Advancements in Life Tables Applied to Integrated Pest Management with an Emphasis on Two-Sex Life Tables
Simple Summary
Abstract
1. Introduction
2. Application of Life Tables in Biological Control of Pests
2.1. Application in Agricultural Pest Control
2.1.1. Evaluation of the Pest Control Capacity of Natural Enemies of Pests
2.1.2. Evaluation of the Pest Control Capacity of Bio-Pesticides
2.1.3. Screening of Insect-Resistant Plant Species
2.2. Application in Vector Insect Control
2.2.1. Assessing the Risk of Transmission by Vector Insects
2.2.2. Modeling the Dynamics of Vector Insects
2.2.3. Interference with the Life Cycle of Vector Insects
2.3. Application in Invasive Pest Control
3. Application of Life Tables in Chemical Control of Pests
3.1. Evaluating the Fitness Costs of Pesticide Resistance in Pests
3.2. Guiding the Selection of Insecticides
3.3. Guiding the Application of Insecticides
4. Discussion and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IPM | integrated pest management |
PYVV | potato yellow vein virus |
ILCYM | insect life cycle modeling |
GIS | geographic information system |
References
- Jia, X.; Wang, Y.; Zhao, Z. Estimation of the invasiveness of alien fruit flies with life table. J. Plant Prot. 2023, 50, 839–840. [Google Scholar]
- Schumacher, A.E.; Kyu, H.H.; Aali, A.; Abbafati, C.; Abbas, J.; Abbasgholizadeh, R.; Abbasi, M.A.; Abbasian, M.; Abd ElHafeez, S.; Abdelmasseh, M.; et al. Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: A comprehensive demographic analysis for the global burden of disease study 2021. Lancet 2024, 403, 1989–2056. [Google Scholar]
- Forchibe, E.E.; Fening, K.O.; Vershiyi, D.T.; Cobblah, A.M.; Afreh-Nuamah, K. Comparative bionomics and life table studies of Lipaphis erysimi pseudobrassicae (Davis) and Myzus persicae (Sulzer) (Hemiptera: Aphididae) on three cabbage varieties. Bull. Entomol. Res. 2023, 113, 380–388. [Google Scholar] [CrossRef]
- van Klink, R.; August, T.; Bas, Y. Emerging technologies revolutionize insect ecology and monitoring. Trends Ecol. Evol. 2022, 37, 872–885. [Google Scholar] [CrossRef]
- Carey, J.R. Insect biodemography. Annu. Rev. Entomol. 2001, 46, 79–110. [Google Scholar] [CrossRef]
- Chi, H.; You, M.; Atlıhan, R.; Smith, C.L.; Kavousi, A.; Özgökçe, M.S.; Güncan, A.; Tuan, S.-J.; Fu, J.-W.; Xu, Y.-Y.; et al. Age-Stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2020, 40, 103–124. [Google Scholar] [CrossRef]
- Hsin, C.; Jianwei, F.; Minsheng, Y. Age-stage, two-sex life table and its application in population ecology and integrated pest management. J. Plant Prot. 2019, 62, 255–262. [Google Scholar]
- Ning, S.; Zhang, W.; Sun, Y. Development of insect life tables: Comparison of two demographic methods of Delia antiqua (Diptera: Anthomyiidae) on different hosts. Sci. Rep. 2017, 7, 4821. [Google Scholar] [CrossRef] [PubMed]
- Novianto, D.; Hadi, U.K.; Soviana, S.; Darusman, H.S. Comparison of diurnal biting activity, life table, and demographic attributes of Aedes albopictus (Asian tiger mosquito) from different urbanized settings in West Java, Indonesia. Acta Trop. 2023, 241, 106771. [Google Scholar] [CrossRef]
- Zhang, K.X.; Ma, Y.; Li, C.C. Population growth of Tetranychus truncatus (Acari: Tetranychidae) on different drought-tolerant potato cultivars. J. Econ. Entomol. 2023, 116, 405–415. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, F.; Tan, X. Use of age-stage, two-sex life table to compare the fitness of Bactrocera dorsalis (Diptera: Tephritidae) on Northern and Southern Host Fruits in China. Insects 2022, 13, 258. [Google Scholar] [CrossRef]
- Van den Berg, J.; du Plessis, H. Chemical control and insecticide resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 2022, 115, 1761–1771. [Google Scholar] [CrossRef] [PubMed]
- Withers, A.J.; Rice, A.; de Boer, J.; Wilson, K. The distribution of covert microbial natural enemies of a globally invasive crop pest, Fall Armyworm, in Africa: Enemy release and spillover events. J. Anim. Ecol. 2022, 91, 1826–1841. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Cong, L.; Zhang, Y. Advances in biological control of leguminous insect pests. Chin. Agric. Sci. Bull. 2021, 37, 113–120. [Google Scholar]
- Zhang, Q.; Lu, Y.W.; Liu, X.Y.; Li, Y. Phylogenomics resolves the higher-level phylogeny of herbivorous eriophyoid mites (Acariformes: Eriophyoidea). BMC Biol. 2024, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Saurabh, S.; Mishra, M.; Rai, P.; Pandey, R. Tiny flies: A mighty pest that threatens agricultural productivity-a case for next-generation control strategies of Whiteflies. Insects 2021, 12, 585. [Google Scholar] [CrossRef]
- Mound, L.A.; Wang, Z.; Lima, É.F.B.; Marullo, R. Problems with the concept of "pest" among the diversity of pestiferous thrips. Insects 2022, 13, 61. [Google Scholar] [CrossRef]
- Janssen, A.; Fonseca, M.M.; Marcossi, I.; Kalile, M.O. Estimating intrinsic growth rates of arthropods from partial life tables using predatory mites as examples. Exp. Appl. Acarol. 2022, 86, 327–342. [Google Scholar] [CrossRef]
- Li, H.; Li, B.; Lövei, G.L.; Kring, T.J.; Obrycki, J.J. Interactions among native and non-native predatory coccinellidae influence biological control and biodiversity. Ann. Entomol. Soc. Am. 2021, 114, 119–136. [Google Scholar] [CrossRef]
- Hassan, M.A.; Liu, X. The green lacewings of Pakistan (Neuroptera: Chrysopidae): A faunal review with new records of genera and species. Zootaxa 2022, 5180, 1–83. [Google Scholar] [CrossRef]
- Li, J.; Tian, X.; Hsiang, T.; Yang, Y.; Shi, C. Microbial community structure and metabolic function in the venom glands of the predatory stink bug, Picromerus lewisi (Hemiptera: Pentatomidae). Insects 2024, 15, 727. [Google Scholar] [CrossRef]
- Ali, S.; Li, S.; Jaleel, W.; Khan, M.M.; Wang, J.; Zhou, X. Using a two-sex life table tool to calculate the fitness of Orius strigicollis as a predator of Pectinophora gossypiella. Insects 2020, 11, 275. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.U.; Zhou, X.; Ali, S. Predatory functional response and fitness parameters of Orius strigicollis Poppius when fed Bemisia tabaci and Trialeurodes vaporariorum as determined by age-stage, two-sex life table. PeerJ 2020, 8, e9540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sheng, F.; Wang, E.; Lv, J.; Xu, X. Amblyseius orientalis shows high consumption and reproduction on Polyphagotarsonemus latus in China. Exp. Appl. Acarol. 2023, 91, 561–569. [Google Scholar] [CrossRef]
- Xi, O.; Zhu, D.; Zhong, W. Investigation on parasitic natural enemy resources of Yponomeuta padella (Lepidoptera: Yponomeutidae) in wild fruit forest of western Tianshan Mountains, Xinjiang. Sci. Silvae Sin. 2022, 58, 131–139. [Google Scholar]
- Sousa, T.C.D.S.; Leite, N.A.; Sant Ana, J. Responses of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) to rice and corn plants, fed and oviposited by Spodoptera frugiperda (Lepidoptera: Noctuidae). Neotrop. Entomol. 2021, 50, 697–705. [Google Scholar] [CrossRef]
- Gaione-Costa, A.; DE Pdua, D.G.; Delazari, T.M.; Santos, A.R.S.; Kloss, T.G. Redescription and oviposition behavior of an orb-weaver spider parasitoid Hymenoepimecis cameroni Townes, 1966 (Hymenoptera: Ichneumonidae). Zootaxa 2022, 5134, 415–425. [Google Scholar] [CrossRef]
- Tomanović, Ž.; Kavallieratos, N.G.; Ye, Z.; Nika, E.P. Cereal aphid parasitoids in Europe (Hymenoptera: Braconidae: Aphidiinae): Taxonomy, biodiversity, and ecology. Insects 2022, 13, 1142. [Google Scholar] [CrossRef]
- Pagac, A.A.; Geden, C.J.; Burgess, E.R.; Riggs, M.R.; Machtinger, E.T. Filth Fly Parasitoid (Hymenoptera: Pteromalidae) monitoring techniques and species composition in Poultry Layer Facilities. J. Med. Entomol. 2022, 59, 2006–2012. [Google Scholar] [CrossRef]
- Salim, M.; Ullah, I.; Saljoqi, A.U.R. Life table study of Sitotroga cerealella on different cereals and its implications on the performance of the egg parasitoid (Trichogramma chilonis) under laboratory conditions. Sci. Rep. 2023, 13, 10961. [Google Scholar] [CrossRef]
- Tabebordbar, F.; Shishehbor, P.; Ebrahimi, E.; Polaszek, A.; Ugine, T.A. Effect of different constant temperatures on life history and life table parameters of Trichogramma euproctidis (Hymenoptera: Trichogrammatidae). J. Econ. Entomol. 2022, 115, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Moraes, R.J.S.S.; Silva-Torres, C.S.A.; Barbosa, P.R.R. Olfaction Response and Fertility Life Table Parameters of Tetrastichus howardi (Hymenoptera: Eulophidae) Parasitizing Plutella xylostella (Lepidoptera: Plutellidae) and the factitious host Tenebrio molitor (Coleoptera: Tenebrionidae). Neotrop. Entomol. 2023, 52, 921–931. [Google Scholar] [CrossRef]
- Islam, W.; Adnan, M.; Shabbir, A.; Naveed, H. Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb. Pathog. 2021, 159, 105122. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, R.F.; Freed, S.; Ahmed, R.; Raza, M.; Naeem, A. Virulence and transgenerational effects of Metarhizium anisopliae on Oxycarenus hyalinipennis. Pest Manag. Sci. 2023, 79, 3843–3851. [Google Scholar] [CrossRef]
- Rizwan, M.; Atta, B.; Arshad, M. Nondetrimental impact of two concomitant entomopathogenic fungi on life history parameters of a generalist predator, Coccinella septempunctata (Coleoptera: Coccinellidae). Sci. Rep. 2021, 11, 20699. [Google Scholar] [CrossRef]
- Hamama, H.M.; Zyaan, O.H.; Abu Ali, O.A. Virulence of entomopathogenic fungi against Culex pipiens: Impact on biomolecules availability and life table parameters. Saudi J. Biol. Sci. 2022, 29, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Zafar, J.; Shoukat, R.F.; Zhu, Z.; Fu, D.; Xu, X. Two-Sex Life Table Analysis for Optimizing Beauveria bassiana Application against Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). J. Fungi 2024, 10, 469. [Google Scholar] [CrossRef]
- Mangan, R.; Bussière, L.F.; Polanczyk, R.A.; Tinsley, M.C. Increasing ecological heterogeneity can constrain biopesticide resistance evolution. Trends Ecol. Evol. 2023, 38, 605–614. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Bravo, A.; Soberón, M. Can microbial-based insecticides replace chemical pesticides in agricultural production? Microb. Biotechnol. 2023, 16, 2011–2014. [Google Scholar] [CrossRef]
- Francis, F.; Jacquemyn, H.; Delvigne, F.; Lievens, B. From diverse origins to specific targets: Role of microorganisms in indirect pest biological control. Insects 2020, 11, 533. [Google Scholar] [CrossRef]
- Mitsumoto, A.; Yamazaki, T. A pilot test of olive weevil repellents in an olive orchard. Yakugaku Zasshi 2024, 144, 675–683. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Cañas, L.; Ellsworth, P.C. Mortality dynamics of a polyphagous invasive herbivore reveal clues in its agroecosystem success. Pest Manag. Sci. 2022, 78, 3988–4005. [Google Scholar] [CrossRef]
- Allahyari, R.; Aramideh, S.; Michaud, J.P.; Safaralizadeh, M.H.; Rezapanah, M.R. Negative Life History Impacts for Habrobracon hebetor (Hymneoptera: Braconidae) that Develop in Bollworm Larvae Inoculated with Helicoverpa armigera Nucleopolyhedrovirus. J. Econ. Entomol. 2020, 113, 1638–1655. [Google Scholar] [CrossRef]
- Mansour, M.R.; Eryan, N.L. Effects of certain weather, biotic factors and chemical components on the population of aphids in egyptian wheat fields. Egypt. Acad. J. Biol. Sciences. A Entomol. 2022, 15, 1–13. [Google Scholar]
- Li, C.; Xiong, Z.; Fang, C.; Liu, K. Transcriptome and metabolome analyses reveal the responses of brown planthoppers to RH resistant rice cultivar. Front. Physiol. 2022, 13, 1018470. [Google Scholar] [CrossRef] [PubMed]
- Machado, E.P.; dos SRodrigues Junior, G.L.; Führ, F.M.; Zago, S.L.; Marques, L.H.; Santos, A.C.; Nowatzki, T.; Dahmer, M.L.; Omoto, C.; Bernardi, O. Cross-crop resistance of Spodoptera frugiperda selected on Bt maize to genetically modified soybean expressing Cry1Ac and Cry1F proteins in Brazil. Sci. Rep. 2020, 10, 10080. [Google Scholar] [CrossRef]
- Kumari, P.; Jasrotia, P.; Kumar, D. Biotechnological approaches for host plant resistance to insect pests. Front. Genet. 2022, 13, 914029. [Google Scholar] [CrossRef]
- Avellar, G.S.; Mendes, S.M.; Marriel, I.E. Resistance of sorghum hybrids to Sorghum Aphid. Braz. J. Biol. 2022, 82, e264139. [Google Scholar] [CrossRef]
- Lu, C.; Shen, N.; Jiang, W. Different tea germplasms distinctly influence the adaptability of Toxoptera aurantii (Hemiptera: Aphididae). Insects 2023, 14, 695. [Google Scholar] [CrossRef]
- Haridas, C.V.; Tenhumberg, B. Modeling effects of ecological factors on evolution of polygenic pesticide resistance. J. Theor. Biol. 2018, 456, 224–232. [Google Scholar] [CrossRef]
- Jones, R.T.; Ant, T.H.; Cameron, M.M.; Logan, J.G. Novel control strategies for mosquito-borne diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20190802. [Google Scholar] [CrossRef]
- Harnish, J.M.; Link, N.; Yamamoto, S. Drosophila as a model for infectious diseases. Int. J. Mol. Sci. 2021, 22, 2724. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Sharma, G.; Bhattacherjee, R. Life table, survival and fecundity parameters of Aedes albopictus (Diptera: Culicidae) strains from desert and coastal regions of India. Acta Trop. 2022, 235, 106625. [Google Scholar] [CrossRef] [PubMed]
- Chua, T.H.; Manin, B.O.; Fornace, K. Life table analysis of Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia. Parasites Vectors 2022, 15, 442. [Google Scholar] [CrossRef]
- Fazeli-Dinan, M.; Azarnoosh, M.; Özgökçe, M.S. Global water quality changes posing threat of increasing infectious diseases, a case study on malaria vector Anopheles stephensi coping with the water pollutants using age-stage, two-sex life table method. Malar. J. 2022, 21, 178. [Google Scholar] [CrossRef] [PubMed]
- Chaves, L.F.; Meyers, A.C.; Hodo, C.L. Trypanosoma cruzi infection in dogs along the US-Mexico border: R0 changes with vector species composition. Epidemics 2023, 45, 100723. [Google Scholar] [CrossRef]
- Sporleder, M.; Gamarra, H.; Carhuapoma, P.; Goicochea, L.; Kroschel, J.; Kreuze, J. A temperature-dependent phenology model for Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae). Environ. Entomol. 2023, 52, 832–846. [Google Scholar] [CrossRef]
- Erguler, K.; Mendel, J.; Petrić, D.V.; Petrić, M.; Kavran, M. A dynamically structured matrix population model for insect life histories observed under variable environmental conditions. Sci. Rep. 2022, 12, 11587. [Google Scholar] [CrossRef]
- Gamarra, H.; Carhuapoma, P.; Cumapa, L. A temperature-driven model for potato yellow vein virus transmission efficacy by Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Virus Res. 2020, 289, 198109. [Google Scholar] [CrossRef]
- Hameed, A.; Rosa, C.; Rajotte, E.G. The effect of species Soybean Vein Necrosis Orthotospovirus (SVNV) on life table parameters of its vector, Soybean Thrips (Neohydatothrips variabilis Thysanoptera: Thripidae). Insects 2022, 13, 632. [Google Scholar] [CrossRef]
- Gnambani, E.J.; Bilgo, E.; Dabiré, R.K.; Belem, A.M.G.; Diabaté, A. Infection of the malaria vector Anopheles coluzzii with the entomopathogenic bacteria Chromobacterium anophelis sp. nov. IRSSSOUMB001 reduces larval survival and adult reproductive potential. Malar. J. 2023, 22, 122. [Google Scholar] [CrossRef] [PubMed]
- Acharya, R.; Malekera, M.J.; Dhungana, S.K.; Sharma, S.R.; Lee, K.Y. Impact of rice and potato host plants is higher on the reproduction than growth of corn strain fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 256. [Google Scholar] [CrossRef]
- Bălăcenoiu, F.; Toma, D.; Nețoiu, C. From field data to practical knowledge: Investigating the bioecology of the Oak Lace Bug-an invasive insect species in Europe. Insects 2023, 14, 882. [Google Scholar] [CrossRef] [PubMed]
- Abbes, K.; Harbi, A.; Guerrieri, E.; Chermiti, B. Using Age-Stage Two-Sex Life Tables to Assess the Suitability of Three Solanaceous Host Plants for the Invasive Cotton Mealybug Phenacoccus solenopsis Tinsley. Plants 2024, 13, 1381. [Google Scholar] [CrossRef]
- Xie, R.; Wu, B.; Gu, M.; Qin, H. Life table construction for crapemyrtle bark scale (Acanthococcus lagerstroemiae): The effect of different plant nutrient conditions on insect performance. Sci. Rep. 2022, 12, 11472. [Google Scholar] [CrossRef] [PubMed]
- Gul, H.; Gadratagi, B.G.; Güncan, A. Fitness costs of resistance to insecticides in insects. Front. Physiol. 2023, 14, 1238111. [Google Scholar] [CrossRef]
- Skouras, P.J.; Karanastasi, E.; Demopoulos, V. Toxicity and influence of sublethal exposure to sulfoxaflor on the aphidophagous predator Hippodamia variegata (Coleoptera: Coccinellidae). Toxics 2023, 11, 533. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Q.; Liu, X.; Liang, G. Differences in the sublethal effects of sulfoxaflor and acetamiprid on the Aphis gossypii Glover (Homoptera: Aphididae) are related to its basic sensitivity level. Insects 2022, 13, 498. [Google Scholar] [CrossRef]
- Ullah, F.; Xu, X.; Gul, H.; Güncan, A.; Hafeez, M. Impact of imidacloprid resistance on the demographic traits and expressions of associated genes in Aphis gossypii Glover. Toxics 2022, 10, 658. [Google Scholar] [CrossRef]
- Garlet, C.G.; Moreira, R.P.; Gubiani, P.D.S. Fitness cost of chlorpyrifos resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on different host plants. Environ. Entomol. 2021, 50, 898–908. [Google Scholar] [CrossRef]
- Afza, R.; Afzal, A.; Riaz, M.A. Sublethal and transgenerational effects of synthetic insecticides on the biological parameters and functional response of Coccinella septempunctata (Coleoptera: Coccinellidae) under laboratory conditions. Front. Physiol. 2023, 14, 1088712. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Valbon, W.; Qiu, M.; Hu, C.T.; Yang, J. Insecticidal and repellent properties of rapid-acting fluorine-containing compounds against Aedes aegypti mosquitoes. ACS Infect. Dis. 2023, 9, 1396–1407. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Gu, F. Sublethal effects of triflumezopyrim on biological traits and detoxification enzyme activities in the small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae). Front. Physiol. 2020, 11, 261. [Google Scholar] [CrossRef]
- Zhu, G.; Ding, W.; Zhao, Y.; Xue, M.; Zhao, H. Biological and physiological responses of two bradysia pests, Bradysia odoriphaga and Bradysia difformis, to dinotefuran and lufenuron. Pestic. Biochem. Physiol. 2023, 190, 105338. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Hafeez, F.; Iftikhar, A. Laboratory induced selection of pyriproxyfen resistance in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae): Cross-resistance potential, realized heritability, and fitness costs determination using age-stage, two-sex life table. Chemosphere 2021, 269, 129367. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Fu, J.; Li, J. Projection of insect population dynamics with age-stage, two-sex life table and its application in pest management. Acta Entomol. Sin. 2023, 66, 255–266. [Google Scholar]
- Mariño, Y.A.; Bayman, P.; Sabat, A.M. Demography and perturbation analyses of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): Implications for management. PLoS ONE 2021, 16, e0260499. [Google Scholar] [CrossRef]
- Mermer, S.; Maslen, E.A.; Dalton, D.T. Temperature-dependent life table parameters of brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) in the United States. Insects 2023, 14, 248. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, Q.; Keyhani, N.O. Biocontrol performance and mass production potential of the larval endoparasitoid Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) against the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2024, 34, 44. [Google Scholar] [CrossRef]
- Zhou, D.-H.; Zhang, Q.-G. Fast drug rotation reduces bacterial resistance evolution in a microcosm experiment. J. Evol. Biol. 2023, 36, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Sharada, K.; Choudhary, S.L.; Harikrishna, T. GeoAgriGuard: AI-Driven Pest and Disease Management with Remote Sensing for Global Food Security. Remote Sens. Earth Syst. Sci. 2025. [Google Scholar] [CrossRef]
- Burc, E.; Girard-Tercieux, C.; Metz, M. Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nat. Commun. 2025, 16, 827. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Luo, Y.; Wang, L.; Sun, D.; Wang, Y.; Zhou, J.; Luo, B.; Liu, H.; Yan, R.; Wang, L. Advancements in Life Tables Applied to Integrated Pest Management with an Emphasis on Two-Sex Life Tables. Insects 2025, 16, 261. https://doi.org/10.3390/insects16030261
Chen Z, Luo Y, Wang L, Sun D, Wang Y, Zhou J, Luo B, Liu H, Yan R, Wang L. Advancements in Life Tables Applied to Integrated Pest Management with an Emphasis on Two-Sex Life Tables. Insects. 2025; 16(3):261. https://doi.org/10.3390/insects16030261
Chicago/Turabian StyleChen, Zhenfu, Yang Luo, Liang Wang, Da Sun, Yikang Wang, Juan Zhou, Bo Luo, Hui Liu, Rong Yan, and Lingjun Wang. 2025. "Advancements in Life Tables Applied to Integrated Pest Management with an Emphasis on Two-Sex Life Tables" Insects 16, no. 3: 261. https://doi.org/10.3390/insects16030261
APA StyleChen, Z., Luo, Y., Wang, L., Sun, D., Wang, Y., Zhou, J., Luo, B., Liu, H., Yan, R., & Wang, L. (2025). Advancements in Life Tables Applied to Integrated Pest Management with an Emphasis on Two-Sex Life Tables. Insects, 16(3), 261. https://doi.org/10.3390/insects16030261