Diversity and Seasonal Abundance of the Pine Bark and Ambrosia Beetles in the Florida Panhandle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Monitoring, Collection, and Identification of the Pine Bark Beetles in Two Counties
2.3. Seasonal Data
2.4. Data Analysis
3. Results
3.1. Species Diversity and Abundance
3.2. Seasonal Fluctuation of Beetles in the Florida Panhandle
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA United States Department of Agriculture Forest. Forest Products. Available online: https://www.fs.usda.gov/managing-land/forest-management/products (accessed on 7 January 2025).
- FDACS Florida Department of Agriculture and Consumer Services. Florida Agriculture Overview and Statistics. Available online: https://www.fdacs.gov/Agriculture-Industry/Florida-Agriculture-Overview-and-Statistics (accessed on 7 January 2025).
- Ingram, V.; Levang, P.; Cronkleton, P.; Degrande, A.; Leakey, R.; van Damme, P. Forest and Tree Product Value Chains. For. Trees Livelihoods 2014, 23, 1–5. [Google Scholar] [CrossRef]
- Florida Forestry Association (FFA). 2017 Economic Impact Study. Available online: https://www.flforestry.org/resources/2017-economic-impact-study (accessed on 7 January 2025).
- Hulcr, J.; Atkinson, T.H.; Cognato, A.I.; Jordal, B.H.; McKenna, D.D. Morphology, Taxonomy, and Phylogenetics of Bark Beetles. In Bark Beetles; Elsevier: Amsterdam, The Netherlands, 2015; pp. 41–84. [Google Scholar]
- Sullivan, B.T.; Munro, H.L.; Barnes, B.F.; McNichol, B.H.; Shepherd, W.P.; Gandhi, K.J.K. Potential for a Minor Pine Bark Beetle Pest, Dendroctonus terebrans (Coleoptera: Curculionidae: Scolytinae), to Mediate Host Location by a Major Pine Killer, Dendroctonus frontalis. J. Econ. Entomol. 2024, 117, 1010–1021. [Google Scholar] [CrossRef]
- Pye, J.; Holmes, T.; Prestemon, J.; Wear, D. Economic Impacts of the Southern Pine Beetle. In Southern Pine Beetle II; Coulson, R., Klepzig, K., Eds.; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2011; pp. 213–222. [Google Scholar]
- Munro, H.L.; Montes, C.R.; Gandhi, K.J.K. A New Approach to Evaluate the Risk of Bark Beetle Outbreaks Using Multi-Step Machine Learning Methods. For. Ecol. Manag. 2022, 520, 120347. [Google Scholar] [CrossRef]
- Clarke, S.R.; Nowak, J.T. Forest Insect & Disease Leaflet 49. U.S. Forest Service. Available online: https://www.fs.usda.gov/foresthealth/docs/fidls/FIDL-49-SouthernPineBeetle.pdf (accessed on 7 January 2025).
- Schowalter, T.D. Ecology and Management of Bark Beetles (Coleoptera: Curculionidae: Scolytinae) in Southern Pine Forests. J. Integr. Pest Manag. 2012, 3, A1–A7. [Google Scholar] [CrossRef]
- Seybold, S.J.; Bentz, B.J.; Fettig, C.J.; Lundquist, J.E.; Progar, R.A.; Gillette, N.E. Management of Western North American Bark Beetles with Semiochemicals. Annu. Rev. Entomol. 2018, 63, 407–432. [Google Scholar] [CrossRef] [PubMed]
- Fettig, C.J.; Asaro, C.; Nowak, J.T.; Dodds, K.J.; Gandhi, K.J.K.; Moan, J.E.; Robert, J. Trends in Bark Beetle Impacts in North America During 2000–2020. J. For. 2022, 120, 693–713. [Google Scholar] [CrossRef]
- Prokopy, R.; Kogan, M. Integrated Pest Management. In Encyclopedia of Insects; Elsevier: Amsterdam, The Netherlands, 2009; pp. 523–528. [Google Scholar]
- Fettig, C.J.; Hood, S.M.; Runyon, J.B.; Stalling, C.M. Bark Beetle and Fire Interactions in Western Coniferous Forests: Research Findings. Fire Manag. Today 2021, 79, 14–23. [Google Scholar]
- Atkinson, T.H.; Carrillo, D.; Duncan, R.E.; Peña, J.E. Occurrence of Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae) in Southern Florida. Zootaxa 2013, 3669, 10. [Google Scholar] [CrossRef]
- Parkash, R.; Ramniwas, S.; Kajla, B. Climate Warming Mediates Range Shift of Stenothermal Drosophila Species in the Western Himalayas. J. Asia Pac. Entomol. 2013, 16, 147–153. [Google Scholar] [CrossRef]
- Jaime, L.; Batllori, E.; Lloret, F. Bark Beetle Outbreaks in Coniferous Forests: Climate Change Effects. Eur. J. For. Res. 2024, 143, 1–17. [Google Scholar] [CrossRef]
- Fernández-Fernández, M.; Naves, P.; Musolin, D.L.; Selikhovkin, A.V.; Cleary, M.; Chira, D.; Paraschiv, M.; Gordon, T.; Solla, A.; Papazova-Anakieva, I.; et al. Pine Pitch Canker and Insects. Forests 2019, 10, 649. [Google Scholar] [CrossRef]
- Beaver, R.A.; Sittichaya, W.; Liu, L.-Y. A Synopsis of the Scolytine Ambrosia Beetles of Thailand. Zootaxa 2014, 3875, 1–82. [Google Scholar] [CrossRef]
- Arjomandi, E.; Turchen, L.M.; Connolly, A.A.; Léveillée, M.B.; Yack, J.E. Acoustic Communication in Bark Beetles: 150 Years of Research. Physiol. Entomol. 2024, 49, 281–300. [Google Scholar] [CrossRef]
- Marini, L.; Lindelöw, Å.; Jönsson, A.M.; Wulff, S.; Schroeder, L.M. Population Dynamics of the Spruce Bark Beetle: A Long-Term Study. Oikos 2013, 122, 1768–1776. [Google Scholar] [CrossRef]
- Kendra, P.E.; Niogret, J.; Montgomery, W.S.; Sanchez, J.S.; Deyrup, M.A.; Pruett, G.E.; Ploetz, R.C.; Epsky, N.D.; Heath, R.R. Sesquiterpene Emissions from Manuka and Phoebe Oil Lures. J. Econ. Entomol. 2012, 105, 659–669. [Google Scholar] [CrossRef]
- Adams, S.N.; Hulcr, J. Common Bark Beetle Pests of Florida. EDIS 2021, 2021, 4H417. [Google Scholar] [CrossRef]
- Jones, K.L.; Shegelski, V.A.; Marculis, N.G.; Wijerathna, A.N.; Evenden, M.L. Factors Influencing Dispersal by Flight in Bark Beetles. Can. J. For. Res. 2019, 49, 1024–1041. [Google Scholar] [CrossRef]
- Knížek, M.; Liška, J.; Véle, A. Efficacy of Synthetic Lures for Pine Bark Beetle Monitoring. J. For. Sci. 2022, 68, 19–25. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Blomqvist, M.; Lyytikäinen-Saarenmaa, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Holopainen, M. Remote Sensing of Bark Beetle Damage with UAV Hyperspectral Imaging. Urban For. Urban Green. 2018, 30, 72–83. [Google Scholar] [CrossRef]
- Harrington, T.C. Ecology and Evolution of Mycophagous Bark Beetles and Their Fungal Partners. In Insect–Fungal Associations; Oxford University Press: New York, NY, USA, 2005; pp. 257–291. [Google Scholar]
- Hulcr, J.; Dunn, R.R. Pathogenicity in Insect–Fungal Symbioses. Proc. R. Soc. B 2011, 278, 2866–2873. [Google Scholar] [CrossRef] [PubMed]
- Fraedrich, S.W.; Harrington, T.C.; Rabaglia, R.J.; Ulyshen, M.D.; Mayfield, A.E.; Hanula, J.L.; Eickwort, J.M.; Miller, D.R. Laurel Wilt in the Lauraceae. Plant Dis. 2008, 92, 215–224. [Google Scholar] [CrossRef]
- Hanula, J.L.; Mayfield, A.E.; Fraedrich, S.W.; Rabaglia, R.J. Biology of Redbay Ambrosia Beetle. J. Econ. Entomol. 2008, 101, 1276–1286. [Google Scholar] [CrossRef]
- Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. Dynamics of Bark Beetle Eruptions. Bioscience 2008, 58, 501–517. [Google Scholar] [CrossRef]
- Edburg, S.L.; Hicke, J.A.; Brooks, P.D.; Pendall, E.G.; Ewers, B.E.; Norton, U.; Gochis, D.; Gutmann, E.D.; Meddens, A.J. Bark Beetle Tree Mortality Effects. Front. Ecol. Environ. 2012, 10, 416–424. [Google Scholar] [CrossRef]
- Preti, M.; Verheggen, F.; Angeli, S. Camera-Equipped Traps for Pest Monitoring. J. Pest Sci. 2021, 94, 203–217. [Google Scholar] [CrossRef]
- Ngoan, N.D.; Wilkinson, R.C.; Short, D.E.; Moses, C.S.; Mangold, J.R. Biology of Xylosandrus compactus. Ann. Entomol. Soc. Am. 1976, 69, 872–876. [Google Scholar] [CrossRef]
- Miller, D.R.; Rabaglia, R.J. Ethanol and (–)-α-Pinene: Attractant Kairomones for Bark and Ambrosia Beetles in the Southeastern US. J. Chem. Ecol. 2009, 35, 435–448. [Google Scholar] [CrossRef]
- Schbeck, M.; Hansen, E.M.; Schopf, A.; Ragland, G.J.; Stauffer, C.; Bentz, B.J. Diapause and overwintering of two spruce bark beetle species. Physiol. Entomol. 2017, 42, 200–210. [Google Scholar] [CrossRef]
- Allison, J.D.; Bhandari, B.D.; McKenney, J.L.; Millar, J.G. Design Factors Influencing Flight Intercept Trap Performance for Capturing Longhorned Beetles. PLoS ONE 2014, 9, e93203. [Google Scholar] [CrossRef] [PubMed]
- Amarathunga, D.C.; Grundy, J.; Parry, H.; Dorin, A. Methods of Insect Image Capture and Classification: A Systematic Review. Smart Agric. Technol. 2021, 1, 100023. [Google Scholar] [CrossRef]
- Bentz, B.J.; Régnière, J.; Fettig, C.J.; Hansen, E.M.; Hayes, J.L.; Hicke, J.A.; Kelsey, R.G.; Negrón, J.F.; Seybold, S.J. Climate Change and Bark Beetles of Western North America. Bioscience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Belanger, R.P.; Hedden, R.L.; Lorio, P.L. Management Strategies to Reduce Losses from the Southern Pine Beetle. South. J. Appl. For. 1993, 17, 150–154. [Google Scholar] [CrossRef]
- Montgomery, G.A.; Belitz, M.W.; Guralnick, R.P.; Tingley, M.W. Standards and Best Practices for Monitoring Insects. Front. Ecol. Evol. 2021, 8, 579193. [Google Scholar] [CrossRef]
- Kelsey, R.G.; Westlind, D.J. Ethanol and Primary Attraction of Red Turpentine Beetle in Fire-Stressed Ponderosa Pine. For. Ecol. Manag. 2017, 396, 44–54. [Google Scholar] [CrossRef]
- Sierota, Z.; Grodzki, W.; Szczepkowski, A. Abiotic and Biotic Disturbances Affecting Forest Health in Poland. Forests 2019, 10, 75. [Google Scholar] [CrossRef]
- Bozsik, G.; Molnár, B.P.; Hegedüs, K.; Soós, T.; Schulz, S.; Tröger, A.; Francke, W.; Szőcs, G. (–)-Myrtenol and (–)-α-Pinene: Aggregation Pheromone Components of Phloeosinus aubei. J. Appl. Entomol. 2024, 148, 351–363. [Google Scholar] [CrossRef]
- Flaherty, L.; Gutowski, J.M.G.; Hughes, C.; Mayo, P.; Mokrzycki, T.; Pohl, G.; Silk, P.; Van Rooyen, K.; Sweeney, J. Pheromone-Enhanced Lure Blends and Trap Heights Improve Detection of Wood-Boring Beetles. J. Pest Sci. 2019, 92, 309–325. [Google Scholar] [CrossRef]
- Fiala, T.; Pyszko, P.; Holuša, J. Using Ethanol and Other Lures to Monitor Invasive Ambrosia Beetles: A Case Study. Front. For. Glob. Change 2023, 6, 1258729. [Google Scholar] [CrossRef]
- Tobin, K.N.; Lizarraga, S.; Acharya, R.; Barman, A.K.; Short, B.D.; Acebes-Doria, A.L.; Rivera, M.J. Comparison of Ethanol-Baited Trap Designs for Ambrosia Beetles in Orchards. J. Econ. Entomol. 2024, 117, 1476–1484. [Google Scholar] [CrossRef]
- Bateman, C.; Hulcr, J. Guide to Florida’s Common Bark and Ambrosia Beetles. EDIS 2014, 2014, FR389. [Google Scholar] [CrossRef]
- Haack, R.A.; Rabaglia, R.J. Exotic Bark and Ambrosia Beetles in the USA: Potential and Current Invaders. In Potential Invasive Pests of Agricultural Crops; Peña, J., Ed.; CABI: Wallingford, UK, 2013; pp. 48–74. [Google Scholar]
- Kirkendall, L.R.; Biedermann, P.H.W.; Jordal, B.H. Evolution and Diversity of Bark and Ambrosia Beetles. In Bark Beetles; Elsevier: Amsterdam, The Netherlands, 2015; pp. 85–156. [Google Scholar]
- Chown, S.L.; Nicolson, S.W. Insect Physiological Ecology: Mechanisms and Patterns; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Direct Effects of Rising Temperature on Insect Herbivores. Glob. Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Wolda, H. Insect Seasonality: Why? Annu. Rev. Ecol. Syst. 1988, 19, 1–18. [Google Scholar] [CrossRef]
- Koul, O.; Cuperus, G.W.; Elliott, N. Areawide Pest Management: Theory and Implementation; CABI: Wallingford, UK, 2008. [Google Scholar]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem Services and Disservices to Agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef]
- Tscharntke, T.; Hawkins, B.A. Multitrophic Level Interactions; Cambridge University Press: Cambridge, UK, 2002; pp. 1–7. [Google Scholar]
- Deutsch, C.A.; Tewksbury, J.J.; Huey, R.B.; Sheldon, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Climate Warming Impacts on Ectotherms. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and Evolutionary Responses to Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Ranger, C.M.; Reding, M.E.; Schultz, P.B.; Oliver, J.B.; Frank, S.D.; Addesso, K.M.; Chong, J.-H.; Sampson, B.; Werle, C.; Gill, S.; et al. Management of Nonnative Ambrosia Beetles. J. Integr. Pest Manag. 2016, 7, 1–23. [Google Scholar] [CrossRef]
- Castrillo, L.A.; Griggs, M.H.; Ranger, C.M.; Reding, M.E.; Vandenberg, J.D. Virulence of Beauveria and Metarhizium Strains Against Xylosandrus germanus. Biol. Control 2011, 58, 121–126. [Google Scholar] [CrossRef]
- Reding, M.; Oliver, J.; Schultz, P.; Ranger, C. Trap Height Influences Ambrosia Beetle Captures. J. Environ. Hortic. 2010, 28, 85–90. [Google Scholar] [CrossRef]
- Biedermann, P.H.W.; Klepzig, K.D.; Taborsky, M. Fungus Cultivation by Ambrosia Beetles. Environ. Entomol. 2009, 38, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Andrew, N.R.; Hill, S.J.; Binns, M.; Bahar, M.H.; Ridley, E.V.; Jung, M.-P.; Fyfe, C.; Yates, M.; Khusro, M. Assessing Insect Responses to Climate Change. PeerJ 2013, 1, e11. [Google Scholar] [CrossRef]
- Logan, J.A.; Régniere, J.; Powell, J.A. Assessing the Impacts of Global Warming on Forest Pest Dynamics. Front. Ecol. Environ. 2003, 1, 130–137. [Google Scholar] [CrossRef]










| Tribe | Scientific Name | Common Name | Relative Abundance | Rank |
|---|---|---|---|---|
| Xyleborini | ||||
| Ambrosiodmus lewisi (Blandford, 1894) | Ambrosia beetle | 0.55% | Subrecedents | |
| Ambrosiophilus atratus (Eichhoff, 1876) | 6.71% | Dominants | ||
| Cnestus mutilatus (Blandford, 1894) | Camphor shoot borers | 15.24% | Dominance | |
| Dryoxylon onoharaense (Eggers, 1930) | 0.90% | Subrecedents | ||
| Xyleborinus andrewesi (Blandford, 1896) | 0.05% | Subrecedents | ||
| Xyleborinus gracilis (Eichhoff 1868) | 0.06% | Subrecedents | ||
| Xyleborinus saxesenii (Ratzeburg, 1837) | Fruit-tree pinhole borer | 28.96% | Dominance | |
| Xyleborus bispinatus (Eichhoff, 1868) | 2.18% | Subdominants | ||
| Xyleborus glabratus (Eichhoff, 1868) | Redbay ambrosia beetle | 0.24% | Subrecedents | |
| Xyleborus pubescens (Zimmermann, 1868) | 2.54% | Subdominants | ||
| Xylosandrus amputatus (Blandford, 1894) | Asian ambrosia beetle | 5.16% | Dominants | |
| Xylosandrus compactus (Eichhoff 1876) | Black twig borer | 2.84% | Subdominants | |
| Xylosandrus crassiusculus (Motschulsky, 1866) | Granulate ambrosia beetle | 14.27% | Dominance | |
| Corthylini | Cryptocarenus heveae (Hagedorn, 1912) | 3.54% | Subdominants | |
| Gnathotrichus materiarius (Fitch, 1858) | Pine timber-beetle or timber-beetle | 1.82% | Recedants | |
| Monarthrum mali (Fitch, 1858) | Apple wood Stainer | 0.91% | Subrecedents | |
| Cryphalini | Hypothenemus interstitialis (Hopkins, 1915) | 8.62% | Dominants | |
| Hylurgini | Dendroctonus terebans (Olivier, 1795) | Black turpentine beetle | 0.91% | Subrecedents |
| Ipini | Ips grandicollis (Eichhoff, 1868) | 4.19% | Subdominants | |
| Onycholipini | Stenoscelis brevis (Boheman, 1845) | 0.08% | Subrecedents | |
| Platypodini | Euplatypus compositus (Say, 1823) | 0.09% | Subrecedents | |
| Myoplatypus flavicornis (Fabricius, 1776) | 0.09% | Subrecedents | ||
| Phloeotribini | Phloeotribus liminaris (Harris, 1852) | Peach bark beetle | 0.05% | Subrecedents |
| Family Name | Tribe | Scientific Name | Common Name | Leon | Gadsden |
|---|---|---|---|---|---|
| Curculionidae | Onycholipini | Pseudopentarthrum atrolucens | 7 | ||
| Curculionidae | Cossonini | Cossonus impressus | 27 | 2 | |
| Chrysomelidae | Typophorini | Metachroma sp. | Leaf beetle | 1 | 1 |
| Zopheridae | Synchitini | Lobogestoria gibbicollis | Cylindrical bark beetle | 1 | - |
| Ptinidae | Xyletinini | Euvrilletta sp. | Anobiid powderpost beetle | 2 | - |
| Bostrichidae | Xyloperthini | Xylobiops basilaris | Red-shouldered shothole borer | 5 | - |
| Staphylinidae | Oxypodini | Nicrophorus sayi | Carrion Beetle | - |
| Tribe | Scientific Name | Common Name | Relative Abundance | Rank |
|---|---|---|---|---|
| Xyleborini | Ambrosiophilus atratus (Eichhoff, 1876) | 3.17% | Subdominants | |
| Cnestus mutilatus (Blandford, 1894) | Camphor shoot borers | 1.59% | Recedants | |
| Cyclorhipidion distinguendum (Eggers, 1930) | 6.35% | Dominants | ||
| Xylosandrus compactus (Eichhoff, 1876) | Black twig borer | 11.11% | Dominance | |
| Xyleborinus saxesenii (Ratzeburg 1837) | Fruit-tree pinhole borer | 20.63% | Dominance | |
| Xyleborus bispinatus (Eichhoff, 1868) | 6.35% | Dominants | ||
| Xylosandrus amputatus (Blandford, 1894) | Asian ambrosia beetle | 25.40% | Dominance | |
| Xylosandrus crassiusculus (Motschulsky, 1866) | Granulate ambrosia beetle | 3.17% | Subdominants | |
| Ambrosiodmus lewisi (Blandford, 1894) | Ambrosia beetle | 12.69% | Dominance | |
| Cryphalini | Hypothenemus interstitialis (Hopkins, 1915) | 6.35% | Dominants | |
| Ipini | Ips grandicollis (Eichhoff, 1868) | 1.60% | Recedants | |
| Platypodini | Euplatypus compositus (Say, 1823) | 1.59% | Recedants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robinson-Baker, A.M.S.; Haseeb, M.; Kanga, L.H.B. Diversity and Seasonal Abundance of the Pine Bark and Ambrosia Beetles in the Florida Panhandle. Insects 2025, 16, 1275. https://doi.org/10.3390/insects16121275
Robinson-Baker AMS, Haseeb M, Kanga LHB. Diversity and Seasonal Abundance of the Pine Bark and Ambrosia Beetles in the Florida Panhandle. Insects. 2025; 16(12):1275. https://doi.org/10.3390/insects16121275
Chicago/Turabian StyleRobinson-Baker, Ann Marie S., Muhammad Haseeb, and Lambert H. B. Kanga. 2025. "Diversity and Seasonal Abundance of the Pine Bark and Ambrosia Beetles in the Florida Panhandle" Insects 16, no. 12: 1275. https://doi.org/10.3390/insects16121275
APA StyleRobinson-Baker, A. M. S., Haseeb, M., & Kanga, L. H. B. (2025). Diversity and Seasonal Abundance of the Pine Bark and Ambrosia Beetles in the Florida Panhandle. Insects, 16(12), 1275. https://doi.org/10.3390/insects16121275
