Fitness Trade-Offs and Potential Metabolic Resistance Mechanisms in Geographically Distinct Strains of Trichogramma dendrolimi: Implications for Imidacloprid Resistance Management
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Reagent
2.2. Toxicity Bioassay of Imidacloprid in Trichogramma Dendrolimi
2.3. Biological Assays of Trichogramma Dendrolimi
2.4. RNA Extraction and cDNA Library Construction
2.5. Illumina Sequencing, Assembly, and Annotation
2.6. Differential Expression Analysis and RT-qPCR Validation
2.7. Data Analysis
3. Results
3.1. Toxicity Bioassay
3.2. Biological Assays
3.3. Transcriptome Overview
3.4. RT-qPCR Validation
4. Discussion
4.1. Toxicity Bioassay and Resistance Variability Among Geographic Strains
4.2. Biological Trade-Offs Associated with Resistance
4.3. Transcriptomic Insights into Resistance Mechanisms
4.4. Implications for Resistance Management and Biological Control
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barathi, S.; Sabapathi, N.; Kandasamy, S.; Lee, J. Present status of insecticide impacts and eco-friendly approaches for remediation-a review. Environ. Res. 2024, 240, 117432. [Google Scholar] [CrossRef]
- Spinozzi, E.; Zeni, V.; Di Giovanni, F.; Marmugi, M.; Baldassarri, C.; Mazzara, E.; Ferrati, M.; Ricciardi, R.; Canale, A.; Lucchi, A.; et al. Aniseed, Pimpinella anisum, as a source of new agrochemicals: Phytochemistry and insights on insecticide and acaricide development. Agric. Commun. 2023, 1, 100003. [Google Scholar] [CrossRef]
- Zuščíková, L.; Bažány, D.; Greifová, H.; Knížatová, N.; Kováčik, A.; Lukáč, N.; Jambor, T. Screening of toxic effects of neonicotinoid insecticides with a focus on acetamiprid: A review. Toxics 2023, 11, 598. [Google Scholar] [CrossRef]
- Haddi, K.; Turchen, L.M.; Viteri Jumbo, L.O.; Guedes, R.N.; Pereira, E.J.; Aguiar, R.W.; Oliveira, E.E. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 2020, 76, 2286–2293. [Google Scholar] [CrossRef] [PubMed]
- Paspati, A.; Karakosta, E.; Balanza, V.; Rodríguez-Gómez, A.; Grávalos, C.; Cifuentes, D.; Koukaki, A.; Stavrakaki, M.; Roditakis, E.; Bielza, P.; et al. Effects of novel and commercial phytochemicals on beneficial arthropods. Crop Prot. 2023, 174, 106381. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhang, X.; Zang, L.S.; Du, W.M.; Hou, Y.Y.; Ruan, C.C.; Desneux, N. Advantages of diapause in Trichogramma dendrolimi mass production on eggs of the Chinese silkworm, Antheraea pernyi. Pest Manag. Sci. 2018, 74, 959–965. [Google Scholar] [CrossRef]
- Liang, H.Y.; Liu, A.K.; He, N.; Zhou, J.C.; Ma, X.H.; Zhang, L.S.; Che, W.N.; Dong, H. Comparative analysis of fecundity related traits and transcriptome in two isofemale lines of the egg parasitoid, Trichogramma dendrolimi (Matsumura). J. Asia-Pac. Entomol. 2025, 28, 1226–8615. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Bao, H.; Shao, X.; Li, Z.; Liu, Z. The binding properties of cycloxaprid on insect native nAChRs partially explain the low cross-resistance with imidacloprid in Nilaparvata lugens. Pest Manag. Sci. 2019, 75, 246–251. [Google Scholar] [CrossRef]
- Beringue, A.; Queffelec, J.; Le Lann, C.; Sulmon, C. Sublethal pesticide exposure in non-target terrestrial ecosystems: From known effects on individuals to potential consequences on trophic interactions and network functioning. Environ. Res. 2024, 260, 119620. [Google Scholar] [CrossRef]
- Xie, L.C. Screening for Pesticide Resistance Against Non-Lepidopteran Targets and Expression of P450 Genes in Two Trichogramma Species. Master’s Dissertation, Guizhou University, Guiyang, China, 2020. [Google Scholar]
- Xu, H.Q.; Liu, Y.Y.; Zhu, G.D.; Xue, M. Comparative toxicity and safety evaluation of 16 different types of pesticides to two parasitoid wasp species. Environ. Entomol. 2014, 36, 959–964 (Original work published in Chinese). [Google Scholar]
- Wang, Y.H.; Yu, R.X.; Zhao, X.P.; An, X.H.; Chen, L.P.; Wu, C.X.; Wang, Q. Acute toxicity and safety evaluation of neonicotinoid and macrocyclic lactone insecticides to four Trichogramma species. Acta Entomol. Sin. 2012, 55, 36–45. [Google Scholar] [CrossRef]
- Yang, C.Z.; Wang, X.L.; Zhang, X. Toxicity determination of pyrethroid insecticides to several Trichogramma species. J. Northwest AF Univ. 1995, 108–110. [Google Scholar]
- Perrot, T.; Bonmatin, J.M.; Jactel, H.; Leboulanger, C.; Goffaux, R.; Gaba, S. Temporal and spatial trends of imidacloprid-related hazards in France. Sci. Total Environ. 2024, 945, 173950. [Google Scholar] [CrossRef]
- Sun, D.; Zeng, J.; Xu, Q.; Wang, M.; Shentu, X. Two critical detoxification enzyme genes, NlCYP301B1 and NlGSTm2 confer pymetrozine resistance in the brown planthopper (BPH), Nilaparvata lugens Stål. Pestic. Biochem. Physiol. 2024, 206, 106199. [Google Scholar] [CrossRef]
- Liu, S.; Nelson, D.R.; Zhao, J.; Hua, H.; He, Y. De novo transcriptomic analysis to reveal insecticide action and detoxification-related genes of the predatory bug, Cyrtorhinus lividipennis. J. Asia-Pac. Entomol. 2017, 20, 720–727. [Google Scholar] [CrossRef]
- Brown, D.J.; Redak, R.A. Are fitness costs associated with insecticide resistance? A meta-analysis. J. Econ. Entomol. 2025, 118, 1382–1394. [Google Scholar] [CrossRef]
- Zhang, X.L.; Mao, K.K.; Xun, L.; He, B.Y.; Jin, R.H.; Tang, T.; Wan, H.; Li, J.H. Fitness cost of nitenpyram resistance in the brown planthopper Nilaparvata lugens. J. Pest. Sci. 2018, 91, 1145–1151. [Google Scholar] [CrossRef]
- Muthusamy, R.; Ramkumar, G.; Kumarasamy, S.; Albeshr, M.F.; Alrefaei, A.F.; Ma, Y.; Narayanan, M. Resistance to synthetic pyrethroid and neonicotinoid is associated with reduced reproductive efficiency in the field population of Spodoptera litura (Insecta: Lepidoptera). Biocatal. Agric. Biotechnol. 2024, 56, 103031. [Google Scholar] [CrossRef]
- Parreira, D.S.; Alcántara-de la Cruz, R.; Zanuncio, J.C.; Lemes, P.G.; da Silva Rolim, G.; Barbosa, L.R.; Leite, G.L.D.; Serrão, J.E. Essential oils cause detrimental effects on biological parameters of Trichogramma galloi immatures. J. Pest. Sci. 2018, 91, 887–895. [Google Scholar] [CrossRef]
- Wang, D.S.; Lyu, L.H.; He, Y.R.; Qin, S.S.; Pan, F. Effects of common insecticides on Trichogrammatoidea bactrae fumata, a natural enemy of the diamondback moth (Plutella xylostella). J. Appl. Entomol. 2010, 47, 379–383. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Huo, L.X.; Bai, X.P.; Che, W.N.; Ning, S.F.; Lv, L.; Zhang, L.S.; Zhou, J.C.; Dong, H. Selection and evaluation of RT-qPCR reference genes for expression analysis in the tiny egg parasitoid wasp, Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae). J. Asia-Pac. Entomol. 2022, 25, 101883. [Google Scholar] [CrossRef]
- Liu, X. Toxic Effects and Risk Assessment of Neonicotinoid Insecticides on Three Trichogramma Species. Master’s Dissertation, Shandong Agricultural University, Taian, China, 2019. [Google Scholar]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Blahnik, R.; Delebecque, C.J.; Heimpel, G.E. Host phylogeny and specialisation in parasitoids. Ecol. Lett. 2012, 15, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Kliot, A.; Ghanim, M. Fitness costs associated with insecticide resistance. Pest. Manag. Sci. 2012, 68, 1431–1437. [Google Scholar] [CrossRef]
- Taskin, B.G.; Dogaroglu, T.; Kilic, S.; Dogac, E.; Taskin, V. Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens. Pestic. Biochem. Physiol. 2016, 129, 14–27. [Google Scholar] [CrossRef]
- David, M.R.; Garcia, G.A.; Valle, D.; Maciel-de-Freitas, R. Insecticide resistance and fitness: The case of four Aedes aegypti populations from different. brazilian regions. BioMed. Res. Int. 2018, 1, 6257860. [Google Scholar] [CrossRef]
- Xu, X.; Shi, L.; Wang, M. Comparative quantitative proteomics unveils putative mechanisms involved into mercury toxicity and tolerance in Tigriopus japonicus under multigenerational exposure scenario. Environ. Pollut. 2016, 218, 1287–1297. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, L.; Li, C.; Shao, G.; Chen, X. Transcriptome analysis revealed multiple immune processes and energy metabolism pathways involved in the defense response of the large yellow croaker Larimichthys crocea against Pseudomonas plecoglossicida. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2021, 40, 100886. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Kang, X.L.; Wu, H.H.; Kristopher, S.; Zhang, J.Z.; Enbo, M.; Zhu, K.Y. Transcriptome-wide survey, gene expression profiling and exogenous chemical-induced transcriptional responses of cytochrome P450 superfamily genes in migratory locust (Locusta migratoria). Insect. Biochem. Mol. Biol. 2018, 100, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yue, W.; Xie, W.; Zhang, T.; Zhi, J. Response of P450 gene of Frankliniella occidentalis (Thysanoptera: Thripidae) in succession adaptation to broad bean plant. Arthropod-Plant Interact. 2024, 18, 77–88. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, S.H.; Ren, M.M.; Tian, X.R.; Wei, Q.; Mburu, D.K.; Su, J.Y. The expression of Spodoptera exigua P450 and UGT genes: Tissue specificity and response to insecticides. Insect Sci. 2019, 26, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Bouafoura, R.; Bastarache, P.; Ouédraogo, B.C.; Dumas, P.; Moffat, C.E.; Vickruck, J.L.; Morin, P.J. Characterization of insecticide response-associated transcripts in the colorado potato beetle: Relevance of selected cytochrome P450s and clothianidin. Insects 2022, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Yunta, C.; Ooi, J.M.F.; Oladepo, F.; Grafanaki, S.; Pergantis, S.A.; Tsakireli, D.; Ismail, H.M.; Paine, M.J.I. Chlorfenapyr metabolism by mosquito P450s associated with pyrethroid resistance identifies potential activation markers. Sci. Rep. 2023, 13, 14124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Li, J.; Liu, M.; Liu, Z. Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: Digestion, detoxification and oxidative stress response. PLoS ONE 2016, 11, e0155254. [Google Scholar] [CrossRef]
- Khalid, M.F.; Lee, C.Y.; Doggett, S.L.; Veeram Singham, G. Circadian rhythms in insecticide susceptibility, metabolic enzyme activity, and gene expression in Cimex lectularius (Hemiptera: Cimicidae). PLoS ONE 2019, 14, e0218343. [Google Scholar] [CrossRef]
- Li, Q.; Sun, Z.; Shi, Q.; Wang, R.; Xu, C.; Wang, H.; Song, Y.; Zeng, R. RNA-Seq Analyses of midgut and fat body tissues reveal the molecular mechanism underlying Spodoptera litura resistance to tomatine. Front. Physiol. 2019, 10, 8. [Google Scholar] [CrossRef]
- Dubey, A.; Lewis, M.T.; Dively, G.P.; Hamby, K.A. Ecological impacts of pesticide seed treatments on arthropod communities in a grain crop rotation. J. Appl. Ecol. 2020, 57, 936–951. [Google Scholar] [CrossRef]
- Jaworski, C.C.; Thomine, E.; Rusch, A.; Lavoir, A.V.; Wang, S.; Desneux, N. Crop diversification to promote arthropod pest management: A review. Agric. Commun. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Maiquez, V.F.; Pitzer, J.B.; Geden, C.J. Insecticide resistance development in the filth fly pupal parasitoid, Spalangia cameroni (Hymenoptera: Pteromalidae), using laboratory selections. J. Econ. Entomol. 2021, 114, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.N.C.; Biondi, A.; Agathokleous, E.; Nunes-Nesi, A. (Systemic) Insecticides in plants: Phytotoxicity, bioactivation, or hormesis? Agric. Commun. 2023, 1, 100002. [Google Scholar] [CrossRef]
NO. | Collection Sites | Collection Times | Host | Strain Name | Latitude and Longitude |
---|---|---|---|---|---|
1 | Shen yang (Liao ning) | 2016.7 | Chilo suppressalis | SY | 41.7143° N, 123.4510° E |
2 | Liao zhong 1 (Liao ning) | 2018.8 | Dictyoploca japonica | LZ1 | 41.5126° N, 122.7282° E |
3 | Liao zhong 2 (Liao ning) | 2018.8 | Dictyoploca japonica | LZ2 | 41.5126° N, 122.7282° E |
4 | You Yan (Liao ning) | 2016.7 | Dictyoploca japonica | XY | 40.2877° N, 123.2719° E |
5 | Feng cheng (Liao ning) | 2020.8 | Fentonia ocypete | FC | 40.4500° N, 124.0637° E |
6 | Huan ren (Liao ning) | 2016.7 | Dictyoploca japonica | HR | 41.2681° N, 125.3487° E |
7 | Fu shun (Liao ning) | 2019.8 | Dendrolimus | FS | 41.8692° N, 123.9241° E |
8 | Chang tu (Liao ning) | 2019.8 | Chilo suppressalis | CT | 42.7849° N, 124.1054° E |
9 | Ji lin | 2019.8 | Chilo suppressalis | JL | 43.8843° N, 125.3180° E |
10 | Bai cheng (Ji lin) | 2019.8 | Chilo suppressalis | BC | 45.6156° N, 122.8360° E |
11 | Wu han (Hu bei) | 2018.8 | Antherea pernyi egg collection | WH | 30.6041° N, 114.2653° E |
12 | Hong an (Hu bei) | 2018.8 | Antherea pernyi egg collection | HA | 31.2904° N, 114.6131° E |
13 | Guang dong | 2018.8 | Antherea pernyi egg collection | GD | 23.1301° N, 113.2592° E |
14 | Tong liao (Nei meng gu) | 2019.8 | Chilo suppressalis | TL | 42.7334° N, 121.7937° E |
15 | A cheng (Hei long jiang) | 2019.8 | Chilo suppressalis | AC | 45.5362° N, 126.9694° E |
16 | Jia mu si (Hei Long jiang) | 2019.8 | Dendrolimus | JMS | 46.8087° N, 130.3734° E |
17 | Qian jin farm (Hei Long jiang) | 2019.8 | Dendrolimus | QJ | 47.3953° N, 126.808° E |
Strain | N | Regression Equation | Slope ± SE | R2 | LC50 (mg/L) | 95% CI |
---|---|---|---|---|---|---|
HR | 20 | Y = 1.17x + 6.32 | 1.17 ± 0.22 | 0.969 | 0.075 | 0.020–0.274 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-T.; Kong, X.-X.; Che, W.-N.; Zhou, J.-C.; Wang, S.-Q.; Dong, H. Fitness Trade-Offs and Potential Metabolic Resistance Mechanisms in Geographically Distinct Strains of Trichogramma dendrolimi: Implications for Imidacloprid Resistance Management. Insects 2025, 16, 1038. https://doi.org/10.3390/insects16101038
Li Y-T, Kong X-X, Che W-N, Zhou J-C, Wang S-Q, Dong H. Fitness Trade-Offs and Potential Metabolic Resistance Mechanisms in Geographically Distinct Strains of Trichogramma dendrolimi: Implications for Imidacloprid Resistance Management. Insects. 2025; 16(10):1038. https://doi.org/10.3390/insects16101038
Chicago/Turabian StyleLi, Yu-Tong, Xiang-Xin Kong, Wu-Nan Che, Jin-Cheng Zhou, Shu-Qi Wang, and Hui Dong. 2025. "Fitness Trade-Offs and Potential Metabolic Resistance Mechanisms in Geographically Distinct Strains of Trichogramma dendrolimi: Implications for Imidacloprid Resistance Management" Insects 16, no. 10: 1038. https://doi.org/10.3390/insects16101038
APA StyleLi, Y.-T., Kong, X.-X., Che, W.-N., Zhou, J.-C., Wang, S.-Q., & Dong, H. (2025). Fitness Trade-Offs and Potential Metabolic Resistance Mechanisms in Geographically Distinct Strains of Trichogramma dendrolimi: Implications for Imidacloprid Resistance Management. Insects, 16(10), 1038. https://doi.org/10.3390/insects16101038