Transcriptional Response of ABCH Transporter Genes to Host Allelochemicals in Dendroctonus armandi and Their Functional Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect and Reagent Preparation
2.2. Synergism Bioassays
2.3. Cloning and RACE
2.4. Bioinformatic Analysis
2.5. Insect Sampling and Treatments for RT-qPCR
2.6. Double-Strand RNA (dsRNA) Synthesis and Injection
2.7. Statistical Analysis
3. Results
3.1. Synergistic Effect of Verapamil on Monoterpenes
3.2. Sequencing and Bioinformatic Analysis
3.3. Expression Profiles Across D. armandi Developmental Stages and Tissues
3.4. Exposure to Monoterpenes
3.5. Functional Analysis of DaABCH Genes by RNAi Silencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Li, Z.; Tang, M. Laboratory evaluation of flight activity of Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Can. Entomol. 2010, 142, 378–387. [Google Scholar] [CrossRef]
- Huber, D.P.W.; Robert, J.A. The Proteomics and Transcriptomics of Early Host Colonization and Overwintering Physiology in the Mountain Pine Beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). In Pine Bark Beetles; Tittiger, C., Blomquist, G.J., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 101–128. [Google Scholar]
- Chen, H.; Tang, M.; Gao, J.; Chen, X.; Li, Z. Changes in the composition of volatile monoterpenes and sesquiterpenes of Pinus armandi, P-tabulaeformis, and P-bungeana in Northwest China. Chem. Nat. Compd. 2006, 42, 534–538. [Google Scholar] [CrossRef]
- Bohlmann, J. Pine terpenoid defences in the mountain pine beetle epidemic and in other conifer pest interactions: Specialized enemies are eating holes into a diverse, dynamic and durable defence system. Tree Physiol. 2012, 32, 943–945. [Google Scholar] [CrossRef]
- López, M.F.; Cano-Ramírez, C.; Shibayama, M.; Zúñiga, G. alpha-Pinene and Myrcene Induce Ultrastructural Changes in the Midgut of Dendroctonus valens (Coleoptera: Curculionidae: Scolytinae). Ann. Entomol. Soc. Am. 2011, 104, 553–561. [Google Scholar] [CrossRef]
- Chiu, C.C.; Keeling, C.I.; Bohlmann, J. Toxicity of Pine Monoterpenes to Mountain Pine Beetle. Sci. Rep. 2017, 7, 8858. [Google Scholar] [CrossRef] [PubMed]
- Nishida, R. Chemical ecology of insect-plant interactions: Ecological significance of plant secondary metabolites. Biosci. Biotechnol. Biochem. 2014, 78, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Ma, J.; Ma, M.; Zhang, H.; Shi, Q.; Zhang, R.; Chen, H. Characterisation of GST genes from the Chinese white pine beetle Dendroctonus armandi (Curculionidae: Scolytinae) and their response to host chemical defence. Pest Manag. Sci. 2016, 72, 816–827. [Google Scholar] [CrossRef]
- Dai, L.; Ma, M.; Wang, C.; Shi, Q.; Zhang, R.; Chen, H. Cytochrome P450s from the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae): Expression profiles of different stages and responses to host allelochemicals. Insect Biochem. Mol. Biol. 2015, 65, 35–46. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H. Disruption of CYP6DF1 and CYP6DJ2 increases the susceptibility of Dendroctonus armandi to (+)-α-pinene. Pestic. Biochem. Physiol. 2022, 188, 105270. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H. Disruption of carboxylesterase DaEST3 reduces tolerance to host allelochemicals in Dendroctonus armandi. Arthropod Plant Interact. 2023, 17, 673–685. [Google Scholar] [CrossRef]
- Amezian, D.; Nauen, R.; Van Leeuwen, T. The role of ATP-binding cassette transporters in arthropod pesticide toxicity and resistance. Curr. Opin. Insect Sci. 2024, 63, 101200. [Google Scholar] [CrossRef] [PubMed]
- Gott, R.C.; Kunkel, G.R.; Zobel, E.S.; Lovett, B.R.; Hawthorne, D.J. Implicating ABC Transporters in Insecticide Resistance: Research Strategies and a Decision Framework. J. Econ. Entomol. 2017, 110, 667–677. [Google Scholar] [CrossRef]
- Liu, L.; Hong, B.; Wei, J.-W.; Wu, Y.-T.; Song, L.-W.; Wang, S.-S. Transcriptional response and functional analysis of ATP-binding cassette transporters to tannic acid in pea aphid, Acyrthosiphon pisum (Harris). Int. J. Biol. Macromol. 2022, 220, 250–257. [Google Scholar] [CrossRef]
- Dermauw, W.; Van Leeuwen, T. The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 2014, 45, 89–110. [Google Scholar] [CrossRef]
- Wu, C.; Chakrabarty, S.; Jin, M.; Liu, K.; Xiao, Y. Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity. Int. J. Mol. Sci. 2019, 20, 2829. [Google Scholar] [CrossRef]
- Chen, J.; Duan, Y.; Zhou, Y.; Yang, Q. Squeeze pumping of lipids and insecticides by ABCH transporter. Cell 2025, 188, 944–957.e19. [Google Scholar] [CrossRef] [PubMed]
- Borycz, J.; Borycz, J.A.; Kubow, A.; Lloyd, V.; Meinertzhagen, I.A. Drosophila ABC transporter mutants white, brown and scarle altered contents and distribution of biogenic amines in the brain. J. Exp. Biol. 2008, 211, 3454–3466. [Google Scholar] [CrossRef]
- Yan, Y.; Ziemek, J.; Schetelig, M.F. CRISPR/Cas9 mediated disruption of the white gene leads to pigmentation deficiency and copulation failure in Drosophila suzukii. J. Insect Physiol. 2020, 126, 104091. [Google Scholar] [CrossRef] [PubMed]
- ter Beek, J.; Guskov, A.; Slotboom, D.J. Structural diversity of ABC transporters. J. Gen. Physiol. 2014, 143, 419–435. [Google Scholar] [CrossRef]
- Dean, M.; Hamon, Y.; Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 2001, 42, 1007–1017. [Google Scholar] [CrossRef]
- Adedipe, F.; Grubbs, N.; Coates, B.; Wiegmman, B.; Lorenzen, M. Structural and functional insights into the Diabrotica virgifera virgifera ATP-binding cassette transporter gene family. BMC Genom. 2019, 20, 899. [Google Scholar] [CrossRef]
- Broehan, G.; Kroeger, T.; Lorenzen, M.; Merzendorfer, H. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genom. 2013, 14, 6. [Google Scholar] [CrossRef]
- Denecke, S.; Rankić, I.; Driva, O.; Kalsi, M.; Luong, N.B.H.; Buer, B.; Nauen, R.; Geibel, S.; Vontas, J. Comparative and functional genomics of the ABC transporter superfamily across arthropods. BMC Genom. 2021, 22, 553. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Zhao, X.; Liu, X.; Ma, E.; Moussian, B.; Zhang, J. The ABC transporte ABCH-9C is needed for cuticle barrier construction in Locusta migratoria. Insect Biochem. Mol. Biol. 2017, 87, 90–99. [Google Scholar] [CrossRef]
- Zuber, R.; Norum, M.; Wang, Y.; Oehl, K.; Gehring, N.; Accardi, D.; Bartozsewski, S.; Berger, J.; Flötenmeyer, M.; Moussian, B. The ABC transporter Snu and the extracellular protein Snsl cooperate in the formation of the lipid-based inward and outward barrier in the skin of Drosophila. Eur. J. Cell Biol. 2018, 97, 90–101. [Google Scholar] [CrossRef]
- Guo, Z.; Kang, S.; Zhu, X.; Xia, J.; Wu, Q.; Wang, S.; Xie, W.; Zhang, Y. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management. Sci. Rep. 2015, 5, srep13728. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liao, M.; Yang, Q.; Xiao, J.; Hu, Z.; Zhou, L.; Cao, H. Transcriptome profiling reveals differential gene expression of detoxification enzymes in Sitophilus zeamais responding to terpinen-4-ol fumigation. Pestic. Biochem. Physiol. 2018, 149, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Rösner, J.; Tietmeyer, J.; Merzendorfer, H. Functional analysis of ABCG and ABCH transporters from the red flour beetle, Tribolium castaneum. Pest Manag. Sci. 2021, 77, 2955–2963. [Google Scholar] [CrossRef] [PubMed]
- Kefi, M.; Balabanidou, V.; Sarafoglou, C.; Charamis, J.; Lycett, G.; Ranson, H.; Gouridis, G.; Vontas, J. ABCH2 transporter mediates deltamethrin uptake and toxicity in the malaria vector Anopheles coluzzii. PLoS Pathog. 2023, 19, e1011226. [Google Scholar] [CrossRef]
- Blomquist, G.J.; Tittiger, C.; MacLean, M.; Keeling, C.I. Cytochromes P450: Terpene detoxification and pheromone production in bark beetles. Curr. Opin. Insect Sci. 2021, 43, 97–102. [Google Scholar] [CrossRef]
- Cano-Ramírez, C.; López, M.F.; Cesar-Ayala, A.K.; Pineda-Martínez, V.; Sullivan, B.T.; Zúñiga, G. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes. Gene 2013, 520, 47–63. [Google Scholar] [CrossRef]
- López, M.F.; Cano-Ramírez, C.; Cesar-Ayala, A.K.; Ruiz, E.A.; Zúñiga, G. Diversity and expression of P450 genes from Dendroctonus valens LeConte (Curculionidae: Scolytinae) in response to different kairomones. Insect Biochem. Mol. Biol. 2013, 43, 417–432. [Google Scholar] [CrossRef]
- Liu, B.; Fu, D.; Gao, H.; Ning, H.; Sun, Y.; Chen, H.; Tang, M. Cloning and Expression of the Neuropeptide F and Neuropeptide F Receptor Genes and Their Regulation of Food Intake in the Chinese White Pine Beetle Dendroctonus armandi. Front. Physiol. 2021, 12, 662651. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fu, D.; Ning, H.; Tang, M.; Chen, H. Knockdown of CYP6CR2 and CYP6DE5 reduces tolerance to host plant allelochemicals in the Chinese white pine beetle Dendroctonus armandi. Pestic. Biochem. Physiol. 2022, 187, 105180. [Google Scholar] [CrossRef] [PubMed]
- Combet, C.; Blanchet, C.; Geourjon, C.; Deléage, G. NPS@: Network protein sequence analysis. Trends Biochem. Sci. 2000, 25, 147–150. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hawthorne, D.J.; Dively, G.P. Killing Them with Kindness? In-Hive Medications May Inhibit Xenobiotic Efflux Transporters and Endanger Honey Bees. PLoS ONE 2011, 6, e26796. [Google Scholar] [CrossRef]
- Rösner, J.; Merzendorfer, H. Transcriptional plasticity of different ABC transporter genes from Tribolium castaneum contributes to diflubenzuron resistance. Insect Biochem. Mol. Biol. 2020, 116, 103282. [Google Scholar] [CrossRef]
- Porretta, D.; Gargani, M.; Bellini, R.; Medici, A.; Punelli, F.; Urbanelli, S. Defence mechanisms against insecticides temephos and diflubenzuron in the mosquito Aedes caspius: The P-glycoprotein efflux pumps. Med. Vet. Entomol. 2008, 22, 48–54. [Google Scholar] [CrossRef]
- Guan, D.; Yang, X.; Jiang, H.; Zhang, N.; Wu, Z.; Jiang, C.; Shen, Q.; Qian, K.; Wang, J.; Meng, X. Identification and Validation of ATP-Binding Cassette Transporters Involved in the Detoxification of Abamectin in Rice Stem Borer, Chilo suppressalis. J. Agric. Food Chem. 2022, 70, 4611–4619. [Google Scholar] [CrossRef]
- Meng, X.; Yang, X.; Wu, Z.; Shen, Q.; Miao, L.; Zheng, Y.; Qian, K.; Wang, J. Identification and transcriptional response of ATP-binding cassette transporters to chlorantraniliprole in the rice striped stem borer, Chilo suppressalis. Pest Manag. Sci. 2020, 76, 3626–3635. [Google Scholar] [CrossRef]
- Tian, L.; Song, T.; He, R.; Zeng, Y.; Xie, W.; Wu, Q.; Wang, S.; Zhou, X.; Zhang, Y. Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci. BMC Genom. 2017, 18, 330. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tian, F.; Cai, L.; Zhang, J.; Liu, J.; Zeng, X. Identification of candidate ATP-binding cassette transporter gene family members in Diaphorina citr (Hemiptera: Psyllidae) via adult tissues transcriptome analysis. Sci. Rep. 2019, 9, 15842. [Google Scholar] [CrossRef] [PubMed]
- Hull, J.J.; Chaney, K.; Geib, S.M.; Fabrick, J.A.; Brent, C.S.; Walsh, D.; Lavine, L.C. Transcriptome-Based Identification of ABC Transporters in the Western Tarnished Plant Bug Lygus hesperus. PLoS ONE 2014, 9, e113046. [Google Scholar] [CrossRef] [PubMed]
- Sheps, J.A.; Ralph, S.; Zhao, Z.Y.; Baillie, D.L.; Ling, V. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol. 2004, 5, R15. [Google Scholar] [CrossRef]
- Annilo, T.; Chen, Z.-Q.; Shulenin, S.; Costantino, J.; Thomas, L.; Lou, H.; Stefanov, S.; Dean, M. Evolution of the vertebrate ABC gene family: Analysis of gene birth and death. Genomics 2006, 88, 1–11. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.; Liu, Z. Genome-Wide Identification, Characterization and Phylogenetic Analysis of 50 Catfish ATP-Binding Cassette (ABC) Transporter Genes. PLoS ONE 2013, 8, e63895. [Google Scholar] [CrossRef]
- Jeong, C.-B.; Kim, B.-M.; Kang, H.-M.; Choi, I.-Y.; Rhee, J.-S.; Lee, J.-S. Marine medaka ATP-binding cassette (ABC) superfamily and new insight into teleost Abch nomenclature. Sci. Rep. 2015, 5, srep15409. [Google Scholar] [CrossRef]
- Yang, Y.; Duan, A.; Zhang, C.; Zhang, Y.; Wang, A.; Xue, C.; Wang, H.; Zhao, M.; Zhang, J. Overexpression of ATP-binding cassette transporters ABCG10, ABCH3 and ABCH4 in Aphis craccivora (Koch) facilitates its tolerance to imidacloprid. Pestic. Biochem. Physiol. 2022, 186, 105170. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wei, D.-D.; Xu, H.-Q.; Yang, Y.; Miao, Z.-Q.; Wang, L.; Wang, J.-J.; Geib, S. Molecular Characterization and Transcriptional Expression Analysis of ABC Transporter H Subfamily Genes in the Oriental Fruit Fly. J. Econ. Entomol. 2021, 114, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Liu, S.; Wang, S.; Jiang, R.-J.; Li, S. Hormonal and nutritional regulation of insect fat body development and function. Arch. Insect Biochem. Physiol. 2009, 71, 16–30. [Google Scholar] [CrossRef]
- Dow, J.A.T.; Davies, S.A. The Malpighian tubule: Rapid insights from post-genomic biology. J. Insect Physiol. 2006, 52, 365–378. [Google Scholar] [CrossRef]
- Schmidt, L.; Wielsch, N.; Wang, D.; Boland, W.; Burse, A. Tissue-specific profiling of membrane proteins in the salicin sequestering juveniles of the herbivorous leaf beetle, Chrysomela populi. Insect Biochem. Mol. Biol. 2019, 109, 81–91. [Google Scholar] [CrossRef]
- Gerber, L.; Overgaard, J. Cold tolerance is linked to osmoregulatory function of the hindgut in Locusta migratoria. J. Exp. Biol. 2018, 221, jeb173930. [Google Scholar] [CrossRef]
- He, X.; Hao, Z.; Li, H.; Xu, T.; Chen, R.; Xia, X.; Li, S.; Hao, D. Transcriptome profiling and RNA interference reveals relevant detoxification genes in Monochamus alternatus response to (+)-α-pinene. J. Appl. Entomol. 2022, 146, 823–837. [Google Scholar] [CrossRef]








| Gene Name | GenBank Accession No. | ORF (bp) | Amino Acid Size | Topology | MW (KDa) | pI | Phospho-Rylation Sites (Ser/Thr/Tyr) | N-Glycosy-Lation Site | O-Glycosyl-Ation Site | Secondary Structure (α-Helix/β-Turn/Extended Strand/Random Coil)/% |
|---|---|---|---|---|---|---|---|---|---|---|
| DaABCH1 | PV659137 | 2334 | 777 | NBD-7TM | 85.94 | 7.22 | 35/18/5 | 9 | 13 | 40.22/5.20/29.87/24.71 |
| DaABCH2 | PV659138 | 2133 | 710 | NBD-5TM | 79.36 | 7.81 | 32/24/7 | 6 | 2 | 40.82/5.42/28.34/24.42 |
| DaABCH3 | PV659139 | 2286 | 761 | NBD-5TM | 84.43 | 6.12 | 45/23/7 | 4 | 12 | 39.57/6.56/26.97/26.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhu, J.; Ning, X. Transcriptional Response of ABCH Transporter Genes to Host Allelochemicals in Dendroctonus armandi and Their Functional Analysis. Insects 2025, 16, 1075. https://doi.org/10.3390/insects16111075
Liu B, Zhu J, Ning X. Transcriptional Response of ABCH Transporter Genes to Host Allelochemicals in Dendroctonus armandi and Their Functional Analysis. Insects. 2025; 16(11):1075. https://doi.org/10.3390/insects16111075
Chicago/Turabian StyleLiu, Bin, Jinrui Zhu, and Xiaoman Ning. 2025. "Transcriptional Response of ABCH Transporter Genes to Host Allelochemicals in Dendroctonus armandi and Their Functional Analysis" Insects 16, no. 11: 1075. https://doi.org/10.3390/insects16111075
APA StyleLiu, B., Zhu, J., & Ning, X. (2025). Transcriptional Response of ABCH Transporter Genes to Host Allelochemicals in Dendroctonus armandi and Their Functional Analysis. Insects, 16(11), 1075. https://doi.org/10.3390/insects16111075

