Host Immunity Mechanisms Against Bacterial and Viral Infections in Bombyx mori
Simple Summary
Abstract
1. Introduction
2. Background of B. mori Immunity
3. Molecular Mechanism of Bacterial Infection in Silkworm
3.1. Pattern Recognition Receptors in Silkworm Innate Immunity
| Protein Name | Function | Pathway | Reference |
|---|---|---|---|
| Pattern Recognition Receptors (PRRs) | |||
| BmPGRP-S1, BmPGRP-S2 and BmPGRP-S3 | Recognizes peptidoglycan; activates immune signaling | IMD pathway | [18,47,78] |
| BmPGRP-S4 | Peptidoglycan binding and hydrolysis; amidase activity; promotes AMP production | IMD pathway; PPO cascade | [58,59] |
| BmPGRP-S5 and BmPGRP-L4 | Negative regulator of AMP expression; maintains immune homeostasis | Toll and IMD pathways | [60,61] |
| BmPGRP-L1 and BmPGRP-L6 | Broad bacterial recognition; Activates immune response to DAP-type PGN | IMD pathway | [79,80] |
| BmPGRP2 (BmPGRP2-1, BmPGRP2-2) | Antibacterial and antiviral immunity | IMD pathway; Antiviral | [41] |
| BmβGRP1 and BmβGRP3 | Broad pathogen recognition; PPO activation | PPO activation cascade | [65,66] |
| BmβGRP4 | Pathogen recognition; antiviral through apoptosis | PPO cascade; Antiviral | [81] |
| BmLBP | LPS recognition; opsonization; nodule formation; bacterial clearance | Toll pathway | [82,83] |
| BmHemolin | Pattern recognition; cell adhesion; phagocytosis | Cellular immunity | [2,84] |
| BmCTL-S21 and BmCTL-S6 | C-type lectin; bacterial cell wall binding; promotes melanization and PO activation | PPO cascade | [76,77] |
| Toll Receptors | |||
| BmToll9-1, BmToll9-2 and BmToll11 | LPS and bacterial recognition; AMP induction | Toll pathway | [45,49,50,85] |
| Bm18-Wheeler | Bacterial recognition; cecropin A and gloverin 2 activation | Toll pathway | [46] |
| Antimicrobial Peptides (AMPs) | |||
| Cecropin A, B, D, and E, Moricin, Defensin, Gloverin 1, 2, 3, and 4, Lebocin, Defensin A/B, and Attacin | Anti-Gram-negative bacteria; Anti-Gram-positive bacteria and antifungal | Toll and IMD pathways | [1,48,86,87,88,89,90] |
| Lysozyme | Peptidoglycan hydrolysis; direct bacterial killing | Humoral immunity | [22] |
| Serine Protease Cascade Components and Serine Protease Inhibitors (Serpins) | |||
| BmSerpin-4 | Negative regulator of the PPO cascade; regulates AMP expression | PPO cascade | [91] |
| BmSerpin-2, | Melanization regulation; antiviral immunity | PPO cascade; Antiviral | [92] |
| BmSerpin-15 | Negative regulator of the PPO cascade; regulates AMP expression | PPO cascade; Toll and IMD pathways | [63] |
| BmSerpin-5 and 6 | PPO cascade inhibition prevents excessive melanization | PPO cascade | [70,71] |
| Serpin-1a, Serpin-6 | Serine protease inhibitors; negative regulation | Toll pathway (regulation) | [93] |
| SPINK7 | Fungal recognition; hemocyte-mediated defense; encapsulation | Cellular immunity | [94] |
| BmCLIP2 and BmCLIP13 | Serine protease; Spätzle processing and cuticle remodeling | Toll pathway and Developmental immunity | [20,93,95,96] |
| Prophenoloxidase System | |||
| PPO1, PPO2 and PO | Prophenoloxidase; melanin production; pathogen encapsulation | PPO cascade | [20,96] |
| Signaling Molecules and Transcription Factors | |||
| Paralytic Peptide (PP) | insect cytokine; immune activation; promotes phagocytosis; AMP induction | Cellular and humoral immunity | [20,26] |
| Relish | NF-κB-like transcription factor; IMD pathway effector; AMP transcription | IMD pathway | [47,48,80] |
| Dorsal | NF-κB-like transcription factor; Toll pathway effector; AMP transcription | Toll pathway | [26,97] |
| IMD | Immune deficiency protein; critical for IMD pathway activation | IMD pathway | [80] |
| Ets2 | E26 transformation-specific transcription factor; represses BmRels-mediated AMP activation | Negative regulation of the IMD pathway | [97] |
| BmSpatzle (BmSpz1and 4) | Toll receptor ligand; immune activation | Toll pathway | [98,99] |
| MD2A | MD2-like protein; lipopolysaccharide recognition | Toll pathway | [100] |
3.2. Pathogenesis of Enteric Bacteria in Silkworms
3.3. Wound-Induced Antibacterial Mechanism in Silkworms
4. Viral Infections in Silkworms
4.1. Major Immune Molecules and Immune Responses of B. mori to Viruses
4.1.1. RNAi-Mediated Antiviral Responses and Suppressors of RNAi Encoded by BmNPV
4.1.2. JAK/STAT Pathway Modulation by Host and Virus
4.1.3. Toll and IMD Pathway Responses to Viral Infection
4.1.4. STING and Antiviral Immunity in B. mori
4.1.5. Apoptosis as an Antiviral Defense
5. Distinct Pathways in Silkworm Immunity Against Bacterial and Viral Infection
5.1. Extracellular Versus Intracellular Sensing
5.2. Distinct Bacterial and Viral-Induced Immune Pathways
5.3. Modulation and Metabolic Adaptations by Pathogens
5.4. Similarity Effector Molecules and Immune Outcomes
6. CRISPR/Cas9 Applications in B. mori Immunity: Antiviral and Antibacterial Strategies
6.1. CRISPR/Cas9 Targeting BmNPV for Enhanced Host Resistance
6.2. CRISPR/Cas9 in Antibacterial Immunity and Broader Immune Modulation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nesa, J.; Sadat, A.; Buccini, D.F.; Kati, A.; Mandal, A.K.; Franco, O.L. Antimicrobial peptides from Bombyx mori: A splendid immune defense response in silkworms. RSC Adv. 2020, 10, 512–523. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, H.; Zhang, Y.; Zhu, F.; Lü, P.; Yao, Q.; Chen, K. Research progress on the immune mechanism of the silkworm Bombyx mori. Physiol. Entomol. 2018, 43, 159–168. [Google Scholar] [CrossRef]
- Cao, C.; Lin, Z.; Liu, X.; Jia, Y.; Saiz, E.; Wolf, S.E.; Wagner, H.D.; Jiang, L.; Cheng, Q. Strong reduced graphene oxide coated Bombyx mori silk. Adv. Funct. Mater. 2021, 31, 2102923. [Google Scholar] [CrossRef]
- Nguyễn, T.U.T.; Ngoc, H.P.; Minh, N.S.N.; Hoang, T.T.; Bui, M.H. Effects of various colorants on self-dyed silk properties: Aspects of color, Thermal stability, Morphology, and Degumming. Vietnam J. Sci. Technol. 2024, 62, 1134–1145. [Google Scholar]
- Zhu, S.; Zhang, Q.; Xu, X.; Liu, Z.; Cheng, G.; Long, D.; Cheng, L.; Dai, F. Recent advances in silk fibroin-based composites for bone repair applications: A review. Polymers 2025, 17, 772. [Google Scholar] [CrossRef] [PubMed]
- Lujerdean, C.; Baci, G.-M.; Cucu, A.-A.; Dezmirean, D.S. The contribution of silk fibroin in biomedical engineering. Insects 2022, 13, 286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Z.; Zhu, L.-B.; You, L.-L.; Wang, J.; Cao, H.-H.; Liu, Y.-X.; Toufeeq, S.; Wang, Y.-L.; Kong, X.; Xu, J.-P. A novel digestive proteinase lipase member HA in Bombyx mori contributes to digestive juice antiviral activity against B. mori nucleopolyhedrovirus. Insects 2020, 11, 154. [Google Scholar] [CrossRef]
- Montali, A.; Berini, F.; Saviane, A.; Cappellozza, S.; Marinelli, F.; Tettamanti, G. A Bombyx mori infection model for screening antibiotics against Staphylococcus epidermidis. Insects 2022, 13, 748. [Google Scholar] [CrossRef]
- Paudel, A.; Panthee, S.; Urai, M.; Hamamoto, H.; Ohwada, T.; Sekimizu, K. Pharmacokinetic parameters explain the therapeutic activity of antimicrobial agents in a silkworm infection model. Sci. Rep. 2018, 8, 1578. [Google Scholar] [CrossRef]
- Selvi, G.; Chelladurai, D.; Kumar, V.P.; Chandran, M.N. Bacterial Flacherie in Bombyx mori (L): Isolation and Identification of Pathogenic Organism. Uttar Pradesh J. Zool. 2023, 44, 52–61. [Google Scholar] [CrossRef]
- Yao, C.; Pan, S.; Xu, Y.; Lu, M.; Zhao, Y.; Huo, J.; Hao, B.; Huang, J. Bombyx mori Nucleopolyhedrovirus Hijacks Multivesicular body as an alternative envelopment platform for budded Virus Egress. J. Virol. 2023, 97, e00041-00023. [Google Scholar] [CrossRef]
- Wu, P.; Han, S.; Chen, T.; Qin, G.; Li, L.; Guo, X. Involvement of microRNAs in infection of silkworm with Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). PLoS ONE 2013, 8, e68209. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Lu, Z. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. Dev. Comp. Immunol. 2018, 83, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.P. Viral-encoded microRNAs in host-pathogen interactions in silkworm. MicroRNA 2021, 10, 3–13. [Google Scholar] [CrossRef]
- Baci, G.-M.; Cucu, A.-A.; Giurgiu, A.-I.; Muscă, A.-S.; Bagameri, L.; Moise, A.R.; Bobiș, O.; Rațiu, A.C.; Dezmirean, D.S. Advances in editing silkworms (Bombyx mori) genome by using the CRISPR-cas system. Insects 2021, 13, 28. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Wu, P.; Guo, X.; Liu, Z.; Huang, Y.; Xu, X. Multi-targets cleavage of BmNPV genome through genome-wide repeat sequence using CRISPR/Cas9 antiviral system. Insect Sci. 2025, 32, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, D.; Zhang, X.; Chen, S.; Yang, D.; Tang, L.; Yang, X.; Wang, Y.; Luo, X.; Wang, M. Construction of baculovirus-inducible CRISPR/Cas9 antiviral system targeting BmNPV in Bombyx mori. Viruses 2021, 14, 59. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Ren, M.; Ma, S.; Liu, X.; Chen, K.; Xia, H. Peptidoglycan recognition protein-S1 acts as a receptor to activate AMP expression through the IMD pathway in the silkworm Bombyx mori. Dev. Comp. Immunol. 2021, 115, 103903. [Google Scholar] [CrossRef]
- Kaushik, A.; Borthakur, I.; Gupta, J.; Kashyap, S. Engineering Immunity in the Silkworm Bombyx mori: Genetic and Biotechnological Advances. Microbiol. Res. J. Int. 2025, 35, 73–85. [Google Scholar] [CrossRef]
- Ishii, K.; Hamamoto, H.; Kamimura, M.; Nakamura, Y.; Noda, H.; Imamura, K.; Mita, K.; Sekimizu, K. Insect cytokine paralytic peptide (PP) induces cellular and humoral immune responses in the silkworm Bombyx mori. J. Biol. Chem. 2010, 285, 28635–28642. [Google Scholar] [CrossRef]
- Li, S.; Yu, X.; Feng, Q. Fat body biology in the last decade. Annu. Rev. Entomol. 2019, 64, 315–333. [Google Scholar] [CrossRef]
- Tanaka, H.; Yamakawa, M. Regulation of the innate immune responses in the silkworm, Bombyx mori. Invertebr. Surviv. J. 2011, 8, 59–69. [Google Scholar]
- Wan, J.; Zhou, X.; Zhou, X. A review of innate immunity of silkworm, Bombyx mori. Afr. J. Agric. Res. 2013, 8, 2319–2325. [Google Scholar] [CrossRef]
- Stanley, D.; Haas, E.; Kim, Y. Beyond cellular immunity: On the biological significance of insect hemocytes. Cells 2023, 12, 599. [Google Scholar] [CrossRef]
- Zdybicka-Barabas, A.; Stączek, S.; Kunat-Budzyńska, M.; Cytryńska, M. Innate Immunity in Insects: The Lights and Shadows of Phenoloxidase System Activation. Int. J. Mol. Sci. 2025, 26, 1320. [Google Scholar] [CrossRef]
- Wang, Q.; Ju, X.; Zhou, Y.; Chen, L.; Chen, K. The immune response of silkworm, Bombyx mori. Afr. J. Microbiol. Res. 2014, 8, 3435–3440. [Google Scholar] [CrossRef]
- Clark, K.D.; Strand, M.R. Hemolymph melanization in the silkmoth Bombyx mori involves formation of a high molecular mass complex that metabolizes tyrosine. J. Biol. Chem. 2013, 288, 14476–14487. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Lu, F.; Wu, H.; Lou, D.; Tu, N.; Zhu, F.; Wang, S. Target antifungal peptides of immune signalling pathways in silkworm, Bombyx mori, against Beauveria bassiana. Insect Mol. Biol. 2021, 30, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zhao, C.; Huang, X.; Lv, J.; Zhao, Z.; Zheng, K.; Sun, X.; Qin, S.; Wang, X.; Jin, B.-R. Bombyx mori ecdysone receptor B1 may inhibit BmNPV infection by triggering apoptosis. Insects 2023, 14, 505. [Google Scholar] [CrossRef]
- Qiu, J.F.; Cui, W.Z.; Zhang, Q.; Dai, T.M.; Liu, K.; Li, J.L.; Wang, Y.J.; Sima, Y.H.; Xu, S.Q. Temporal transcriptome reveals that circadian clock is involved in the dynamic regulation of immune response to bacterial infection in Bombyx mori. Insect Sci. 2023, 30, 31–46. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, H.; He, J.; Muhammad, A.; Zhang, F.; Lu, X. Features and colonization strategies of Enterococcus faecalis in the gut of Bombyx mori. Front. Microbiol. 2022, 13, 921330. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-J.; Chen, K.; Xing, L.-S.; Lin, Z.; Zou, Z.; Lu, Z. Reactive oxygen species and antimicrobial peptides are sequentially produced in silkworm midgut in response to bacterial infection. Dev. Comp. Immunol. 2020, 110, 103720. [Google Scholar] [CrossRef]
- Shu, Q.; Guo, X.; Tian, C.; Wang, Y.; Zhang, X.; Cheng, J.; Li, F.; Li, B. Homeostatic regulation of the DUOX-ROS defense system: Revelations based on the diversity of gut bacteria in silkworms (Bombyx mori). Int. J. Mol. Sci. 2023, 24, 12731. [Google Scholar] [CrossRef]
- Bai, S.; Yao, Z.; Raza, M.F.; Cai, Z.; Zhang, H. Regulatory mechanisms of microbial homeostasis in insect gut. Insect Sci. 2021, 28, 286–301. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.-w.; Lu, Z.-q. Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori. J. Zhejiang Univ.-Sci. B 2015, 16, 875–882. [Google Scholar] [CrossRef]
- Ha, E.-M.; Oh, C.-T.; Ryu, J.-H.; Bae, Y.-S.; Kang, S.-W.; Jang, I.-h.; Brey, P.T.; Lee, W.-J. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 2005, 8, 125–132. [Google Scholar] [CrossRef]
- Shi, G.Q.; Yu, Q.Y.; Zhang, Z. Annotation and Evolution of the Antioxidant Genes in the Silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 2012, 79, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Storr, S.J.; Woolston, C.M.; Zhang, Y.; Martin, S.G. Redox environment, free radical, and oxidative DNA damage. Antioxid. Redox Signal. 2013, 18, 2399–2408. [Google Scholar] [CrossRef] [PubMed]
- Su, L.D.; Zhang, Q.L.; Lu, Z. Oxidation resistance 1 (OXR1) participates in silkworm defense against bacterial infection through the JNK pathway. Insect Sci. 2017, 24, 17–26. [Google Scholar] [CrossRef]
- Rao, X.-J.; Yu, X.-Q. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Dev. Comp. Immunol. 2010, 34, 1119–1128. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, W.; Guo, H.; Dang, Y.; Cheng, T.; Yang, W.; Sun, Q.; Wang, B.; Wang, Y.; Xie, E. Distinct functions of Bombyx mori peptidoglycan recognition protein 2 in immune responses to bacteria and viruses. Front. Immunol. 2019, 10, 776. [Google Scholar] [CrossRef]
- Rosales, C.; Vonnie, S. Cellular and molecular mechanisms of insect immunity. Insect Physiol. Ecol. 2017, 10, 182–190. [Google Scholar]
- Zhang, R.; Li, X.; Zhang, J.; Li, Y.; Wang, Y.; Song, Y.; Ren, F.; Yi, H.; Deng, X.; Zhong, Y. Toll9 from Bombyx mori functions as a pattern recognition receptor that shares features with Toll-like receptor 4 from mammals. Proc. Natl. Acad. Sci. USA 2021, 118, e2103021118. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, X.; He, Y.; Shuai, J.; Chen, X.; Ling, E. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development. Dev. Comp. Immunol. 2010, 34, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Sang, Q.; Pan, G.; Li, C.; Zhou, Z. A Toll-Spätzle pathway in the immune response of Bombyx mori. Insects 2020, 11, 586. [Google Scholar] [CrossRef]
- Wang, X.-y.; Li, T.; Johannes, M.; Xu, J.-p.; Sun, X.; Qin, S.; Xu, P.-z.; Li, M.-w.; Wu, Y.-c. The regulation of crecropin-A and gloverin 2 by the silkworm Toll-like gene 18 wheeler in immune response. J. Invertebr. Pathol. 2019, 164, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, X.; Tang, S.; Shen, Z.; Wu, J. Peptidoglycan recognition protein S2 from silkworm integument: Characterization, microbe-induced expression, and involvement in the immune-deficiency pathway. J. Insect Sci. 2015, 15, 20. [Google Scholar] [CrossRef]
- Hua, X.T.; Ma, X.J.; Xue, R.J.; Cheng, T.C.; Wang, F.; Xia, Q.Y. Characterization of the Bombyx mori Cecropin A1 promoter regulated by IMD pathway. Insect Sci. 2016, 23, 297–304. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.; Lai, M.; Chen, J.; Swevers, L. Activation of BmToll9-1 in Silkworm (Bombyx mori) Larval Midgut by Escherichia coli and Regulation of Growth. Insects 2025, 16, 621. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.; Chen, S.; Li, S.; Swevers, L. Similarly to BmToll9-1, BmToll9-2 Is a Positive Regulator of the Humoral Immune Response in the Silkworm, Bombyx mori. Insects 2024, 15, 1005. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Sato, E.; Sugita, T. Acute innate immune activation in silkworm by the human commensal bacterium Cutibacterium acnes. bioRxiv 2022. [Google Scholar] [CrossRef]
- Shao, Q.; Yang, B.; Xu, Q.; Li, X.; Lu, Z.; Wang, C.; Huang, Y.; Söderhäll, K.; Ling, E. Hindgut innate immunity and regulation of fecal microbiota through melanization in insects. J. Biol. Chem. 2012, 287, 14270–14279. [Google Scholar] [CrossRef]
- Binggeli, O.; Neyen, C.; Poidevin, M.; Lemaitre, B. Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathog. 2014, 10, e1004067. [Google Scholar] [CrossRef]
- Tanaka, H.; Ishibashi, J.; Fujita, K.; Nakajima, Y.; Sagisaka, A.; Tomimoto, K.; Suzuki, N.; Yoshiyama, M.; Kaneko, Y.; Iwasaki, T. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1087–1110. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Z.; Gupta, D.; Dziarski, R. Peptidoglycan recognition proteins: A novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 2001, 276, 34686–34694. [Google Scholar] [CrossRef]
- Ochiai, M.; Ashida, M. A pattern recognition protein for peptidoglycan: Cloning the cDNA and the gene of the silkworm, Bombyx mori. J. Biol. Chem. 1999, 274, 11854–11858. [Google Scholar] [CrossRef]
- Wu, G.; Yi, Y. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Mol. Immunol. 2018, 103, 220–228. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, M.; Liu, X.; Xia, H.; Chen, K. Identification and characterization of novel short-type BmPGRP-S4 from the silkworm, Bombyx mori, involved in innate immunity. Z. Für Naturforschung C 2020, 75, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.J.; Zhan, M.Y.; Ye, C.; Yu, X.Q.; Rao, X.J. Molecular cloning and characterization of a short peptidoglycan recognition protein from silkworm Bombyx mori. Insect Mol. Biol. 2017, 26, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhou, L.; Chen, F.; Peng, Y.; Lu, Z. Peptidoglycan recognition protein-S5 functions as a negative regulator of the antimicrobial peptide pathway in the silkworm, Bombyx mori. Dev. Comp. Immunol. 2016, 61, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lin, Y.; He, Y.; Li, Q.; Chen, W.; Lin, Q.; Swevers, L.; Liu, J. BmPGPR-L4 is a negative regulator of the humoral immune response in the silkworm Bombyx mori. Arch. Insect Biochem. Physiol. 2024, 115, e22093. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, M.; Cheng, T.; Huang, L.; Tan, X.; Xia, Q. Molecular cloning and expression profile analysis of genes encoding pattern recognition receptors pgrp and βgrp in the silk-worm Bombyx mori. Sci. Seric. 2010, 36, 383–390. [Google Scholar]
- Liu, D.; Wang, L.; Yang, L.; Qian, C.; Wei, G.; Dai, L.; Li, J.; Zhu, B.; Liu, C. Serpin-15 from Bombyx mori inhibits prophenoloxidase activation and expression of antimicrobial peptides. Dev. Comp. Immunol. 2015, 51, 22–28. [Google Scholar] [CrossRef]
- Ma, C.; Kanost, M.R. A β1, 3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade. J. Biol. Chem. 2000, 275, 7505–7514. [Google Scholar] [CrossRef]
- Ochiai, M.; Ashida, M. A pattern-recognition protein for β-1, 3-glucan: The binding domain and the cDNA cloning of β-1, 3-glucan recognition protein from the silkworm, Bombyx mori. J. Biol. Chem. 2000, 275, 4995–5002. [Google Scholar] [CrossRef]
- Takahasi, K.; Ochiai, M.; Horiuchi, M.; Kumeta, H.; Ogura, K.; Ashida, M.; Inagaki, F. Solution structure of the silkworm βGRP/GNBP3 N-terminal domain reveals the mechanism for β-1, 3-glucan-specific recognition. Proc. Natl. Acad. Sci. USA 2009, 106, 11679–11684. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, H. Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro: Snake-like hemolymph proteinase 21 (HP21) cleaved by HP14 activates prophenoloxidase-activating proteinase-2 precursor. Insect Biochem. Mol. Biol. 2007, 37, 1015–1025. [Google Scholar] [CrossRef]
- Dai, H.; Hiromasa, Y.; Takahashi, D.; VanderVelde, D.; Fabrick, J.A.; Kanost, M.R.; Krishnamoorthi, R. An initial event in the insect innate immune response: Structural and biological studies of interactions between β-1, 3-glucan and the N-terminal domain of β-1, 3-glucan recognition protein. Biochemistry 2013, 52, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, D.; Garcia, B.L.; Kanost, M.R. Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects. Proc. Natl. Acad. Sci. USA 2015, 112, 13856–13861. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, L.; Lin, Z.; Zou, Z.; Lu, Z. Serpin-5 regulates prophenoloxidase activation and antimicrobial peptide pathways in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2016, 73, 27–37. [Google Scholar] [CrossRef]
- Li, B.; Yu, H.-Z.; Ye, C.-J.; Ma, Y.; Li, X.; Fan, T.; Chen, F.-S.; Xu, J.-P. Bombyx mori Serpin6 regulates prophenoloxidase activity and the expression of antimicrobial proteins. Gene 2017, 610, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Tapping, R.I.; Tobias, P.S. Soluble CD14-mediated cellular responses to lipopolysaccharide. Chem. Immunol. 2000, 74, 108–121. [Google Scholar]
- Ranoa, D.R.E.; Kelley, S.L.; Tapping, R.I. Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. J. Biol. Chem. 2013, 288, 9729–9741. [Google Scholar] [CrossRef]
- Koizumi, N.; Imai, Y.; Morozumi, A.; Imamura, M.; Kadotani, T.; Yaoi, K.; Iwahana, H.; Sato, R. Lipopolysaccharide-binding protein of Bombyx mori participates in a hemocyte-mediated defense reaction against gram-negative bacteria. J. Insect Physiol. 1999, 45, 853–859. [Google Scholar] [CrossRef]
- Koizumi, N.; Morozumi, A.; Imamura, M.; Tanaka, E.; Iwahana, H.; Sato, R. Lipopolysaccharide-binding proteins and their involvement in the bacterial clearance from the hemolymph of the silkworm Bombyx mori. Eur. J. Biochem. 1997, 248, 217–224. [Google Scholar] [CrossRef]
- Park, M.J.; Kim, B.Y.; Yoon, H.J.; Kim, K.Y.; Kim, S.W.; Kim, S.Y.; Lee, K.S.; Jin, B.R. Molecular characterization of Bombyx mori C-type lectin 21 in innate immune responses. Entomol. Res. 2024, 54, e70006. [Google Scholar] [CrossRef]
- Shen, D.; Tong, M.; Guo, J.; Mei, X.; Xia, D.; Qiu, Z.; Zhao, Q. A pattern recognition receptor c-type lectin-S6 (CTL-S6) is involved in the immune response in the silkworm (Lepidoptera: Bombycidae). J. Insect Sci. 2021, 21, 9. [Google Scholar] [CrossRef]
- Gao, K.; Deng, X.-y.; Qian, H.-y.; Qin, G.-x.; Hou, C.-x.; Guo, X.-j. Cloning and expression analysis of a peptidoglycan recognition protein in silkworm related to virus infection. Gene 2014, 552, 24–31. [Google Scholar] [CrossRef]
- Liu, H.; Sun, X.; Li, Y.; Tang, Z.; Hou, Y.; Xia, Q.; Zhao, P. Peptidoglycan recognition protein L1 regulates intestinal immunity and microbial homeostasis via the IMD pathway in the silkworm, Bombyx mori. Insect Sci. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Tanaka, H.; Sagisaka, A. Involvement of peptidoglycan recognition protein L6 in activation of immune deficiency pathway in the immune responsive silkworm cells. Arch. Insect Biochem. Physiol. 2016, 92, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, L.-B.; Ma, Y.; Liu, Y.-X.; Cao, H.-H.; Wang, Y.-L.; Kong, X.; Huang, Z.-H.; Zhu, H.-D.; Wang, Y.-X. Bombyx mori β-1, 3-glucan recognition protein 4 (BmβGRP4) could inhibit the proliferation of B. mori nucleopolyhedrovirus through promoting apoptosis. Insects 2021, 12, 743. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Imamura, M.; Kadotani, T.; Yaoi, K.; Iwahana, H.; Sato, R. The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains. FEBS Lett. 1999, 443, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Lee, J.-D.; Kravchenko, V.V.; Ulevitch, R.J.; Brey, P.T. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. USA 1996, 93, 7888–7893. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zou, Y.; Wang, F.; Gong, J.; Zhong, X.; Xia, Q.; Zhao, P. Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages. Proteome Sci. 2010, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, W.; Situ, J.; Li, J.; Chen, J.; Lai, M.; Huang, F.; Li, B. BmToll9-1 is a positive regulator of the immune response in the silkworm Bombyx mori. Insects 2024, 15, 643. [Google Scholar] [CrossRef]
- Tian, L.; Guo, E.; Diao, Y.; Zhou, S.; Peng, Q.; Cao, Y.; Ling, E.; Li, S. Genome-wide regulation of innate immunity by juvenile hormone and 20-hydroxyecdysone in the Bombyx fat body. BMC Genom. 2010, 11, 549. [Google Scholar] [CrossRef]
- Kawaoka, S.; Katsuma, S.; Daimon, T.; Isono, R.; Omuro, N.; Mita, K.; Shimada, T. Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. Publ. Collab. Entomol. Soc. Am. 2008, 67, 87–96. [Google Scholar] [CrossRef]
- Mrinal, N.; Nagaraju, J. Intron loss is associated with gain of function in the evolution of the gloverin family of antibacterial genes in Bombyx mori. J. Biol. Chem. 2008, 283, 23376–23387. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, T.; Xu, P.; Cheng, D.; Fang, T.; Xia, Q. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS ONE 2009, 4, e8098. [Google Scholar] [CrossRef]
- Kaneko, Y.; Tanaka, H.; Ishibashi, J.; Iwasaki, T.; Yamakawa, M. Gene expression of a novel defensin antimicrobial peptide in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 2008, 72, 2353–2361. [Google Scholar] [CrossRef]
- Qie, X.; Yan, X.; Wang, W.; Liu, Y.; Zhang, L.; Hao, C.; Lu, Z.; Ma, L. Serpin-4 negatively regulates prophenoloxidase activation and antimicrobial peptide synthesis in the silkworm, Bombyx mori. Int. J. Mol. Sci. 2023, 25, 313. [Google Scholar] [CrossRef]
- Toufeeq, S.; Wang, J.; Zhang, S.-Z.; Li, B.; Hu, P.; Zhu, L.-B.; You, L.-L.; Xu, J.-P. Bmserpin2 is involved in BmNPV infection by suppressing melanization in Bombyx mori. Insects 2019, 10, 399. [Google Scholar] [CrossRef]
- Liu, H.; Xu, J.; Wang, L.; Guo, P.; Tang, Z.; Sun, X.; Tang, X.; Wang, W.; Wang, L.; Cao, Y. Serpin-1a and serpin-6 regulate the Toll pathway immune homeostasis by synergistically inhibiting the Spätzle-processing enzyme CLIP2 in silkworm, Bombyx mori. PLoS Pathog. 2023, 19, e1011740. [Google Scholar] [CrossRef]
- Dong, Z.; An, L.; Lu, M.; Tang, M.; Chen, H.; Huang, X.; Hou, Y.; Shen, G.; Zhang, X.; Zhang, Y. SPINK7 recognizes fungi and initiates hemocyte-mediated immune defense against fungal infections. Front. Immunol. 2021, 12, 735497. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Heng, J.; Wang, L.; Li, Y.; Tang, X.; Huang, X.; Xia, Q.; Zhao, P. Homeodomain proteins POU-M2, antennapedia and abdominal-B are involved in regulation of the segment-specific expression of the clip-domain serine protease gene CLIP13 in the silkworm, Bombyx mori. Insect Sci. 2022, 29, 111–127. [Google Scholar] [CrossRef]
- Lu, A.; Zhang, Q.; Zhang, J.; Yang, B.; Wu, K.; Xie, W.; Luan, Y.-X.; Ling, E. Insect prophenoloxidase: The view beyond immunity. Front. Physiol. 2014, 5, 252. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Sagisaka, A.; Suzuki, N.; Yamakawa, M. Bombyx mori E26 transformation-specific 2 (BmEts2), an Ets family protein, represses Bombyx mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in the silkworm Bombyx mori. Insect Mol. Biol. 2016, 25, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jiang, Y.; Wang, Y.; Li, X.; Yang, R.; Yu, Z.; Qin, L. The toll signaling pathway in the Chinese Oak Silkworm, Antheraea pernyi: Innate immune responses to different microorganisms. PLoS ONE 2016, 11, e0160200. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Li, F.; Wang, X.; Li, X.; Shen, Z.; Wu, J. Immune-related gene spatzle4 and its differential immune responses against microbes in the silkworm, Bombyx mori. Am. J. Clin. Exp. Med. 2015, 4, 344–349. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, X.; Wang, Y.; Bai, X.; Yang, Q.; Zhong, Y.; Yu, X.Q.; Jin, F.; Yang, W. BmMD-2A responds to 20-hydroxyecdysone and regulates Bombyx mori silkworm innate immunity in larva-to-pupa metamorphosis. Insect Sci. 2023, 30, 411–424. [Google Scholar] [CrossRef]
- Li, G.-N.; Xia, X.-J.; Zhao, H.-H.; Sendegeya, P.; Zhu, Y. Identification and characterization of Bacillus cereus SW7-1 in Bombyx mori (Lepidoptera: Bombycidae). J. Insect Sci. 2015, 15, 136. [Google Scholar] [CrossRef]
- Mohanta, M.; Saha, A.; Saleh, D.; Islam, M.S.; Mannan, K.; Fakruddin, M. Characterization of Klebsiella granulomatis pathogenic to silkworm, Bombyx mori L. 3 Biotech 2015, 5, 577–583. 3 Biotech 2015, 5, 577–583. [Google Scholar] [CrossRef]
- Vaaje-Kolstad, G.; Horn, S.J.; van Aalten, D.M.; Synstad, B.; Eijsink, V.G. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is Essential for Chitin Degradation. J. Biol. Chem. 2005, 280, 28492–28497. [Google Scholar] [CrossRef] [PubMed]
- Gençer, D.; Şalvarcı, H.B.; Ulaşlı, B.; Cengiz, F.C.; Demir, İ. Bacterial diversity associated with the Hatay yellow strain silkworm (Bombyx mori L.): Isolation, identification and characterization. Mustafa Kemal Üniversitesi Tarım Bilim. Derg. 2023, 28, 593–605. [Google Scholar] [CrossRef]
- Kaito, C.; Yoshikai, H.; Wakamatsu, A.; Miyashita, A.; Matsumoto, Y.; Fujiyuki, T.; Kato, M.; Ogura, Y.; Hayashi, T.; Isogai, T. Non-pathogenic Escherichia coli acquires virulence by mutating a growth-essential LPS transporter. PLoS Pathog. 2020, 16, e1008469. [Google Scholar] [CrossRef]
- Putignani, L. Human gut microbiota: Onset and shaping through life stages and perturbations. Front. Cell. Infect. Microbiol. 2012, 2, 144. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Kumar, D.; Cao, G.; Zhu, L.; Liu, B.; Zhu, M.; Liang, Z.; Kuang, S.; Chen, F.; Feng, Y. Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori. Sci. Rep. 2017, 7, 3349. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Shimizu, T.; Inagaki, F.; Okazaki, S.; Saha, S.S.; Uda, A.; Watanabe, K.; Watarai, M. Identification of membrane-bound lytic murein transglycosylase a (MltA) as a growth factor for francisella novicida in a silkworm infection model. Front. Cell. Infect. Microbiol. 2021, 10, 581864. [Google Scholar] [CrossRef]
- Arai, I.; Ohta, M.; Suzuki, A.; Tanaka, S.; Yoshizawa, Y.; Sato, R. Immunohistochemical analysis of the role of hemocytin in nodule formation in the larvae of the silkworm, Bombyx mori. J. Insect Sci. 2013, 13, 125. [Google Scholar] [CrossRef]
- Phillips, D.R.; Clark, K.D. Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment. PLoS ONE 2017, 12, e0171447. [Google Scholar] [CrossRef]
- Skowronek, P.; Wójcik, Ł.; Strachecka, A. Fat body—Multifunctional insect tissue. Insects 2021, 12, 547. [Google Scholar] [CrossRef]
- Nesa, J.; Jana, S.; Sadat, A.; Biswas, K.; Kati, A.; Kaya, O.; Mondal, R.; Dam, P.; Thakur, M.; Kumar, A. Antimicrobial potential of a ponericin-like peptide isolated from Bombyx mori L. hemolymph in response to Pseudomonas aeruginosa infection. Sci. Rep. 2022, 12, 15493. [Google Scholar] [CrossRef] [PubMed]
- Babu, K.R.; Ramakrishna, S.; Reddy, Y.H.K.; Lakshmi, G.; Naidu, N.; Basha, S.S.; Bhaskar, M. Metabolic alterations and molecular mechanism in silkworm larvae during viral infection: A review. Afr. J. Biotechnol. 2009, 8, 899–907. [Google Scholar]
- Chitra, C. Diseases of the Mulberry Silkworm, Bombyx mori L. J. Sci. Ind. Res. 1975, 34, 386–401. [Google Scholar]
- Jiang, L.; Xia, Q. The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 2014, 48, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Hu, P.; Chen, K. Progress of antiviral mechanisms in the mulberry silkworm: A review. Afr. J. Microbiol. Res 2013, 7, 1173–1178. [Google Scholar] [CrossRef]
- Blissard, G.W.; Theilmann, D.A. Baculovirus entry and egress from insect cells. Annu. Rev. Virol. 2018, 5, 113–139. [Google Scholar] [CrossRef]
- Lü, P.; Pan, Y.; Yang, Y.; Zhu, F.; Li, C.; Guo, Z.; Yao, Q.; Chen, K. Discovery of anti-viral molecules and their vital functions in Bombyx mori. J. Invertebr. Pathol. 2018, 154, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Kigerl, K.A.; de Rivero Vaccari, J.P.; Dietrich, W.D.; Popovich, P.G.; Keane, R.W. Pattern recognition receptors and central nervous system repair. Exp. Neurol. 2014, 258, 5–16. [Google Scholar] [CrossRef]
- Monteiro, J.T.; Lepenies, B. Myeloid C-type lectin receptors in viral recognition and antiviral immunity. Viruses 2017, 9, 59. [Google Scholar] [CrossRef]
- Wang, G.; Xu, D.; Guo, D.; Zhang, Y.; Mai, X.; Zhang, B.; Cao, H.; Zhang, S. Unraveling the innate immune responses of Bombyx mori hemolymph, fat body, and midgut to Bombyx mori nucleopolyhedrovirus oral infection by metabolomic analysis. Arch. Insect Biochem. Physiol. 2021, 108, e21848. [Google Scholar] [CrossRef]
- Awais, M.M.; Fei, S.; Xia, J.; Feng, M.; Sun, J. Insights into midgut cell types and their crucial role in antiviral immunity in the lepidopteran model Bombyx mori. Front. Immunol. 2024, 15, 1349428. [Google Scholar] [CrossRef]
- Cao, H.-H.; Zhang, S.-Z.; Zhu, L.-B.; Wang, J.; Liu, Y.-X.; Wang, Y.-L.; Kong, X.; You, L.-L.; Toufeeq, S.; Liu, S.-H. The digestive proteinase trypsin, alkaline A contributes to anti-BmNPV activity in silkworm (Bombyx mori). Dev. Comp. Immunol. 2021, 119, 104035. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Ponnuvel, K.M.; Kadono-Okuda, K. Host response against virus infection in an insect: Bidensovirus infection effect on silkworm (Bombyx mori). Antioxidants 2021, 10, 522. [Google Scholar] [CrossRef]
- Xia, J.; Peng, R.; Fei, S.; Awais, M.M.; Lai, W.; Huang, Y.; Wu, H.; Yu, Y.; Liang, L.; Swevers, L. Systematic analysis of innate immune-related genes in the silkworm: Application to antiviral research. Insect Sci. 2025, 32, 151–171. [Google Scholar] [CrossRef]
- Mon, H.; Li, Z.; Kobayashi, I.; Tomita, S.; Lee, J.; Sezutsu, H.; Tamura, T.; Kusakabe, T. Soaking RNAi in Bombyx mori BmN4-SID1 cells arrests cell cycle progression. J. Insect Sci. 2013, 13, 155. [Google Scholar] [CrossRef]
- Pan, J.; Qiu, Q.; Kumar, D.; Xu, J.; Tong, X.; Shen, Z.; Zhu, M.; Hu, X.; Gong, C. Interaction between Bombyx mori Cytoplasmic Polyhedrosis Virus NSP8 and BmAgo2 Inhibits RNA Interference and Enhances Virus Proliferation. Microbiol. Spectr. 2023, 11, e04938-22. [Google Scholar] [CrossRef]
- Jiang, L. Insights into the antiviral pathways of the silkworm Bombyx mori. Front. Immunol. 2021, 12, 639092. [Google Scholar] [CrossRef]
- Jayachandran, B.; Hussain, M.; Asgari, S. RNA interference as a cellular defense mechanism against the DNA virus baculovirus. J. Virol. 2012, 86, 13729–13734. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xia, Y.; Xu, X.; Wei, G.; Wang, L. Functional analysis of Dicer-2 gene in Bombyx mori resistance to BmNPV virus. Arch. Insect Biochem. Physiol. 2020, 105, e21724. [Google Scholar] [CrossRef] [PubMed]
- Swevers, L.; Liu, J.; Huvenne, H.; Smagghe, G. Search for limiting factors in the RNAi pathway in silkmoth tissues and the Bm5 cell line: The RNA-binding proteins R2D2 and Translin. PLoS ONE 2011, 6, e20250. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, G.; Kong, X.; Chen, N.; Wu, X. BmNPV p35 reduces the accumulation of virus-derived siRNAs and hinders the function of siRNAs to facilitate viral infection. Front. Immunol. 2022, 13, 845268. [Google Scholar] [CrossRef]
- Singh, C.; Singh, J.; Nagaraju, J. A baculovirus-encoded MicroRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor Ran. J. Virol. 2012, 86, 7867–7879. [Google Scholar] [CrossRef]
- Guo, J.Y.; Wang, Y.S.; Chen, T.; Jiang, X.X.; Wu, P.; Geng, T.; Pan, Z.H.; Shang, M.K.; Hou, C.X.; Gao, K. Functional analysis of a miRNA-like small RNA derived from Bombyx mori cytoplasmic polyhedrosis virus. Insect Sci. 2020, 27, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.H.; Kong, W.W.; Chen, X.Y.; Ayaz, S.; Hou, C.P.; Wang, Y.S.; Liu, S.H.; Xu, J.p. Bmo-miR-6498-5p suppresses Bombyx mori nucleopolyhedrovirus infection by down-regulating BmPLPP2 to modulate pyridoxal phosphate content in B. mori. Insect Mol. Biol. 2024, 33, 259–269. [Google Scholar] [CrossRef]
- Cao, H.H.; Kong, W.W.; Ling, B.; Wang, Z.Y.; Zhang, Y.; Guo, Z.X.; Liu, S.H.; Xu, J.P. Bmo-miR-3351 modulates glutathione content and inhibits BmNPV proliferation by targeting BmGSTe6 in Bombyx mori. Insect Sci. 2024, 31, 1378–1396. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Lu, Y.; Gong, Y.; Zhu, M.; Chen, F.; Liang, Z.; Zhu, L.; Kuang, S.; Hu, X. Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori. Mol. Immunol. 2015, 65, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Kingsolver, M.B.; Huang, Z.; Hardy, R.W. Insect antiviral innate immunity: Pathways, effectors, and connections. J. Mol. Biol. 2013, 425, 4921–4936. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, Z.; Wang, S.; Li, S.; Zou, Y.; Zhao, P.; Xia, Q.; Lu, Z. Transcription factor STAT enhanced antimicrobial activities in Bombyx mori. Int. J. Biol. Macromol. 2024, 254, 127637. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Zhou, L.; Dang, Z.; Wang, S.; Zhao, P.; Xia, Q.; Lu, Z. Downregulation of BmSTAT transcription factor promoted nucleopolyhedrovirus replication in Bombyx mori. Front. Microbiol. 2024, 15, 1485951. [Google Scholar] [CrossRef]
- Shang, Q.; Wu, P.; Huang, H.; Zhang, S.; Tang, X.; Guo, X. Inhibition of heat shock protein 90 suppresses Bombyx mori nucleopolyhedrovirus replication in B. mori. Insect Mol. Biol. 2020, 29, 205–213. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, S.; Gu, C.; Hu, M.; Miao, M.; Quan, Y.; Yu, W. K64 acetylation of heat shock protein 90 suppresses nucleopolyhedrovirus replication in Bombyx mori. Arch. Insect Biochem. Physiol. 2024, 115, e22079. [Google Scholar] [CrossRef]
- Wei, D.; Liu, J.; Hu, J.; Zhang, B.; Pan, Y.; Xia, Q.; Wang, F. An NF-κB-regulated cytokine enhances the antiviral resistance of silkworm, Bombyx mori. Insect Mol. Biol. 2025, 34, 426–439. [Google Scholar] [CrossRef]
- Hoffmann, J.A. The immune response of Drosophila. Nature 2003, 426, 33–38. [Google Scholar] [CrossRef]
- Zhao, P.; Xia, F.; Jiang, L.; Guo, H.; Xu, G.; Sun, Q.; Wang, B.; Wang, Y.; Lu, Z.; Xia, Q. Enhanced antiviral immunity against Bombyx mori cytoplasmic polyhedrosis virus via overexpression of peptidoglycan recognition protein S2 in transgenic silkworms. Dev. Comp. Immunol. 2018, 87, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.; Martinak, P.E.; Hollenberg, B.M.; Goodman, A.G. Drosophila melanogaster Toll-9 elicits antiviral immunity against Drosophila C virus. J. Virol. 2025, 99, e02214–e02224. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Pan, J.; Tong, X.; Qiu, Q.; Zhang, X.; Zhang, Y.; Sun, S.; Feng, Y.; Xue, R.; Cao, G. BmCPV-derived circular DNA vcDNA-S7 mediated by Bombyx mori reverse transcriptase (RT) regulates BmCPV infection. Front. Immunol. 2022, 13, 861007. [Google Scholar] [CrossRef]
- Mussabekova, A.; Daeffler, L.; Imler, J.-L. Innate and intrinsic antiviral immunity in Drosophila. Cell. Mol. Life Sci. 2017, 74, 2039–2054. [Google Scholar] [CrossRef]
- Feng, M.; Fei, S.; Xia, J.; Labropoulou, V.; Swevers, L.; Sun, J. Antimicrobial peptides as potential antiviral factors in insect antiviral immune response. Front. Immunol. 2020, 11, 2030. [Google Scholar] [CrossRef]
- Cai, H.; Imler, J.-L. cGAS-STING: Insight on the evolution of a primordial antiviral signaling cassette. Fac. Rev. 2021, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ye, R.; Su, J.; Rui, Y.; Yu, X.F. cGAS–STING-mediated novel nonclassic antiviral activities. J. Med. Virol. 2024, 96, e29403. [Google Scholar] [CrossRef]
- Cai, H.; Holleufer, A.; Simonsen, B.; Schneider, J.; Lemoine, A.; Gad, H.H.; Huang, J.; Huang, J.; Chen, D.; Peng, T. 2′ 3′-cGAMP triggers a STING-and NF-κB–dependent broad antiviral response in Drosophila. Sci. Signal. 2020, 13, eabc4537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Fei, S.; Xia, J.; Wang, Y.; Wu, H.; Li, X.; Guo, Y.; Swevers, L.; Sun, J.; Feng, M. Sirt5 inhibits BmNPV replication by promoting a relish-mediated antiviral pathway in Bombyx mori. Front. Immunol. 2022, 13, 906738. [Google Scholar] [CrossRef]
- Hua, X.; Li, B.; Song, L.; Hu, C.; Li, X.; Wang, D.; Xiong, Y.; Zhao, P.; He, H.; Xia, Q. Stimulator of interferon genes (STING) provides insect antiviral immunity by promoting Dredd caspase–mediated NF-κB activation. J. Biol. Chem. 2018, 293, 11878–11890. [Google Scholar] [CrossRef] [PubMed]
- Imler, J.-L.; Cai, H.; Meignin, C.; Martins, N. Evolutionary immunology to explore original antiviral strategies. Philos. Trans. R. Soc. B 2024, 379, 20230068. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Kausar, S.; Tang, Y.; Huang, W.; Tang, B.; Abbas, M.N.; Dai, L. The emerging role of STING in insect innate immune responses and pathogen evasion strategies. Front. Immunol. 2022, 13, 874605. [Google Scholar] [CrossRef]
- Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M.T. Anti-apoptosis and cell survival: A review. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2011, 1813, 238–259. [Google Scholar] [CrossRef]
- Passarelli, A.L. Barriers to success: How baculoviruses establish efficient systemic infections. Virology 2011, 411, 383–392. [Google Scholar] [CrossRef]
- Wang, X.-y.; Ding, X.-y.; Chen, Q.-y.; Zhang, K.-x.; Zhao, C.-x.; Tang, X.-d.; Wu, Y.-c.; Li, M.-w. Bmapaf-1 is involved in the response against BmNPV infection by the mitochondrial apoptosis pathway. Insects 2020, 11, 647. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Z.q.; Huang, X.m.; Ding, X.y.; Zhao, C.x.; Li, M.w.; Wu, Y.c.; Liu, Q.n.; Wang, X.y. Bmcas-1 plays an important role in response against BmNPV infection in vitro. Arch. Insect Biochem. Physiol. 2021, 107, e21793. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Wu, K.-H.; Pang, H.-L.; Xu, P.-Z.; Li, M.-W.; Zhang, G.-Z. Study on the role of cytc in response to BmNPV infection in silkworm, Bombyx mori (Lepidoptera). Int. J. Mol. Sci. 2019, 20, 4325. [Google Scholar] [CrossRef]
- Lei, J.; Hu, D.; Xue, S.; Mao, F.; Obeng, E.; Quan, Y.; Yu, W. HN1L is essential for cell growth and survival during nucleopolyhedrovirus infection in silkworm, Bombyx mori. PLoS ONE 2019, 14, e0216719. [Google Scholar] [CrossRef]
- Mei, X.; Li, C.; Peng, P.; Wang, J.; He, E.; Qiu, Z.; Xia, D.; Zhao, Q.; Shen, D. Bombyx mori c-type lectin (BmIML-2) inhibits the proliferation of b. mori nucleopolyhedrovirus (BmNPV) through involvement in apoptosis. Int. J. Mol. Sci. 2022, 23, 8369. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hu, M.; Ngowo, J.; Gao, X.; Chen, X.; Yan, H.; Yu, W. Deacetylation of BmAda3 is required for cell apoptosis caused by Bombyx mori nucleopolyhedrovirus infection. Arch. Insect Biochem. Physiol. 2021, 108, e21838. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, Y.; Zhang, J.; Zhang, D.; Zhao, Q.; Shen, D. Functional analysis of BmTsp. C in modulating infection of BmNPV through apoptosis pathways in domestic silkworm (Bombyx mori). J. Gen. Virol. 2025, 106, 002098. [Google Scholar] [CrossRef]
- Ding, X.-y.; Wang, X.-y.; Kong, Y.-h.; Zhao, C.-x.; Qin, S.; Sun, X.; Li, M.-w. Comparative transcriptome analysis of Bombyx mori (Lepidoptera) larval hemolymph in response to Autographa californica nucleopolyhedrovirus in differentially resistant strains. Processes 2021, 9, 1401. [Google Scholar] [CrossRef]
- Chen, P.; Cai, M.; Feng, Y.-J.; Li, C.; Dong, Z.-Q.; Xiao, W.-F.; Tang, L.; Zhu, Y.; Tian, T.; Deng, B.-Y. Apoptosis-related long non-coding RNA LINC5438 of Bombyx mori promotes the proliferation of BmNPV. Pestic. Biochem. Physiol. 2023, 191, 105380. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Ryu, J.-H.; Han, S.-J.; Choi, K.-H.; Nam, K.-B.; Jang, I.-H.; Lemaitre, B.; Brey, P.T.; Lee, W.-J. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1, 3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem. 2000, 275, 32721–32727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, J.; Xie, Y.; Wang, X.; Ren, F.; Bian, H.; Sun, J. β-1, 3-Glucan Recognition Protein Can Inhibit the Proliferation of Bombyx mori Cytoplasmic Polyhedrosis Virus. Insects 2025, 16, 431. [Google Scholar] [CrossRef]
- Romoli, O.; Saviane, A.; Bozzato, A.; D’Antona, P.; Tettamanti, G.; Squartini, A.; Cappellozza, S.; Sandrelli, F. Differential sensitivity to infections and antimicrobial peptide-mediated immune response in four silkworm strains with different geographical origin. Sci. Rep. 2017, 7, 1048. [Google Scholar] [CrossRef]
- Xing, L.; Yuan, C.; Wang, M.; Lin, Z.; Shen, B.; Hu, Z.; Zou, Z. Dynamics of the interaction between cotton bollworm Helicoverpa armigera and nucleopolyhedrovirus as revealed by integrated transcriptomic and proteomic analyses. Mol. Cell. Proteom. 2017, 16, 1009–1028. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, S.; Zhao, Z.; Xu, P.; Gao, K.; Qian, H.; Zhang, Z.; Guo, X. Functional analysis of a putative Bombyx mori cypovirus miRNA BmCPV-miR-10 and its effect on virus replication. Insect Mol. Biol. 2021, 30, 552–565. [Google Scholar] [CrossRef]
- Qian, H.; Li, G.; Zhao, G.; Liu, M.; Xu, A. Metabolic characterisation of the midgut of Bombyx mori varieties after BmNPV infection using GC-MS-based metabolite profiling. Int. J. Mol. Sci. 2020, 21, 4707. [Google Scholar] [CrossRef]
- Singh, C.; Vaishna, R.; Kakkar, A.; Arunkumar, K.; Nagaraju, J. Characterization of antiviral and antibacterial activity of Bombyx mori seroin proteins. Cell. Microbiol. 2014, 16, 1354–1365. [Google Scholar] [CrossRef]
- Feng, M.; Fei, S.; Zou, J.; Xia, J.; Lai, W.; Huang, Y.; Swevers, L.; Sun, J. Single-nucleus sequencing of silkworm larval brain reveals the key role of lysozyme in the antiviral immune response in brain hemocytes. J. Innate Immun. 2024, 16, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Awais, M.M.; Zou, J.; Xia, J.; Wang, Y.; Kong, Y.; Feng, M.; Sun, J. Single-nucleus RNA sequencing reveals midgut cellular heterogeneity and transcriptional profiles in Bombyx mori cytoplasmic polyhedrosis virus infection. Insect Sci. 2024. [Google Scholar] [CrossRef]
- Cao, H.-H.; Wang, Y.-L.; Toufeeq, S.; Kong, W.-W.; Ayaz, S.; Liu, S.-H.; Wang, J.; Xu, J.-P. Bombyx mori serpin 3 is involved in innate immunity by interacting with serine protease 7 to regulate prophenoloxidase activation. J. Invertebr. Pathol. 2024, 207, 108188. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, A.R.; Bhattacharya, M.; Lee, S.-S.; Chakraborty, C. CRISPR-Cas9: A preclinical and clinical perspective for the treatment of human diseases. Mol. Ther. 2021, 29, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hou, C.; Bi, H.; Wang, Y.; Xu, J.; Li, M.; James, A.A.; Huang, Y.; Tan, A. Transgenic clustered regularly interspaced short palindromic repeat/Cas9-mediated viral gene targeting for antiviral therapy of Bombyx mori nucleopolyhedrovirus. J. Virol. 2017, 91, e02465-16. [Google Scholar] [CrossRef]
- Dong, Z.; Qin, Q.; Hu, Z.; Chen, P.; Huang, L.; Long, J.; Tian, T.; Lu, C.; Pan, M. A Multiplex CRISPR/Cas9 System for Use as an Anti-BmNPV Therapeutic. Preprints 2018. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Chen, D.; Yang, D.; Zhu, C.; Tang, L.; Yang, X.; Wang, Y.; Luo, X.; Wang, M. CRISPR/Cas9-Mediated Disruption of the lef8 and lef9 to Inhibit Nucleopolyhedrovirus Replication in Silkworms. Viruses 2022, 14, 1119. [Google Scholar] [CrossRef]
- Feng, Y.-t.; Yang, C.-y.; Wu, L.; Wang, Y.-c.; Shen, G.-w.; Lin, P. BmSPP is a virus resistance gene in Bombyx mori. Front. Immunol. 2024, 15, 1377270. [Google Scholar] [CrossRef]
- Dong, Z.; Qin, Q.; Hu, Z.; Zhang, X.; Miao, J.; Huang, L.; Chen, P.; Lu, C.; Pan, M. CRISPR/Cpf1 mediated genome editing enhances Bombyx mori resistance to BmNPV. bioRxiv 2020. [Google Scholar] [CrossRef]
- He, L.; Liu, L.; Liu, H.; Tang, X.; Meng, Y.; Xie, H.; Zhu, L.; Xia, Q.; Zhao, P. Functional Analysis of BmHemolin in the Immune Defense of Silkworms. Insects 2025, 16, 778. [Google Scholar] [CrossRef] [PubMed]
- Heng, J.; Liu, H.; Xu, J.; Huang, X.; Sun, X.; Yang, R.; Xia, Q.; Zhao, P. KPI5 is involved in the regulation of the expression of antibacterial peptide genes and hemolymph melanization in the silkworm, Bombyx mori. Front. Immunol. 2022, 13, 907427. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Zhao, S.; Wu, M.; Ruan, J.; Tang, X.; Wang, X.; Zhong, B. Role of sericin 1 in the immune system of silkworms revealed by transcriptomic and proteomic analyses after gene knockout. FEBS Open Bio 2021, 11, 2304–2318. [Google Scholar] [CrossRef]
- Zhang, N.; He, J.; Muhammad, A.; Shao, Y. CRISPR/Cas9–Mediated genome editing for Pseudomonas fulva, a novel Pseudomonas species with clinical, animal, and plant–Associated isolates. Int. J. Mol. Sci. 2022, 23, 5443. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayaz, S.; Kong, W.-W.; Wang, J.; Liu, S.-H.; Xu, J.-P. Host Immunity Mechanisms Against Bacterial and Viral Infections in Bombyx mori. Insects 2025, 16, 1167. https://doi.org/10.3390/insects16111167
Ayaz S, Kong W-W, Wang J, Liu S-H, Xu J-P. Host Immunity Mechanisms Against Bacterial and Viral Infections in Bombyx mori. Insects. 2025; 16(11):1167. https://doi.org/10.3390/insects16111167
Chicago/Turabian StyleAyaz, Sadaf, Wei-Wei Kong, Jie Wang, Shi-Huo Liu, and Jia-Ping Xu. 2025. "Host Immunity Mechanisms Against Bacterial and Viral Infections in Bombyx mori" Insects 16, no. 11: 1167. https://doi.org/10.3390/insects16111167
APA StyleAyaz, S., Kong, W.-W., Wang, J., Liu, S.-H., & Xu, J.-P. (2025). Host Immunity Mechanisms Against Bacterial and Viral Infections in Bombyx mori. Insects, 16(11), 1167. https://doi.org/10.3390/insects16111167

