Organic Acid Supplementation in Worker Honeybees (Apis mellifera): Impacts on Glandular Physiology and Colony Resilience
Simple Summary
Abstract
1. Introduction
2. Nutritional Foundations and Pollen-Based Diets
3. Gland Biology and Age Polyethism
4. Supplementary Feeding Practices
5. Organic Acids in Honeybee Nutrition
6. Mechanisms of Action and Molecular Insights
7. Impact of Organic Acids on Honeybee Health
| Organic Acid | Supplement Type * | Health Benefit | Mechanism/Outcome | Key References |
|---|---|---|---|---|
| Citric Acid | Nutritional | Longevity, energy metabolism | TCA cycle activation, fatty acid synthesis, enhanced HPG development | [23,71] |
| Lactic Acid | Nutritional/Probiotic | Immunity, pathogen resistance | Antimicrobial peptides, reduced Nosema load, oxidative stress mitigation | [33,60,64,85] |
| Acetic Acid | Nutritional/Probiotic | Hive hygiene, gut health | pH regulation, symbiosis with Bombella spp., antimicrobial surface defense | [60,76,77,78] |
| Formic/Oxalic Acid | Non-nutritional treatment | Varroa mite control | Acaricidal effects, inhibition of oxidative phosphorylation | [43,86,89] |
| Host-Derived Acids | Endogenous (bee-secreted) | Microbiome support | Growth of Snodgrassella alvi, nutrient processing, immune pathway activation | [70,75] |
| Phenyl-Lactic Acid | Probiotic metabolite | Antimicrobial, detoxification | Pathogen inhibition, antioxidant enzyme activation | [64,85,87] |
| Plant-Derived Acids | Nutritional (botanical) | Pesticide resilience | CYP450 activation, increased survival under tau-fluvalinate exposure | [31,32] |
8. Future Research Directions
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HPGs | Hypopharyngeal Glands Acid Cycle |
| MDGs | Mandibular Glands |
| CYP450 | Cytochrome P450 detoxification enzymes |
| TCA | Tricarboxylic |
References
- Winston, M.L. The Biology of the Honeybee; Harvard University Press: Cambridge, MA, USA; London, UK, 1987; ISBN 9780674074095. [Google Scholar]
- Hu, H.; Bezabih, G.; Feng, M.; Wei, Q.; Zhang, X.; Wu, F.; Meng, L.; Fang, Y.; Han, B.; Ma, C.; et al. In-Depth Proteome of the Hypopharyngeal Glands of Honeybee Workers Reveals Highly Activated Protein and Energy Metabolism in Priming the Secretion of Royal Jelly. Mol. Cell. Proteom. 2019, 18, 606–621. [Google Scholar] [CrossRef]
- Lindauer, M.; Watkin, B. Division of Labour in the Honeybee Colony. Bee World 1953, 34, 63–73. [Google Scholar] [PubMed]
- Ribbands, C.R. Division of Labour in the Honeybee Community. Proc. R. Soc. Lond. B. Biol. Sci. 1952, 140, 32–43. [Google Scholar] [CrossRef]
- Seeley, T.D. Adaptive Significance of the Age Polyethism Schedule in Honeybee Colonies. Behav. Ecol. Sociobiol. 1982, 11, 287–293. [Google Scholar] [CrossRef]
- Wegener, J.; Huang, Z.Y.; Lorenz, M.W.; Bienefeld, K. Regulation of Hypopharyngeal Gland Activity and Oogenesis in Honey Bee (Apis mellifera) Workers. J. Insect Physiol. 2009, 55, 716–725. [Google Scholar] [CrossRef]
- Cassier, P.; Lensky, Y. Ultrastructure of the Wax Gland Complex and Secretion of Beeswax in the Worker Honey Bee Apis mellifera L. Apidologie 1995, 26, 17–26. [Google Scholar] [CrossRef]
- Xu, R.; Ma, B.; Yang, Y.; Dong, X.; Li, J.; Xu, X.; Fang, Y. Proteome-Metabolome Profiling of Wax Gland Complex Reveals Functional Changes in Honeybee, Apis mellifera L. iScience 2024, 27, 109279. [Google Scholar] [CrossRef] [PubMed]
- Kerr, W.E.; Blum, M.S.; Pisani, J.F.; Stort, A.C. Correlation Between Amounts of 2-Heptanone and Iso-Amyl Acetate in Honeybees and Their Aggressive Behaviour. J. Apic. Res. 1974, 13, 173–176. [Google Scholar] [CrossRef]
- Deseyn, J.; Billen, J. Age-Dependent Morphology and Ultrastructure of the Hypopharyngeal Gland of Apis mellifera Workers (Hymenoptera, Apidae). Apidologie 2005, 36, 49–57. [Google Scholar] [CrossRef]
- Stout, J.C.; Goulson, D. The Use of Conspecific and Interspecific Scent Marks by Foraging Bumblebees and Honeybees. Anim. Behav. 2001, 62, 183–189. [Google Scholar] [CrossRef]
- Giurfa, M. The Repellent Scent-Mark of the Honeybee Apis mellifera Ligustica and Its Role as Communication Cue during Foraging. Insectes Soc. 1993, 40, 59–67. [Google Scholar] [CrossRef]
- Strauss, K.; Scharpenberg, H.; Crewe, R.M.; Glahn, F.; Foth, H.; Moritz, R.F.A. The Role of the Queen Mandibular Gland Pheromone in Honeybees (Apis mellifera): Honest Signal or Suppressive Agent? Behav. Ecol. Sociobiol. 2008, 62, 1523–1531. [Google Scholar] [CrossRef]
- Hoover, S.E.R.; Keeling, C.I.; Winston, M.L.; Slessor, K.N. The Effect of Queen Pheromones on Worker Honey Bee Ovary Development. Naturwissenschaften 2003, 90, 477–480. [Google Scholar] [CrossRef]
- Li, J.; Feng, M.; Begna, D.; Yu, F.; Aijuan, Z. Proteome Comparison of Hypopharyngeal Gland Development between Italian and Royal Jelly Producing Worker Honeybees (Apis mellifera L.). J. Proteome Res. 2010, 9, 6578–6594. [Google Scholar] [CrossRef]
- Ueno, T.; Takeuchi, H.; Kawasaki, K.; Kubo, T. Changes in the Gene Expression Profiles of the Hypopharyngeal Gland of Worker Honeybees in Association with Worker Behavior and Hormonal Factors. PLoS ONE 2015, 10, e0130206. [Google Scholar] [CrossRef]
- Altaye, S.Z.; Pirk, C.W.W.; Crewe, R.M.; Nicolson, S.W. Convergence of Carbohydrate-Biased Intake Targets in Caged Worker Honeybees Fed Different Protein Sources. J. Exp. Biol. 2010, 213, 3311–3318. [Google Scholar] [CrossRef]
- Buttstedt, A.; Moritz, R.F.; Erler, S. Origin and Function of the Major Royal Jelly Proteins of the Honeybee (Apis mellifera) as Members of the Yellow Gene Family. Biol. Rev. 2014, 89, 255–269. [Google Scholar] [CrossRef]
- Corby-Harris, V.; Snyder, L.A. Measuring Hypopharyngeal Gland Acinus Size in Honey Bee (Apis mellifera) Workers. JoVE 2018, 139, 58261. [Google Scholar] [CrossRef]
- Dodologlu, A.; Emsen, B. Effect of Supplementary Feeding on Honey Bee Colony. J. Appl. Anim. Res. 2007, 32, 199–200. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, S.A.; Khan, K.A.; Li, J. Novel Insight Into the Development and Function of Hypopharyngeal Glands in Honey Bees. Front. Physiol. 2021, 11, 615830. [Google Scholar] [CrossRef]
- Li, C.; Xu, B.; Wang, Y.; Feng, Q.; Yang, W. Effects of Dietary Crude Protein Levels on Development, Antioxidant Status, and Total Midgut Protease Activity of Honey Bee (Apis mellifera Ligustica). Apidologie 2012, 43, 576–586. [Google Scholar] [CrossRef]
- Wang, X.; Ji, Q.; Zheng, X.; Zhang, J.; Wang, R.; Wang, X.; Peng, W.; Guo, J.; Zhao, Y. Consumption of Citric Acid by Bees Promotes the Gland Development and Enhances Royal Jelly Quality. Life 2024, 14, 340. [Google Scholar] [CrossRef]
- Bezabih, G.; Cheng, H.; Han, B.; Feng, M.; Xue, Y.; Hu, H.; Li, J. Phosphoproteome Analysis Reveals Phosphorylation Underpinnings in the Brains of Nurse and Forager Honeybees (Apis mellifera). Sci. Rep. 2017, 7, 1973. [Google Scholar] [CrossRef]
- Crailsheim, K.; Schneider, L.H.W.; Hrassnigg, N.; Bühlmann, G.; Brosch, U.; Gmeinbauer, R.; Schöffmann, B. Pollen Consumption and Utilization in Worker Honeybees (Apis mellifera Carnica): Dependence on Individual Age and Function. J. Insect Physiol. 1992, 38, 409–419. [Google Scholar] [CrossRef]
- Human, H.; Nicolson, S.W.; Strauss, K.; Pirk, C.W.W.; Dietemann, V. Influence of Pollen Quality on Ovarian Development in Honeybee Workers (Apis mellifera Scutellata). J. Insect Physiol. 2007, 53, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Pirk, C.W.W.; Boodhoo, C.; Human, H.; Nicolson, S.W. The Importance of Protein Type and Protein to Carbohydrate Ratio for Survival and Ovarian Activation of Caged Honeybees (Apis mellifera Scutellata). Apidologie 2010, 41, 62–72. [Google Scholar] [CrossRef]
- Vaudo, A.D.; Tooker, J.F.; Grozinger, C.M.; Patch, H.M. Bee Nutrition and Floral Resource Restoration. Curr. Opin. Insect Sci. 2015, 10, 133–141. [Google Scholar] [CrossRef]
- Bryś, M.S.; Strachecka, A. The Key Role of Amino Acids in Pollen Quality and Honey Bee Physiology—A Review. Molecules 2024, 29, 2605. [Google Scholar] [CrossRef]
- Ricigliano, V.A.; Anderson, K.E. Probing the Honey Bee Diet-Microbiota-Host Axis Using Pollen Restriction and Organic Acid Feeding. Insects 2020, 11, 291. [Google Scholar] [CrossRef]
- Mitton, G.A.; Szawarski, N.; Mitton, F.M.; Iglesias, A.; Eguaras, M.J.; Ruffinengo, S.R.; Maggi, M.D. Impacts of Dietary Supplementation with P-Coumaric Acid and Indole-3-Acetic Acid on Survival and Biochemical Response of Honey Bees Treated with Tau-Fluvalinate. Ecotoxicol. Environ. Saf. 2020, 189, 109917. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. Honey Constituents Up-Regulate Detoxification and Immunity Genes in the Western Honey Bee Apis mellifera. Proc. Natl. Acad. Sci. USA 2013, 110, 8842–8846. [Google Scholar] [CrossRef]
- Hasan, A.; Qazi, J.I.; Tabssum, F.; Hussain, A. Feeding Probiotics and Organic Acids to Honeybees Enhances Acinal Surface Area of Their Hypopharyngeal Glands. Res. Vet. Sci. 2022, 149, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Buttstedt, A.; Pirk, C.W.W.; Yusuf, A.A. Mandibular Glands Secrete 24-Methylenecholesterol into Honey Bee (Apis mellifera) Food Jelly. Insect Biochem. Mol. Biol. 2023, 161, 104011. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, S.W.; Da Silva Das Neves, S.; Human, H.; Pirk, C.W.W. Digestibility and Nutritional Value of Fresh and Stored Pollen for Honey Bees (Apis mellifera Scutellata). J. Insect Physiol. 2018, 107, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Frias, B.E.D.; Barbosa, C.D.; Lourenço, A.P. Pollen Nutrition in Honey Bees (Apis mellifera): Impact on Adult Health. Apidologie 2016, 47, 15–25. [Google Scholar] [CrossRef]
- Liang, R.; Liang, C.; Zhang, Y.; Huang, J.; Ding, G. Influence of Different Diets on Growth and Development of Eastern Honey Bee (Apis Cerana). Insects 2025, 16, 383. [Google Scholar] [CrossRef]
- Quinlan, G.; Milbrath, M.; Otto, C.; Smart, A.; Iwanowicz, D.; Cornman, R.S.; Isaacs, R. Honey Bee Foraged Pollen Reveals Temporal Changes in Pollen Protein Content and Changes in Forager Choice for Abundant versus High Protein Flowers. Agric. Ecosyst. Environ. 2021, 322, 107645. [Google Scholar] [CrossRef]
- Mortensen, A.N.; Jack, C.J.; Bustamante, T.A.; Schmehl, D.R.; Ellis, J.D. Effects of Supplemental Pollen Feeding on Honey Bee (Hymenoptera: Apidae) Colony Strength and Nosema Spp. Infection. J. Econ. Entomol. 2019, 112, 60–66. [Google Scholar] [CrossRef]
- DeGrandi-Hoffman, G.; Gage, S.L.; Corby-Harris, V.; Carroll, M.; Chambers, M.; Graham, H.; Watkins deJong, E.; Hidalgo, G.; Calle, S.; Azzouz-Olden, F.; et al. Connecting the Nutrient Composition of Seasonal Pollens with Changing Nutritional Needs of Honey Bee (Apis mellifera L.) Colonies. J. Insect Physiol. 2018, 109, 114–124. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Wright, G.A.; Nicolson, S.W.; Shafir, S. Nutritional Physiology and Ecology of Honey Bees. Annu. Rev. Entomol. 2018, 63, 327–344. [Google Scholar] [CrossRef]
- Maggi, M.D.; Mitton, G.A. Sustainable Beekeeping: The Impact of Organic Molecules on Honey Bee Health and Apiculture. Environ. Toxicol. Pharmacol. 2025, 117, 104739. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.K.; Al-Khaibari, A.M.; Omar, M.O. Consumption Rate of Some Proteinic Diets Affecting Hypopharyngeal Glands Development in Honeybee Workers. Saudi J. Biol. Sci. 2011, 18, 73–77. [Google Scholar] [CrossRef]
- Vallet, A.; Cassier, P.; Lensky, Y. Ontogeny of the Fine Structure of the (Apis mellifera L.) Workers and the Pheromonal Activity of 2-Heptanone. J. Insect Physiol. 1991, 37, 789–804. [Google Scholar] [CrossRef]
- Sagili, R.R.; Pankiw, T.; Zhu-Salzman, K. Effects of Soybean Trypsin Inhibitor on Hypopharyngeal Gland Protein Content, Total Midgut Protease Activity and Survival of the Honey Bee (Apis mellifera L.). J. Insect Physiol. 2005, 51, 953–957. [Google Scholar] [CrossRef]
- Crewe, R.M.; Moritz, R.F.A. Variation in the Components of Head Extracts of Workers and Queens of Apis mellifera Intermissa Buttel-Reepen. Z. Naturforsch. C J. Biosci. 1989, 44, 590–596. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Robinson, G.E. Regulation of Honey Bee Division of Labor by Colony Age Demography. Behav. Ecol. Sociobiol. 1996, 39, 147–158. [Google Scholar] [CrossRef]
- Klose, S.P.; Rolke, D.; Baumann, O. Morphogenesis of Honeybee Hypopharyngeal Gland during Pupal Development. Front. Zool. 2017, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, K.; Natori, S.; Kubo, T. Expression of Amylase and Glucose Oxidase in the Hypopharyngeal Gland with an Age-Dependent Role Change of the Worker Honeybee (Apis mellifera L.). Eur. J. Biochem. 1999, 133, 127–133. [Google Scholar] [CrossRef]
- Huang, Z.-Y.; Otis, G.W.; Teal, P.E.A. Nature of Brood Signal Activating the Protein Synthesis of Signal Activating the Protein Synthesis of Hypopharyngeal Gland in Honey Bees, Apis mellifera (Apidae: Hymenoptera). Apidologie 2014, 20, 455–464. [Google Scholar] [CrossRef]
- Huang, Z.-Y.; Otis, G.W. Factors Determining Hypopharyngeal Gland Activity of Worker Honey Bees (Apis mellifera L.). Insect. Soc. 2014, 36, 264–276. [Google Scholar] [CrossRef]
- Simon, U.E.; Moritz, R.F.A.; Crewe, R.M. The Ontogenetic Pattern of Mandibular Gland Components in Queenless Worker Bees (Apis mellifera Capensis Esch.). J. Insect Physiol. 2001, 47, 735–738. [Google Scholar] [CrossRef]
- Hepburn, H.R.; Bernard, R.T.F.; Davidson, B.C.; Muller, W.J.; Lloyd, P.; Kurstjens, S.P.; Vincent, S.L. Synthesis and Secretion of Beeswax in Honeybees. Apidologie 1991, 22, 21–36. [Google Scholar] [CrossRef]
- Muller, W.J.; Hepburn, H.R. Juvenile Hormone III and Wax Secretion in Honeybees (Apis mellifera Capensis). J. Insect Physiol. 1994, 40, 873–881. [Google Scholar] [CrossRef]
- Paray, B.A.; Kumari, I.; Hajam, Y.A.; Sharma, B.; Kumar, R.; Albeshr, M.F.; Farah, M.A.; Khan, J.M. Honeybee Nutrition and Pollen Substitutes: A Review. Saudi J. Biol. Sci. 2021, 28, 1167–1176. [Google Scholar] [CrossRef]
- Pudasaini, R.; Dhital, B.; Chaudhary, S. Nutritional Requirement and Its Role on Honeybee: A Review. J. Agric. Nat. Resour. 2020, 3, 321–334. [Google Scholar] [CrossRef]
- Lata, P.; Prasad, S.; Gupta, G. Artificial Diet Alternatives or Supplements for Healthy Honey Beekeeping. Curr. J. Appl. Sci. Technol. 2023, 42, 91–100. [Google Scholar] [CrossRef]
- Smriti; Rana, A.; Singh, G.; Gupta, G. Prospects of Probiotics in Beekeeping: A Review for Sustainable Approach to Boost Honeybee Health. Arch. Microbiol. 2024, 206, 205. [Google Scholar] [CrossRef]
- Hasan, A.; Qazi, J.I.; Muzaffer, N.; Jabeen, S.; Hussain, A. Effect of Organic Acids and Probiotics on Growth of Apis mellifera Workers. Pak. J. Zool. 2022, 54, 2577–2583. [Google Scholar] [CrossRef]
- Wu, X.; Tovilla-Coutiño, D.B.; Eiteman, M.A. Engineered Citrate Synthase Improves Citramalic Acid Generation in Escherichia Coli. Biotechnol. Bioeng. 2020, 117, 2781–2790. [Google Scholar] [CrossRef]
- Toschi, A.; Rossi, B.; Tugnoli, B.; Piva, A.; Grilli, E. Nature-Identical Compounds and Organic Acids Ameliorate and Prevent the Damages Induced by an Inflammatory Challenge in Caco-2 Cell Culture. Molecules 2020, 25, 4296. [Google Scholar] [CrossRef]
- Beier, R.C.; Harvey, R.B.; Hernandez, C.A.; Hume, M.E.; Andrews, K.; Droleskey, R.E.; Davidson, M.K.; Bodeis-Jones, S.; Young, S.; Duke, S.E.; et al. Interactions of Organic Acids with Campylobacter Coli from Swine. PLoS ONE 2018, 13, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Maggi, M.; Negri, P.; Plischuk, S.; Szawarski, N.; De Piano, F.; De Feudis, L.; Eguaras, M.; Audisio, C. Effects of the Organic Acids Produced by a Lactic Acid Bacterium in Apis mellifera Colony Development, Nosema Ceranae Control and Fumagillin Efficiency. Vet. Microbiol. 2013, 167, 474–483. [Google Scholar] [CrossRef]
- Mattila, H.R.; Otis, G.W. Influence of Pollen Diet in Spring on Development of Honey Bee (Hymenoptera: Apidae) Colonies. J. Econ. Entomol. 2006, 99, 604–613. [Google Scholar] [CrossRef]
- Bonoan, R.E.; O’Connor, L.D.; Starks, P.T. Seasonality of Honey Bee (Apis mellifera) Micronutrient Supplementation and Environmental Limitation. J. Insect Physiol. 2018, 107, 23–28. [Google Scholar] [CrossRef]
- Avni, D.; Hendriksma, H.P.; Dag, A.; Uni, Z.; Shafir, S. Nutritional Aspects of Honey Bee-Collected Pollen and Constraints on Colony Development in the Eastern Mediterranean. J. Insect Physiol. 2014, 69, 65–73. [Google Scholar] [CrossRef]
- Moore, E.; de Sousa, R.T.; Felsinger, S.; Arnesen, J.A.; Dyekjær, J.D.; Farman, D.I.; Gonçalves, R.F.S.; Stevenson, P.C.; Borodina, I.; Wright, G.A. Engineered Yeast Provides Rare but Essential Pollen Sterols for Honeybees. Nature 2025. [Google Scholar] [CrossRef]
- Sultana, N.; Reza, M.E.; Alam, M.N.; Siddiquee, M.N.A.; Islam, M.S.; Rahman, M.A.; Sayed, M.A.; Rahman, M.M. Evaluating the Efficiency of Supplementary Feeding as a Management Strategy for Enhancing Honeybee (Apis mellifera L.) Colony Growth and Productivity. Front. Bee Sci. 2024, 2, 1386799. [Google Scholar] [CrossRef]
- Quinn, A.; El Chazli, Y.; Escrig, S.; Daraspe, J.; Neuschwander, N.; McNally, A.; Genoud, C.; Meibom, A.; Engel, P. Host-Derived Organic Acids Enable Gut Colonization of the Honey Bee Symbiont Snodgrassella Alvi. Nat. Microbiol. 2024, 9, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, Y.; Wu, Y.; Wang, S.; Zheng, H.; Hu, F. The Effect of Nutritional Status on the Synthesis Ability, Protein Content and Gene Expression of Mandibular Glands in Honey Bee (Apis mellifera) Workers. J. Apic. Res. 2024, 63, 747–756. [Google Scholar] [CrossRef]
- Huo, X.; Wu, B.; Feng, M.; Han, B.; Fang, Y.; Hao, Y.; Meng, L.; Wubie, A.J.; Fan, P.; Hu, H.; et al. Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera Ligustica). J. Proteome Res. 2016, 15, 3342–3357. [Google Scholar] [CrossRef]
- Brighenti, D.M.; Brighenti, C.R.G.; Carvalho, C.F. Life Spans of Africanized Honey Bees Fed Sucrose Diets Enhanced with Citric Acid or Lemon Juice. J. Apic. Res. 2017, 56, 91–99. [Google Scholar] [CrossRef]
- Hassan, A.A.-M.; Elenany, Y.E. Influence of Probiotics Feed Supplementation on Hypopharyngeal Glands Morphometric Measurements of Honeybee Workers Apis mellifera L. Probiotics Antimicrob. Proteins 2024, 16, 1214–1220. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Moran, N.A. The Honeybee Microbiota and Its Impact on Health and Disease. Nat. Rev. Microbiol. 2024, 22, 122–137. [Google Scholar] [CrossRef]
- Crotti, E.; Rizzi, A.; Chouaia, B.; Ricci, I.; Favia, G.; Alma, A.; Sacchi, L.; Bourtzis, K.; Mandrioli, M.; Cherif, A.; et al. Acetic Acid Bacteria, Newly Emerging Symbionts of Insects. Appl. Environ. Microbiol. 2010, 76, 6963–6970. [Google Scholar] [CrossRef]
- Härer, L.; Hilgarth, M.; Ehrmann, M.A. Comparative Genomics of Acetic Acid Bacteria within the Genus Bombella in Light of Beehive Habitat Adaptation. Microorganisms 2022, 10, 1058. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.A. Symbiosis. Curr. Biol. 2006, 16, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Meehan, D.E.; O’Toole, P.W. A Review of Diet and Foraged Pollen Interactions with the Honeybee Gut Microbiome. Microb. Ecol. 2025, 88, 54. [Google Scholar] [CrossRef]
- Besharati, M.; Bavand, R.; Paya, H.; Lackner, M. Comparative Effect of Probiotic and Antibiotic on Honey Bees Colony Functional Traits. EuroBiotech J. 2024, 8, 1–11. [Google Scholar] [CrossRef]
- López-Incera, A.; Nouvian, M.; Ried, K.; Müller, T.; Briegel, H.J. Honeybee Communication during Collective Defence Is Shaped by Predation. BMC Biol. 2021, 19, 106. [Google Scholar] [CrossRef]
- Dillon, R.J.; Dillon, V.M. The Gut Bacteria of Insects: Nonpathogenic Interactions. Annu. Rev. Entomol. 2004, 49, 71–92. [Google Scholar] [CrossRef]
- VanEngelsdorp, D.; Underwood, R.M.; Cox-Foster, D.L. Short-Term Fumigation of Honey Bee (Hymenoptera: Apidae) Colonies with Formic and Acetic Acids for the Control of Varroa Destructor (Acari: Varroidae). J. Econ. Entomol. 2008, 101, 256–264. [Google Scholar] [CrossRef]
- Elbaz, A.M.; Ibrahim, N.S.; Shehata, A.M.; Mohamed, N.G.; Abdel-Moneim, A.M.E. Impact of Multi-Strain Probiotic, Citric Acid, Garlic Powder or Their Combinations on Performance, Ileal Histomorphometry, Microbial Enumeration and Humoral Immunity of Broiler Chickens. Trop. Anim. Health Prod. 2021, 53, 115. [Google Scholar] [CrossRef]
- Jovanovic, N.M.; Glavinic, U.; Ristanic, M.; Vejnovic, B.; Ilic, T.; Stevanovic, J.; Stanimirovic, Z. Effects of Plant-Based Supplement on Oxidative Stress of Honey Bees (Apis mellifera) Infected with Nosema Ceranae. Animals 2023, 13, 3543. [Google Scholar] [CrossRef] [PubMed]
- Tellarini Prieto, E.E.; Pietropaoli, M.; Camus, Y.; Polizel Camilli, M.; Raza, M.F.; Jose, M.S.; Obshta, O.; Bezerra da Silva, M.C.; Kozii, I.; Moshynskyy, I.; et al. Safety Assessment of High Doses of Vaporized Oxalic Acid on Honey Bee Worker Health and Queen Quality. Front. Bee Sci. 2024, 2, 1442030. [Google Scholar] [CrossRef]
- Mahmoud, F.; Farag, R.M.A.; Ma’moun, S.A.M.; Abou Zeid, A.S.; El Shafei, A.M.; Essa, E.E. Prophylactic and Biocontrol Effect of the Microencapsulated Lactic Acid Bacteria Extracted from Honey Bee Gut against Some Diseases of the Honey Bee, Apis mellifera L. Egypt. J. Biol. Pest Control 2025, 35, 16. [Google Scholar] [CrossRef]
- Navarro-Escalante, L.; Ashraf, A.H.M.Z.; Leonard, S.P.; Barrick, J.E. Protecting Honey Bees through Microbiome Engineering. Curr. Opin. Insect Sci. 2025, 72, 101416. [Google Scholar] [CrossRef]
- O’Connell, D.P.; Healy, K.; Wilton, J.; Botías, C.; Jones, J.C. A Systematic Meta-Analysis of the Efficacy of Treatments for a Global Honey Bee Pathogen—The Varroa Mite. Sci. Total Environ. 2025, 963, 178228. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Sasaki, M.; Nakamura, J.; Sasagawa, H.; Ohashi, K.; Takeuchi, H.; Natori, S. Change in the Expression of Hypopharyngeal-Gland Proteins of the Worker Honeybees (Apis mellifera L.) with Age and/or Role. J. Biochem. 1996, 119, 291–295. [Google Scholar] [CrossRef]
- Lau, P.; Lesne, P.; Payne, A.N.; Garcia, C.; Gomez, J.; Behmer, S.T.; Rangel, J. Do Not Compromise: Nurse Honeybees Practice Strict Protein-Lipid Regulation. iScience 2025, 28, 112895. [Google Scholar] [CrossRef]

| Organic Acid | Supplement Type | Target Gland(s) | Physiological Effect | Key References |
|---|---|---|---|---|
| Citric Acid | Direct acid (synthetic/natural) | MDG, HPG, Salivary glands | Enhances gland size, royal jelly quality, wax secretion, pollen consumption | [23,71,72,73] |
| Lactic Acid | Microbial derivative/probiotic | HPG | Increases acinar surface area, boosts enzyme synthesis, reduces pathogen load | [33,64] |
| Acetic Acid | Microbial derivative (Bombella spp.) | Gut, Wax glands | Supports digestion, wax secretion, microbial balance, hive hygiene | [75,76,77,78] |
| p-Coumaric Acid | Plant-derived acid | CYP450s-mediated detoxification pathways | Upregulates CYP450s, improves pesticide tolerance | [31,32] |
| Indole-3-Acetic Acid | Plant-derived acid | Detox pathways | Enhances survival under acaricide stress | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezabih, G.; Atsbha, T.; Altaye, S.Z.; Zhou, Q.; Li, J.; Pirk, C.W.W.; Zhu, C.; Fang, Y. Organic Acid Supplementation in Worker Honeybees (Apis mellifera): Impacts on Glandular Physiology and Colony Resilience. Insects 2025, 16, 1203. https://doi.org/10.3390/insects16121203
Bezabih G, Atsbha T, Altaye SZ, Zhou Q, Li J, Pirk CWW, Zhu C, Fang Y. Organic Acid Supplementation in Worker Honeybees (Apis mellifera): Impacts on Glandular Physiology and Colony Resilience. Insects. 2025; 16(12):1203. https://doi.org/10.3390/insects16121203
Chicago/Turabian StyleBezabih, Gebreamlak, Tesfay Atsbha, Solomon Zewdu Altaye, Qingsong Zhou, Jianke Li, Christian W. W. Pirk, Chaodong Zhu, and Yu Fang. 2025. "Organic Acid Supplementation in Worker Honeybees (Apis mellifera): Impacts on Glandular Physiology and Colony Resilience" Insects 16, no. 12: 1203. https://doi.org/10.3390/insects16121203
APA StyleBezabih, G., Atsbha, T., Altaye, S. Z., Zhou, Q., Li, J., Pirk, C. W. W., Zhu, C., & Fang, Y. (2025). Organic Acid Supplementation in Worker Honeybees (Apis mellifera): Impacts on Glandular Physiology and Colony Resilience. Insects, 16(12), 1203. https://doi.org/10.3390/insects16121203

