Selection Behavior of the Beet Armyworm, Spodoptera exigua (Hübner) Between Bt Maize and Conventional Maize Plants
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Maize Materials
2.2. Laboratory Choice Test on Feeding Preference of Spodoptera exigua Larvae to Bt and Non-Bt Maize Leaves
- (a)
- Continuous feeding on single-type maize leaves: Each assay was conducted in a 20 cm diameter Petri dish lined with moistened filter paper divided into eight identical sectors. Eight leaf discs of the same maize type (Bt or non-Bt), each 2.5 cm in diameter, were evenly spaced along the dish perimeter (for 5th instar larvae, each position contained two overlapping discs, totaling 16 discs). After a 6 h starvation period, larvae from 1st to 5th instar were released into the center of the dish (20 larvae for 1st–3rd instars; 5 larvae for 4th–5th instars). The dish was covered with a double-layered black cotton cloth to ensure darkness and then placed in a climate chamber at 26 ± 1 °C, 60% ± 10% RH, with a photoperiod of 16 L/8 D. Larval positions and survival were recorded at 1, 2, 4, 6, 8, 10, 12, 24, 36, and 48 h post-release. The percentage of larvae observed feeding on maize leaves at each time point was calculated to evaluate feeding preference. Each treatment was replicated eight times. After 48 h, the leaf consumption area was measured using a transparent 1 mm × 1 mm grid film.
- (b)
- Continuous feeding choice test with alternating Bt and non-Bt leaves: A 20 cm diameter Petri dish was lined with moistened filter paper divided into eight equal sectors. Eight leaf discs (2.5 cm in diameter), alternating between Bt and non-Bt maize, were placed at equal intervals along the perimeter (for 5th instar larvae, each position contained two overlapping discs, totaling 16 discs). The outer edge of each sector was marked to indicate whether the leaf was from Bt or non-Bt maize. Larvae were released at the center of the dish, and rearing conditions and observation time points were identical to those described in experiment (a). Each treatment was replicated eight times. After 48 h, the area of leaf tissue consumed from Bt and non-Bt maize was measured separately.
2.3. Laboratory Assay of Oviposition Preference of Spodoptera exigua Adults for Bt and Non-Bt Maize Plants
2.4. Feeding, Dispersal, and Oviposition Behavior of Spodoptera exigua in Bt Maize Fields Under Different Seed-Mixture Refuge Patterns
2.5. Statistical Analysis
3. Results
3.1. Laboratory Choice Test on Feeding Preference of Spodoptera exigua Larvae to Bt and Non-Bt Maize Leaves
3.2. Laboratory Assay of Oviposition Preference of Spodoptera exigua Adults on Bt and Non-Bt Maize Plants
3.3. Feeding, Dispersal, and Oviposition Behavior of Spodoptera exigua in Bt Maize Fields Under Different Seed-Mixture Refuge Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, J.W. Notes on the biology of Laphygma exigua Hübner. Fla. Entomol. 1932, 16, 33–39. [Google Scholar] [CrossRef]
- Smits, P.H.; Van Velden, M.C.; Van De Vrie, M.; Vlak, J.M. Feeding and dispersion of Spodoptera exigua larvae and its relevance for control with a nuclear polyhedrosis virus. Entomol. Exp. Appl. 1987, 43, 67–72. [Google Scholar] [CrossRef]
- Luo, L.Z.; Cao, Y.Z.; Jiang, X.F. Occurrence characteristics and trend analysis of beet armyworm. Plant Prot. 2000, 26, 37–39. [Google Scholar]
- Mikkola, K. The Interpretation of Long-Range Migrations of Spodoptera exigua Hb. (Lepidoptera: Noctuidae). J. Anim. Ecol. 1970, 39, 593–598. [Google Scholar] [CrossRef]
- Ehler, L.E. An evaluation of some natural enemies of Spodoptera exigua on sugarbeet in northern California. Biocontrol 2004, 49, 121–135. [Google Scholar] [CrossRef]
- Zhang, L.S.; Chang, H.H.; Jin, Z.T.; Zhang, Y.F.; Wang, X.M.; Ba, X.C.; Tian, X.H. The effect of intercropping soybeans and maize on frequency of occurrence of major pests. Chin. J. Appl. Entomol. 2024, 61, 864–870. [Google Scholar]
- Wang, H.M.; Xie, X.H.; Yang, T.J.; Sun, Y.F.; Xu, J.H.; Lao, Y.H.; Li, L.X. Occurrence characteristics and green control techniques of pests, diseases and weeds in soybean and maize strip intercropping in the Yellow River Delta. China Plant. Prot. 2023, 43, 65–69. [Google Scholar]
- Su, J.Y.; Sun, X.X. High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province, China. Crop Prot. 2014, 61, 58–63. [Google Scholar] [CrossRef]
- Hafeez, M.; Ullah, F.; Khan, M.M.; Li, X.; Zhang, Z.; Shah, S.; Imran, M.; Assiri, M.A.; Fernández-Grandon, G.M.; Desneux, N.; et al. Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: A review. Environ. Sci. Pollut. Res. Int. 2022, 29, 1746–1762. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Reisig, D.D. Management of insect pests with Bt crops in the United States. Annu. Rev. Entomol. 2023, 68, 31–49. [Google Scholar] [CrossRef]
- Brookes, G.; Barfoot, P. Environmental impacts of genetically modified (GM) crop use 1996–2018: Impacts on pesticide use and carbon emissions. GM Crop. Food 2020, 11, 215–241. [Google Scholar] [CrossRef]
- Dively, G.P.; Venugopal, P.D.; Bean, D.; Whalen, J.; Holmstrom, K.; Kuhar, T.P.; Doughty, H.B.; Patton, T.; Cissel, W.; Hutchison, W.D. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Natl. Acad. Sci. USA 2018, 115, 3320–3325. [Google Scholar] [CrossRef]
- Li, M.L.; Yang, L.; Jia, S.S.; Kang, S.Y.; Yang, Y.Z.; Lu, Y.H. Effects of Bt-cotton cultivation on Helicoverpa armigera activity-density in agricultural landscapes in northwestern China. Pest Manag. Sci. 2025, 81, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Siebert, M.W.; Nolting, S.P.; Hendrix, W.; Dhavala, S.; Craig, C.; Leonard, B.R.; Stewart, S.D.; All, J.; Musser, F.R.; Buntin, G.D.; et al. Evaluation of corn hybrids expressing Cry1F, cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests. J. Econ. Entomol. 2012, 105, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Wang, W.; Shen, Z.C.; Ye, G.Y. Evaluation of transgenic cry1Ab/cry2Aj and cry1Ab/vip3DA maize events for their resistance to Helicoverpa armigera, Spodoptera exigua and Prodenia litura. J. Plant Prot. 2016, 43, 951–957. [Google Scholar]
- Song, C.; Yang, X.M.; He, L.M.; Wang, W.H.; Wu, K.M. Control efficacy of the Bt maize event DBN3601T expressing Cry1Ab and Vip3Aa proteins against Beet armyworm, Spodoptera exigua (Hübner), in China. Plants 2024, 13, 1933. [Google Scholar] [CrossRef]
- Gould, F. Testing Bt refuge strategies in the field. Nat. Biotechnol. 2000, 18, 266–267. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Fabrick, J.A.; Carrière, Y. Global Patterns of Insect Resistance to Transgenic Bt Crops: The First 25 Years. J. Econ. Entomol. 2023, 116, 648. [Google Scholar] [CrossRef]
- Storer, N.P.; Babcock, J.M.; Schlenz, M.; Meade, T.; Thompson, G.D.; Bing, J.W.; Huckaba, R.M. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 2010, 103, 1031–1038. [Google Scholar] [CrossRef]
- Hutchison, W.D.; Burkness, E.C.; Mitchell, P.D.; Moon, R.D.; Leslie, T.W.; Fleischer, S.J.; Abrahamson, M.; Hamilton, K.L.; Steffey, K.L.; Gray, M.E.; et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 2010, 330, 222–225. [Google Scholar] [CrossRef]
- Carrière, Y.; Fabrick, J.A.; Tabashnik, B.E. Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol. 2016, 34, 291–302. [Google Scholar] [CrossRef]
- Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 1998, 43, 701–726. [Google Scholar] [CrossRef] [PubMed]
- Mallet, J.; Porter, P. Preventing insect adaptation to insect-resistant crops: Are seed mixtures or refugia the best strategy? Proc. R. Soc. Lond. 1992, 250, 165–169. [Google Scholar]
- Vélez, A.M.; Alves, A.P.; Blankenship, E.E.; Siegfried, B.D. Effect of Cry1F maize on the behavior of susceptible and resistant Spodoptera frugiperda and Ostrinia nubilalis. Entomol. Exp. Appl. 2016, 159, 37–45. [Google Scholar] [CrossRef]
- Montezano, D.G.; Hunt, T.E.; Colombo Da Luz, P.M.; Karnik, K.; Kachman, S.D.; Vélez, A.M.; Peterson, J.A. Movement of Striacosta albicosta (Smith) (Lepidoptera: Noctuidae) larvae on transgenic Bt and non-Bt maize. Insects 2023, 14, 524. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, W.; Liu, H.; Zhang, A.J.; Ai, C.R.; Zhou, S.S.; Zhou, C.X.; Wang, M.Q. Transgenic Bt rice does not challenge host preference of the target pest of rice leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). PLoS ONE 2013, 8, e79032. [Google Scholar] [CrossRef]
- Lei, Z.; Liu, T.X.; Greenberg, S.M. Feeding, oviposition and survival of Liriomyza trifolii (Diptera: Agromyzidae) on Bt and non-Bt cottons. Bull. Entomol. Res. 2009, 99, 253–261. [Google Scholar] [CrossRef]
- Jiao, Y.Y.; Hu, X.Y.; Peng, Y.F.; Wu, K.M.; Romeis, J.; Li, Y.H. Bt rice plants may protect neighbouring non-Bt rice plants against the striped stem borer, Chilo suppressalis. Proc. Biol. Sci. 2018, 285, 20181283. [Google Scholar] [CrossRef]
- Yactayo-Chang, J.P.; Mendoza, J.; Willms, S.D.; Rering, C.C.; Beck, J.J.; Block, A.K. Zea mays volatiles that influence oviposition and feeding behaviors of Spodoptera frugiperda. J. Chem. Ecol. 2021, 47, 799–809. [Google Scholar] [CrossRef]
- Téllez-Rodríguez, P.; Raymond, B.; Morán-Bertot, I.; Rodríguez-Cabrera, L.; Wright, D.J.; Borroto, C.G.; Ayra-Pardo, C. Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance. BMC Biol. 2014, 12, 1741–7007. [Google Scholar] [CrossRef]
- Gonçalves, J.; Rodrigues, J.V.C.; Santos-Amaya, O.F.; Paula-Moraes, S.V.; Pereira, E.J.G. The oviposition behavior of fall armyworm moths is unlikely to compromise the refuge strategy in genetically modified Bt crops. J. Pest Sci. 2020, 93, 965–977. [Google Scholar] [CrossRef]
- Zhang, J.H.; Wang, C.Z.; Qin, J.D.; Guo, S.D. Feeding behaviour of Helicoverpa armigera larvae on insect-resistant transgenic cotton and non-transgenic cotton. J. Appl. Entomol. 2004, 128, 218–225. [Google Scholar] [CrossRef]
- Visser, A.; Du Plessis, H.; Erasmus, A.; Van Den Berg, J. Plant abandonment by Busseola fusca (Lepidoptera: Noctuidae) larvae: Do Bt toxins have an effect? Insects 2020, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Stapel, J.O.; Waters, D.J.; Ruberson, J.R.; Lewis, W.J. Development and behavior of Spodoptera exigua (Lepidoptera: Noctuidae) larvae in choice tests with food substrates containing toxins of Bacillus thuringiensis. Biol. Control 1998, 11, 29–37. [Google Scholar] [CrossRef]
- Liang, G.M.; Tan, W.J.; Guo, Y.Y. Improvement of artificial rearing technique of Helicoverpa armigera. Plant Prot. 1999, 25, 15–17. [Google Scholar]
- Tang, Q.B.; Wang, C.Z. Leaf disc test used in caterpillar feeding preference study. Chin. Bull. Entomol. 2007, 44, 912–915. [Google Scholar]
- Williams, W.P.; Buckley, P.M.; Daves, C.A. Identifying resistance in corn to southwestern corn borer (Lepidoptera: Crambidae), fall armyworm (Lepidoptera: Noctuidae), and corn earworm (Lepidoptera: Noctuidae). J. Agr. Urban Entomol. 2006, 23, 87–95. [Google Scholar]
- Cong, S.B.; Xu, D.; Yang, N.N.; Wang, L.; Wang, J.T.; Liu, W.G.; Wan, P. Effects of stacked genetically modified cotton on the feeding behavior and nutrient metabolism of Spodoptera litura larvae. Plant Prot. 2022, 48, 104–110. [Google Scholar]
- Razze, J.M.; Mason, C.E.; Pizzolato, T.D. Feeding behavior of neonate Ostrinia nubilalis (Lepidoptera: Crambidae) on Cry1Ab Bt corn: Implications for resistance management. J. Econ. Entomol. 2011, 104, 806–813. [Google Scholar] [CrossRef]
- Zhu, H.P.; Song, X.Y.; Zhang, M.; Yu, Z.; Cong, B. Feeding behavior of Ostrinia furnacalis larvae on transgenic corn with insect-resistant and herbicide-resistant traits. J. Shenyang Agric. Univ. 2010, 41, 206–209. [Google Scholar]
- García, M.; Ortego, F.; Hernández-Crespo, P.; Farinós, G.P.; Castañera, P. Inheritance, fitness costs, incomplete resistance and feeding preferences in a laboratory-selected MON810-resistant strain of the true armyworm Mythimna unipuncta. Pest Manag. Sci. 2015, 71, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.H.; Zhao, Q.J.; Lv, B.Q.; Wen, H.B.; Jin, Q.; Peng, Z.Q.; Yi, K.X.; Zhang, C.H. Crawling capability of immature Helicoverpa armigera and Prodenia litura feeding on the Bt protein. Chin. J. Trop. Crops 2014, 35, 1409–1415. [Google Scholar]
- Chakrabarty, S.; Jin, M.H.; Wu, C.; Chakraborty, P.; Xiao, Y.T. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera. Pest Manag. Sci. 2020, 76, 1612–1617. [Google Scholar] [CrossRef] [PubMed]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef]
- Zhang, H.J.; Faucher, C.P.; Anderson, A.; Berna, A.Z.; Trowell, S.; Chen, Q.M.; Xia, Q.Y.; Chyb, S. Comparisons of contact chemoreception and food acceptance by larvae of polyphagous Helicoverpa armigera and oligophagous Bombyx mori. J. Chem. Ecol. 2013, 39, 1070–1080. [Google Scholar] [CrossRef]
- Sun, L.L.; Hou, W.H.; Zhang, J.J.; Dang, Y.L.; Yang, Q.Y.; Zhao, X.C.; Ma, Y.; Tang, Q.B. Plant metabolites drive different responses in caterpillars of two closely related Helicoverpa species. Front. Physiol. 2021, 12, 662978. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Mason, C.E.; Pesek, J. Dispersal and movement behavior of neonate European corn borer (Lepidoptera: Crambidae) on non-Bt and transgenic Bt corn. J. Econ. Entomol. 2010, 103, 331–339. [Google Scholar] [CrossRef]
- Li, Y.P.; Yao, S.Y.; Feng, D.; Haack, R.A.; Yang, Y.; Hou, J.L.; Ye, H. Dispersal behavior characters of Spodoptera frugiperda larvae. Insects 2023, 14, 488. [Google Scholar] [CrossRef]
- Bilbo, T.R.; Reay-Jones, F.P.; Reisig, D.D.; Greene, J.K.; Turnbull, M.W. Development, survival, and feeding behavior of Helicoverpa zea (Lepidoptera: Noctuidae) relative to Bt protein concentrations in corn ear tissues. PLoS ONE 2019, 14, e0221343. [Google Scholar] [CrossRef]
- Calatayud, P.-A.; Le Ru, B.P.; Van Den Berg, J.; Schulthess, F. Ecology of the African maize stalk borer, Busseola fusca (Lepidoptera: Noctuidae) with special reference to insect-plant interactions. Insects 2014, 5, 539–563. [Google Scholar] [CrossRef]
- Knolhoff, L.M.; Heckel, D.G. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu. Rev. Entomol. 2014, 59, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.X.; Cui, S.S.; Yang, L.M.; Fang, Z.Y.; Liu, Y.M.; Zhuang, M.; Zhang, Y.Y. Influences of Cry1Ac broccoli on larval survival and oviposition of diamondback moth. J. Insect Sci. 2015, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Luong, T.T.A.; Downes, S.J.; Cribb, B.; Perkins, L.E.; Zalucki, M.P. Oviposition site selection and survival of susceptible and resistant larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) on Bt and non-Bt cotton. Bull. Entomol. Res. 2016, 106, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Liu, Y.; Guo, M.B.; Sun, D.D.; Zhang, M.J.; Chu, X.; Berg, B.G.; Wang, G.R. A female-specific odorant receptor mediates oviposition deterrence in the moth Helicoverpa armigera. Curr. Biol. 2024, 34, 1–11.E4. [Google Scholar] [CrossRef]
- De Moraes, C.M.; Mescher, M.C.; Tumlinson, J.H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 2001, 410, 577–580. [Google Scholar] [CrossRef]
- He, L.M.; Zhao, S.Y.; Gao, X.W.; Wu, K.M. Ovipositional responses of Spodoptera frugiperda on host plants provide a basis for using Bt-transgenic maize as trap crop in China. J. Integr. Agric. 2021, 20, 804–814. [Google Scholar] [CrossRef]
- Shelton, A.M.; Badenes-Perez, F.R. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 2006, 51, 285–308. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Yang, X.M.; Liu, D.Z.; Sun, X.X.; Li, G.P.; Wu, K.M. Performance of the domestic Bt corn event expressing pyramided Cry1Ab and Vip3Aa19 against the invasive Spodoptera frugiperda (J. E. Smith) in China. Pest Manag. Sci. 2023, 79, 1018–1029. [Google Scholar] [CrossRef]
- Conchou, L.; Lucas, P.; Meslin, C.; Proffit, M.; Staudt, M.; Renou, M. Insect odorscapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 2019, 10, 972. [Google Scholar] [CrossRef]
- Party, V.; Hanot, C.; Büsser, D.S.; Rochat, D.; Renou, M. Changes in odor background affect the locomotory response to pheromone in moths. PLoS ONE 2013, 8, e52897. [Google Scholar] [CrossRef]
- Tang, J.D.; Collins, H.L.; Metz, T.D.; Earle, E.D.; Zhao, J.Z.; Roush, R.T.; Shelton, A.M. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J. Econ. Entomol. 2001, 94, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Kerns, D.L.; Head, G.P.; Price, P.A.; Levy, R.; Niu, Y.; Huang, F.N. Extended evaluation of Bt protein cross-pollination in seed blend plantings on survival, growth, and development of Helicoverpa zea feeding on refuge ears. Pest Manag. Sci. 2020, 76, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Heuberger, S.; Crowder, D.W.; Brévault, T.; Tabashnik, B.E.; Carrière, Y. Modeling the effects of plant-to-plant gene flow, larval behavior, and refuge size on pest resistance to Bt cotton. Environ. Entomol. 2011, 40, 484–495. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Clarke, A.R.; Malcolm, S.B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 2002, 47, 361–393. [Google Scholar] [CrossRef]
- Wangila, D.S.; Leonard, B.R.; Ghimire, M.N.; Bai, Y.Y.; Zhang, L.P.; Yang, Y.L.; Emfinger, K.D.; Head, G.P.; Yang, F.; Niu, Y. Occurrence and larval movement of Diatraea saccharalis (Lepidoptera: Crambidae) in seed mixes of non-Bt and Bt pyramid corn. Pest Manag. Sci. 2013, 69, 1163–1172. [Google Scholar] [CrossRef]
- Malaquias, J.B.; Godoy, W.A.; Garcia, A.G.; Ramalho, F.D.S.; Omoto, C. Larval dispersal of Spodoptera frugiperda strains on Bt cotton: A model for understanding resistance evolution and consequences for its management. Sci. Rep. 2017, 7, 16109. [Google Scholar] [CrossRef]
- Kang, G.D.; Yang, X.M.; Zhang, H.W.; Huang, Y.F.; Sun, Y.H.; Liang, G.M.; Wu, K.M. Refuge strategies for managing resistance to Bt maize in fall armyworm in smallholder farming systems: A case study from China. J. Pest Sci. 2025, 98, 1551–1566. [Google Scholar] [CrossRef]
- Caprio, M.A. Source-sink dynamics between transgenic and non-transgenic habitats and their role in the evolution of resistance. J. Econ. Entomol. 2001, 94, 698–705. [Google Scholar] [CrossRef]
- Cheng, X.R.; Li, H.H.; Tang, Q.L.; Zhang, H.W.; Liu, T.; Wang, Y.H. Trends in the global commercialization of genetically modified crops in 2023. J. Integr. Agric. 2024, 23, 3943–3952. [Google Scholar] [CrossRef]
Treatment | Mean Dispersal Distances | Maximum Dispersal Distances | ||
---|---|---|---|---|
Fitted Equation | R2 | Fitted Equation | R2 | |
0% (Pure Bt maize) | y = 0.450 + 1.264x − 0.132x2 | 0.448 | y = 11.210 + 8.427x − 0.967x2 | 0.454 |
5% Seed-mixture | y = 4.116 + 0.211x − 0.066x2 | 0.493 | y = 37.560 − 0.146x − 0.378x2 | 0.704 |
10% Seed-mixture | y = −1.340 + 2.803x − 0.233x2 | 0.508 | y = −7.415 + 18.290x − 1.653x2 | 0.469 |
20% Seed-mixture | y = −4.845 + 4.010x − 0.157x2 | 0.908 | y = −2.583 + 16.020x − 0.935x2 | 0.812 |
100% (Pure non-Bt maize) | y = −7.799 + 6.805x − 0.304x2 | 0.918 | y = 12.720 + 17.760x − 1.061x2 | 0.874 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Yang, X.; Kang, G.; He, L.; Wang, W.; Han, X.; Xie, Y.; Wu, K. Selection Behavior of the Beet Armyworm, Spodoptera exigua (Hübner) Between Bt Maize and Conventional Maize Plants. Insects 2025, 16, 1059. https://doi.org/10.3390/insects16101059
Song C, Yang X, Kang G, He L, Wang W, Han X, Xie Y, Wu K. Selection Behavior of the Beet Armyworm, Spodoptera exigua (Hübner) Between Bt Maize and Conventional Maize Plants. Insects. 2025; 16(10):1059. https://doi.org/10.3390/insects16101059
Chicago/Turabian StyleSong, Cheng, Xianming Yang, Guodong Kang, Limei He, Wenhui Wang, Xiang Han, Yujiao Xie, and Kongming Wu. 2025. "Selection Behavior of the Beet Armyworm, Spodoptera exigua (Hübner) Between Bt Maize and Conventional Maize Plants" Insects 16, no. 10: 1059. https://doi.org/10.3390/insects16101059
APA StyleSong, C., Yang, X., Kang, G., He, L., Wang, W., Han, X., Xie, Y., & Wu, K. (2025). Selection Behavior of the Beet Armyworm, Spodoptera exigua (Hübner) Between Bt Maize and Conventional Maize Plants. Insects, 16(10), 1059. https://doi.org/10.3390/insects16101059