 2013, 12, 545–550. [Google Scholar] [CrossRef]
- Benjamino, J.; Graf, J. Characterization of the Core and Caste-Specific Microbiota in the Termite, Reticulitermes flavipes. Front. Microbiol. 2016, 7, 171. [Google Scholar] [CrossRef]
- Kitade, O.; Hayashi, Y.; Noda, S. Symbiotic protist communities in the termite Coptotermes formosanus in Japan and a comparison of community structures between workers and soldiers. Jpn. J. Protozool. 2013, 46, 21–29. [Google Scholar]
- Scharf, M.E.; Wu-Scharf, D.; Pittendrigh, B.R.; Bennett, G.W. Caste- and development-associated gene expression in a lower termite. Genome Biol. 2003, 4, R62. [Google Scholar] [CrossRef]
- Scharf, M.E.; Wu-Scharf, D.; Zhou, X.; Pittendrigh, B.R.; Bennett, G.W. Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect. Mol. Biol. 2005, 14, 31–44. [Google Scholar] [CrossRef]
- Buček, A.; Wang, M.L.; Šobotník, J.; Hellemans, S.; Sillam-Dussès, D.; Mizumoto, N.; Stiblík, P.; Clitheroe, C.; Lu, T.; González Plaza, J.J.; et al. Molecular Phylogeny Reveals the Past Transoceanic Voyages of Drywood Termites (Isoptera, Kalotermitidae). Mol. Biol. Evol. 2022, 39, msac093. [Google Scholar] [CrossRef]
- Krishna, K.; Grimaldi, D.A.; Krishna, V.; Engel, M.S. Treatise on the Isoptera of the World: 1. Introduction. B. Am. Mus. Nat. Hist. 2013, 377, 1–200. [Google Scholar] [CrossRef]
- Harrison, M.C.; Jongepier, E.; Robertson, H.M.; Arning, N.; Bitard-Feildel, T.; Chao, H.; Childers, C.P.; Dinh, H.; Doddapaneni, H.; Dugan, S.; et al. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat. Ecol. Evol. 2018, 2, 557–566. [Google Scholar] [CrossRef]
- Lin, S.L.; Werle, J.; Korb, J. Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity. Commun. Biol. 2021, 4, 384. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simao, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Kriventseva, E.V.; Kuznetsov, D.; Tegenfeldt, F.; Manni, M.; Dias, R.; Simao, F.A.; Zdobnov, E.M. OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019, 47, D807–D811. [Google Scholar] [CrossRef]
- Allio, R.; Schomaker-Bastos, A.; Romiguier, J.; Prosdocimi, F.; Nabholz, B.; Delsuc, F. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol. Ecol. Resour. 2020, 20, 892–905. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Blum, M.; Andreeva, A.; Florentino, L.C.; Chuguransky, S.R.; Grego, T.; Hobbs, E.; Pinto, B.L.; Orr, A.; Paysan-Lafosse, T.; Ponamareva, I.; et al. InterPro: The protein sequence classification resource in 2025. Nucleic Acids Res. 2025, 53, D444–D456. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.Z.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernandez-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernandez-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Z.; Hu, E.Q.; Xu, S.B.; Chen, M.J.; Guo, P.F.; Dai, Z.H.; Feng, T.Z.; Zhou, L.; Tang, W.L.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Reijnders, M.J.M.F.; Waterhouse, R.M. Summary Visualizations of Gene Ontology Terms With GO-Figure! Front. Bioinform. 2021, 1, 638255. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Duan, Y.W.; Zhu, W.X.; Zhao, X.M.; Merzendorfer, H.; Chen, J.Q.; Zou, X.; Yang, Q. Choline transporter-like protein 2 interacts with chitin synthase 1 and is involved in insect cuticle development. Insect Biochem. Molec. 2022, 141, 103718. [Google Scholar] [CrossRef]
- Gillespie, C.S.; Sherman, D.L.; Blair, G.E.; Brophy, P.J. Periaxin, a novel protein of myelinating schwann cells with a possible role in axonal ensheathment. Neuron 1994, 12, 497–508. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, X.Y.; Li, F.; Yan, C. Mendelian Randomization Estimates the Effects of Plasma and Cerebrospinal Fluid Proteins on Intelligence, Fluid Intelligence Score, and Cognitive Performance. Mol. Neurobiol. 2025, 62, 4922–4934. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yang, L.; Lin, X.D.; Peng, P.Y.; Shen, W.J.; Tang, S.P.; Lan, X.Y.; Wan, F.C.; Yin, Y.L.; Liu, M. Effects of Genetic Variation of the Sorting Nexin 29 (SNX29) Gene on Growth Traits of Xiangdong Black Goat. Animals 2022, 12, 3461. [Google Scholar] [CrossRef]
- Mitaka, Y.; Tasaki, E.; Nozaki, T.; Fuchikawa, T.; Kobayashi, K.; Matsuura, K. Transcriptomic analysis of epigenetic modification genes in the termite Reticulitermes speratus. Insect Sci. 2020, 27, 202–211. [Google Scholar] [CrossRef]
- Baier, A.; Wittek, B.; Brembs, B. Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 2002, 205, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.X.; McDonald, N.A.; Connolly, C.N. Cell Surface Expression of 5-Hydroxytryptamine Type 3 Receptors Is Promoted by RIC-3*. J. Biol. Chem. 2005, 280, 22502–22507. [Google Scholar] [CrossRef]
- Dierick, H.A.; Greenspan, R.J. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat. Genet. 2007, 39, 678–682. [Google Scholar] [CrossRef]
- Svendsen, P.C.; Formaz-Preston, A.; Leal, S.M.; Brook, W.J. The Tbx20 homologs midline and H15 specify ventral fate in the Drosophila melanogaster leg. Development 2009, 136, 2689–2693. [Google Scholar] [CrossRef]
- Hoogenraad, C.C.; Koekkoek, B.; Akhmanova, A.; Krugers, H.; Dortland, B.; Miedema, M.; van Alphen, A.; Kistler, W.M.; Jaegle, M.; Koutsourakis, M.; et al. Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nat. Genet. 2002, 32, 116–127. [Google Scholar] [CrossRef]
- Li, Y.-X.; Yan, Q.; Liu, T.-W.; Wang, J.-X.; Zhao, X.-F. Lipases are differentially regulated by hormones to maintain free fatty acid homeostasis for insect brain development. BMC Biol. 2024, 22, 171. [Google Scholar] [CrossRef]
- Maaß, A.; Radek, R. The gut flagellate community of the termite Neotermes cubanus with special reference to Staurojoenina and Trichocovina hrdyi nov gen. nov sp. Eur. J. Protistol. 2006, 42, 125–141. [Google Scholar] [CrossRef]
- Treitli, S.C.; Kotyk, M.; Yubuki, N.; Jirounková, E.; Vlasáková, J.; Smejkalová, P.; Šípek, P.; Čepička, I.; Hampl, V. Molecular and Morphological Diversity of the Oxymonad Genera Monocercomonoides and Blattamonas gen. nov. Protist 2018, 169, 744–783. [Google Scholar] [CrossRef]
- Ohkuma, M.; Iida, T.; Ohtoko, K.; Yuzawa, H.; Noda, S.; Viscogliosi, E.; Kudo, T. Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Hypermastigea. Mol. Phylogenet. Evol. 2005, 35, 646–655. [Google Scholar] [CrossRef]
- Noda, S.; Mantini, C.; Meloni, D.; Inoue, J.-I.; Kitade, O.; Viscogliosi, E.; Ohkuma, M. Molecular Phylogeny and Evolution of Parabasalia with Improved Taxon Sampling and New Protein Markers of Actin and Elongation Factor-1α. PLoS ONE 2012, 7, e29938. [Google Scholar] [CrossRef]
- Malik, S.-B.; Brochu, C.D.; Bilic, I.; Yuan, J.; Hess, M.; Logsdon, J.M.; Carlton, J.M. Phylogeny of Parasitic Parabasalia and Free-Living Relatives Inferred from Conventional Markers vs Rpb1, a Single-Copy Gene. PLoS ONE 2011, 6, e20774. [Google Scholar] [CrossRef]
- Mies, U.S.; Hervé, V.; Kropp, T.; Platt, K.; Sillam-Dussès, D.; Šobotník, J.; Brune, A. Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates. mBio 2024, 15, e0082624. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.; Hu, H.F.; Li, C.; Chen, Z.S.; Xu, L.H.; Otani, S.; Nygaard, S.; Nobre, T.; Klaubauf, S.; Schindler, P.M.; et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc. Natl. Acad. Sci. USA 2014, 111, 14500–14505. [Google Scholar] [CrossRef] [PubMed]
- Treitli, S.C.; Kolisko, M.; Husník, F.; Keeling, P.J.; Hampl, V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc. Natl. Acad. Sci. USA 2019, 116, 19675–19684. [Google Scholar] [CrossRef]
Transcript | Putative Source | Coefficient | Average Worker TMM | Average Soldier TMM | DET |
---|---|---|---|---|---|
inositol 1,4,5-trisphosphate receptor mRNA | termite | −0.00015 | 97.58 | 18.41 | no |
resistance to inhibitors of cholinesterase protein 3 (RIC3) mRNA | termite | 0.00121 | 803.25 | 2862.81 | yes |
T-box transcription factor TBX20 mRNA | termite | 0.01148 | 24.28 | 127.13 | yes |
CAP-Gly domain-containing linker protein 2 (CLIP2) mRNA | termite | 0.00022 | 187.64 | 1157.88 | yes |
periaxin mRNA | termite | −0.00178 | 172.28 | 3.17 | yes |
regulator of microtubule dynamics protein 1 (RMDN1) mRNA | termite | −0.00261 | 346.49 | 30.11 | yes |
CAP-Gly domain-containing linker protein 2 (CLIP2) mRNA | unclear | 0.00105 | 656.38 | 3365.92 | yes |
choline transporter-like protein 2 (CTL2) mRNA | termite | −0.00071 | 960.42 | 141.31 | yes |
serine/threonine-protein kinase mRNA | unclear | 4.56096 | 125.45 | 1099.15 | no |
Kazal-type serine protease inhibitor mRNA | unclear | 1.95818 | 149.86 | 1717.32 | yes |
sorting nexin-29 (SNX29) mRNA | termite | −0.01008 | 173.60 | 12.24 | yes |
pancreatic triacylglycerol lipase (PTL) mRNA | termite | 0.00021 | 287.63 | 2320.95 | yes |
Gene | Cristamonadida | Oxymonadida | Trichomonadida | Tritrichomonadida | Unclassified Order | Total |
---|---|---|---|---|---|---|
18S rRNA | 10 | 7 | 2 | 0 | 5 | 24 |
actin | 63 | 0 | 4 | 11 | 76 | 154 |
alpha tubulin | 0 | 1 | 0 | 1 | 48 | 50 |
beta tubulin | 0 | 0 | 0 | 0 | 56 | 56 |
elongation factor-1 alpha (EF1α) | 16 | 0 | 1 | 0 | 10 | 27 |
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) | 5 | 0 | 0 | 0 | 16 | 21 |
others | 0 | 0 | 3 | 0 | 98 | 101 |
total | 94 | 8 | 10 | 12 | 309 | 433 |
Gene | Genus | Order | Percent Identity of Best Hit | Average Worker TMM | Average Soldier TMM | Adjusted p-Value |
---|---|---|---|---|---|---|
18S rRNA | Devescovina | Cristamonadida | 92.55 | 1011.79 | 375.31 | 0.55 |
18S rRNA | Devescovina | Cristamonadida | 95.75 | 105.92 | 64.66 | 0.78 |
18S rRNA | Devescovina | Cristamonadida | 95.67 | 200.04 | 88.15 | 0.59 |
18S rRNA | Devescovina | Cristamonadida | 91.80 | 197.95 | 175.36 | 0.95 |
18S rRNA | Oxymonas | Oxymonadida | 94.78 | 547.68 | 908.43 | 0.71 |
18S rRNA | Oxymonas | Oxymonadida | 92.41 | 90.92 | 178.40 | 0.59 |
18S rRNA | Oxymonas | Oxymonadida | 96.83 | 147.28 | 271.46 | 0.70 |
18S rRNA | Oxymonas | Oxymonadida | 97.46 | 869.33 | 1632.84 | 0.66 |
18S rRNA | Oxymonas | Oxymonadida | 97.38 | 442.22 | 830.14 | 0.65 |
18S rRNA | Blattamonas | Oxymonadida | 99.12 | 1468.43 | 2481.67 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-H.; Wang, M.; Chang, X.-P.; Ke, Y.-L.; Li, Z.-Q. Comparison Between Worker and Soldier Transcriptomes of Termite Neotermes binovatus Reveals Caste Specialization of Host–Flagellate Symbiotic System. Insects 2025, 16, 325. https://doi.org/10.3390/insects16030325
Huang Y-H, Wang M, Chang X-P, Ke Y-L, Li Z-Q. Comparison Between Worker and Soldier Transcriptomes of Termite Neotermes binovatus Reveals Caste Specialization of Host–Flagellate Symbiotic System. Insects. 2025; 16(3):325. https://doi.org/10.3390/insects16030325
Chicago/Turabian StyleHuang, Yu-Hao, Miao Wang, Xiu-Ping Chang, Yun-Ling Ke, and Zhi-Qiang Li. 2025. "Comparison Between Worker and Soldier Transcriptomes of Termite Neotermes binovatus Reveals Caste Specialization of Host–Flagellate Symbiotic System" Insects 16, no. 3: 325. https://doi.org/10.3390/insects16030325
APA StyleHuang, Y.-H., Wang, M., Chang, X.-P., Ke, Y.-L., & Li, Z.-Q. (2025). Comparison Between Worker and Soldier Transcriptomes of Termite Neotermes binovatus Reveals Caste Specialization of Host–Flagellate Symbiotic System. Insects, 16(3), 325. https://doi.org/10.3390/insects16030325