Rapid Detection of Philaenus italosignus Drosopoulos & Remane, 2000 (Hemiptera: Aphrophoridae) with Real-Time PCR Probe LNA Technology
Simple Summary
Abstract
1. Introduction
- -
- -
- -
- -
- -
- -
- -
2. Materials and Methods
2.1. Insect Material
2.2. DNA Extraction
2.3. Analysis of Intra-Individual Variation in the qPCR Target Region of the Cytochrome B Gene
2.4. Design of P. italosignus Primers and LNA Probe
2.5. qPCR Optimization
2.6. Performance Characteristics
2.7. Blind Panel
3. Results
3.1. DNA Extraction
3.2. Development and Optimization of P. italosignus-Specific qPCR
3.3. Performance Characteristics
3.4. Blind Panel
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LNA | Locked Nucleic Acid |
IPM | Integrated Pest Management |
DSS | Decision Support System |
qPCR | Quantitative real-time PCR |
Xf | Xylella fastidiosa |
UNIFI | University of Florence |
UNIBA | University of Bari Aldo Moro |
UNIPI | University of Pisa |
LoD | Limit of Detection |
NTC | No-Template Control |
Nc | Neophilaenus campestris |
Nl | Neophilaenus lineatus |
Ps | Philaenus spumarius |
Pt | Philaenus tesselatus |
Pi | Philaenus italosignus |
SD | Standard Deviation |
OQDS | Olive Quick Decline Syndrome |
Cq | Cycle of quantification |
dNTP | DeoxyNucleotide TriPhosphates |
NUMTs | Nuclear Mitochondrial DNA Segments |
ITM | Integrated Transmission Management |
References
- Wells, J.M.; Raju, B.C.; Hung, H.Y.; Weisburg, W.G.; Mandelco-Paul, L.; Brenner, D.J. Xylella fastidiosa gen. nov., sp. nov: Gram-Negative, Xylem-Limited, Fastidious Plant Bacteria Related to Xanthomonas spp. Int. J. Syst. Bacteriol. 1987, 37, 136–143. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the Risk to Plant Health Posed by Xylella fastidiosa in the EU Territory, with the Identification and Evaluation of Risk Reduction Options. EFSA J. 2015, 13, 3989. [Google Scholar] [CrossRef]
- Saponari, M.; Loconsole, G.; Cornara, D.; Yokomi, R.K.; Stradis, A.D.; Boscia, D.; Bosco, D.; Martelli, G.P.; Krugner, R.; Porcelli, F. Infectivity and Transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 2014, 107, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- Cavalieri, V.; Altamura, G.; Fumarola, G.; Di Carolo, M.; Saponari, M.; Cornara, D.; Bosco, D.; Dongiovanni, C. Transmission of Xylella fastidiosa Subspecies Pauca Sequence Type 53 by Different Insect Species. Insects 2019, 10, 324. [Google Scholar] [CrossRef] [PubMed]
- Ben Moussa, I.E.; Mazzoni, V.; Valentini, F.; Yaseen, T.; Lorusso, D.; Speranza, S.; Digiaro, M.; Varvaro, L.; Krugner, R.; D’Onghia, A.M. Seasonal Fluctuations of Sap-Feeding Insect Species Infected by Xylella fastidiosa in Apulian Olive Groves of Southern Italy. J. Econ. Entomol. 2016, 109, 1512–1518. [Google Scholar] [CrossRef]
- Cornara, D.; Saponari, M.; Zeilinger, A.R.; De Stradis, A.; Boscia, D.; Loconsole, G.; Bosco, D.; Martelli, G.P.; Almeida, R.P.P.; Porcelli, F. Spittlebugs as Vectors of Xylella fastidiosa in Olive Orchards in Italy. J. Pest Sci. 2017, 90, 521–530. [Google Scholar] [CrossRef]
- Panzavolta, T.; Bracalini, M.; Croci, F.; Ghelardini, L.; Luti, S.; Goti, E.; Marchi, R.; Tiberi, R.; Marchi, G. Philaenus Italosignus a Potential Vector of Xylella fastidiosa: Occurrence of the Spittlebug on Olive Trees in Tuscany (Italy). Bull. Insectol. 2019, 72, 317–320. [Google Scholar]
- EPPO. PM 7/141 (1) Philaenus Spumarius, Philaenus Italosignus and Neophilaenus Campestris. EPPO Bull. 2020, 50, 32–40. [Google Scholar] [CrossRef]
- Nencioni, A.; Gargani, E.; Strangi, A.; Rizzo, D.; Iovinella, I.; Sacchetti, P.; Roversi, P.F.; Cutino, I. Transmission of Xylella fastidiosa Subspecies Multiplex from Naturally Infected to Healthy Rhamnus alaternus by Philaenus spumarius and Neophilaenus campestris. J. Pest Sci. 2024, 97, 1557–1567. [Google Scholar] [CrossRef]
- Abdul-Nour, H.; Lahoud, L. Revision du genre Philaenus Stål, 1964 au Liban avec la description d’une nouvelle espece: P. arslani, n. sp. (Homoptera, Auchenorrhyncha, Cercopidae). Nouv. Rev. Entomol. 1995, 12, 297–303. [Google Scholar]
- Maryańska-Nadachowska, A.; Drosopoulos, S.; Lachowska, D.; Kajtoch, Ł.; Kuznetsova, V.G. Molecular Phylogeny of the Mediterranean Species of Philaenus (Hemiptera: Auchenorrhyncha: Aphrophoridae) Using Mitochondrial and Nuclear DNA Sequences. Syst. Entomol. 2010, 35, 318–328. [Google Scholar] [CrossRef]
- Drosopoulos, S.; Asche, M. Biosystematic Studies on the Spittlebug Genus Philaenus with the Description of a New Species. Zool. J. Linn. Soc. 1991, 101, 169–177. [Google Scholar] [CrossRef]
- Drosopoulos, S. New Data on the Nature and Origin of Colour Polymorphism in the Spittlebug Genus Philaenus (Hemiptera: Aphorophoridae). Ann. Soc. Entomol. Fr. 2003, 39, 31–42. [Google Scholar] [CrossRef]
- Drosopoulos, S.; Remane, R. Biogeographic Studies on the Spittlebug Philaenus Signatus Melichar, 1896 Species Group (Hemiptera: Aphrophoridae) with the Description of Two New Allopatric Species. Ann. Soc. Entomol. Fr. 2000, 36, 269–277. [Google Scholar]
- Bückle, C.; Guglielmino, A. Contribution to the Knowledge of the Genus Philaenus (Cercopoidea, Aphrophoridae) with Description of Two New Taxa. Zootaxa 2025, 5683, 225–246. [Google Scholar] [CrossRef]
- Remane, R.; Drosopoulos, S. Philaenus Tarifa sp. n.: An Additional Spittlebug Species from Southern Spain (Homoptera, Auchenorrhyncha Cercopidae). Dtsch. Entomol. Z. 2001, 48, 277–279. [Google Scholar] [CrossRef]
- Boukhris-Bouhachem, S.; Souissi, R.; Abou Kubaa, R.; El Moujabber, M.; Gnezdilov, V. Aphrophoridae as Potential Vectors of Xylella fastidiosa in Tunisia. Insects 2023, 14, 119. [Google Scholar] [CrossRef]
- Drosopoulos, S.; Maryańska-Nadachowska, A.; Kuznetsova, V.G. The Mediterranean: Area of Origin of Polymorphism and Speciation in the Spittlebug Philaenus (Hemiptera, Aphrophoridae). Zoosystemat. Evol. 2010, 86, 125–128. [Google Scholar] [CrossRef]
- Kuznetsova, V.; Aguin-Pombo, D. Comparative Cytogenetics of Auchenorrhyncha (Hemiptera, Homoptera): A Review. ZooKeys 2015, 538, 63–93. [Google Scholar] [CrossRef]
- Casarin, N.; Hasbroucq, S.; Carestia, G.; Glibert, A.; Bragard, C.; Grégoire, J.-C. Investigating Dispersal Abilities of Aphrophoridae in European Temperate Regions to Assess the Threat of Potential Xylella fastidiosa-Based Pathosystems. J. Pest Sci. 2023, 96, 471–488. [Google Scholar] [CrossRef]
- Sandanayaka, M.R.M.; Nielsen, M.; Davis, V.A.; Butler, R.C. Do Spittlebugs Feed on Grape? Assessing Transmission Potential for Xylella fastidiosa. N. Z. Plant Prot. 2017, 70, 31–37. [Google Scholar] [CrossRef]
- Davis, C.J.; Mitchell, A.L. Host Records of Philaenus spumarius (Linn.) at Kilauea, Hawaii National Park (Homoptera: Cercopidae). Proc. Hawaii. Entomol. Soc. 1946, 12, 515–516. [Google Scholar]
- Wood, Z.M.; Jones, P.L. The Effects of Host Plant Species and Plant Quality on Growth and Development in the Meadow Spittlebug (Philaenus spumarius) on Kent Island in the Bay of Fundy. Northeast. Nat. 2020, 27, 168–185. [Google Scholar] [CrossRef]
- Udvardy, M.D.F. A Classification of the Biogeographical Provinces of the World; IUCN Occasional Paper; International Union for Conservation of Natural Resources: Morges, Switzerland, 1975. [Google Scholar]
- Albre, J.; Carrasco, J.M.G.; Gibernau, M. Ecology of the Meadow Spittlebug Philaenus spumarius in the Ajaccio Region (Corsica)—I: Spring. Bull. Entomol. Res. 2021, 111, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora d’Italia, 2nd ed.; Edagricole: Bologna, Italy, 2017; Volume 1, ISBN 88-506-5242-9. [Google Scholar]
- Malmir, M.; Serrano, R.; Caniça, M.; Silva-Lima, B.; Silva, O. A Comprehensive Review on the Medicinal Plants from the Genus Asphodelus. Plants 2018, 7, 20. [Google Scholar] [CrossRef]
- Thompson, V.; Harkin, C.; Stewart, A.J.A. The Most Polyphagous Insect Herbivore? Host Plant Associations of the Meadow Spittlebug, Philaenus spumarius (L.). PLoS ONE 2023, 18, e0291734. [Google Scholar] [CrossRef] [PubMed]
- Biondi, E.; Pesaresi, S.; Galdenzi, D.; Gasparri, R.; Biscotti, N.; del Viscio, G.; Casavecchia, S. Post-Abandonment Dynamic on Mediterranean and Sub-Mediterranean Perennial Grasslands: The Edge Vegetation of the New Class Charybdido Pancratii-Asphodeletea Ramosi. Plant Sociol. 2016, 53, 3–18. [Google Scholar] [CrossRef]
- Maryańska-Nadachowska, A.; Kajtoch, L.; Lachowska, D. Genetic Diversity of Philaenus spumarius and P. Tesselatus (Hemiptera, Aphrophoridae): Implications for Evolution and Taxonomy. Syst. Entomol. 2012, 37, 55–64. [Google Scholar] [CrossRef]
- Maryańska-Nadachowska, A.; Kuznetsova, V.G.; Lachowska, D.; Drosopoulos, S. Mediterranean Species of the Spittlebug Genus Philaenus: Modes of Chromosome Evolution. J. Insect Sci. 2012, 12, 54. [Google Scholar] [CrossRef]
- Weaver, C.R.; King, D.R. Meadow Spittlebug; Research Bulletin; Ohio Agricultural Experiment Station: Wooster, OH, USA, 1954. [Google Scholar]
- Owen, D.F.; Wiegert, R.G. Balanced Polymorphism in the Meadow Spittlebug, Philaenus spumarius. Am. Nat. 1962, 96, 353–359. [Google Scholar] [CrossRef]
- Halkka, O. Geographical, Spatial and Temporal Variability in the Balanced Polymorphism of Philaenus spumarius. Heredity 1964, 19, 383–401. [Google Scholar] [CrossRef]
- Halkka, O.; Raatikainen, M.; Vasaeainen, A.; Heinonen, L. Ecology and Ecological Genetics of Philaenus spumarius (L.) (Homoptera). Ann. Entomol. Fenn. 1967, 4, 1–18. [Google Scholar]
- Farish, D.J.; Scudder, G.G.E. The Polymorphism in Philaenus spumarius (L.) (Hemiptera: Cercopidae) in British Columbia. J. Entomol. Soc. Br. Columbia 1967, 64, 45–51. [Google Scholar]
- Raatikainen, M. The Polymorphism of Philaenus spumarius (L.) (Homoptera) in Northern Italy. Ann. Entomol. Fenn. 1971, 37, 72–79. [Google Scholar]
- Yurtsever, S. Limited Polymorphism in Two Spittlebugs, Philaenus spumarius (Linnaeus) and P. signatus Melichar (Hemiptera: Cercopidae), in Island Populations from Western Turkey. Zool. Middle East 2018, 64, 169–173. [Google Scholar] [CrossRef]
- Kapantaidaki, D.E.; Antonatos, S.; Evangelou, V.; Papachristos, D.P.; Milonas, P. Genetic and Endosymbiotic Diversity of Greek Populations of Philaenus spumarius, Philaenus signatus and Neophilaenus campestris, Vectors of Xylella fastidiosa. Sci. Rep. 2021, 11, 3752. [Google Scholar] [CrossRef] [PubMed]
- Lahbib, N.; Picciotti, U.; Boukhris-Bouhachem, S.; Garganese, F.; Porcelli, F. Morphs of Philaenus Species, Candidate Xylella fastidiosa Vectors. Bull. Insectol. 2022, 75, 197–209. [Google Scholar]
- Bodino, N.; Cavalieri, V.; Dongiovanni, C.; Plazio, E.; Saladini, M.A.; Volani, S.; Simonetto, A.; Fumarola, G.; Di Carolo, M.; Porcelli, F.; et al. Phenology, Seasonal Abundance and Stage-Structure of Spittlebug (Hemiptera: Aphrophoridae) Populations in Olive Groves in Italy. Sci. Rep. 2019, 9, 17725. [Google Scholar] [CrossRef]
- Frem, M.; Chapman, D.; Fucilli, V.; Choueiri, E.; El Moujabber, M.; La Notte, P.; Nigro, F. Xylella fastidiosa Invasion of New Countries in Europe, the Middle East and North Africa: Ranking the Potential Exposure Scenarios. NeoBiota 2020, 59, 77–97. [Google Scholar] [CrossRef]
- Bodino, N.; Cavalieri, V.; Dongiovanni, C.; Saladini, M.A.; Simonetto, A.; Volani, S.; Plazio, E.; Altamura, G.; Tauro, D.; Gilioli, G.; et al. Spittlebugs of Mediterranean Olive Groves: Host-Plant Exploitation throughout the Year. Insects 2020, 11, 130. [Google Scholar] [CrossRef]
- Rizzo, D.; Bracalini, M.; Campigli, S.; Nencioni, A.; Porcelli, F.; Marchi, G.; Da Lio, D.; Bartolini, L.; Rossi, E.; Sacchetti, P.; et al. Quantitative Real-Time PCR Based on SYBR Green Technology for the Identification of Philaenus italosignus Drosopoulos & Remane (Hemiptera Aphrophoridae). Plants 2022, 11, 3314. [Google Scholar] [CrossRef]
- Ugozzoli, L.A.; Latorra, D.; Pucket, R.; Arar, K.; Hamby, K. Real-Time Genotyping with Oligonucleotide Probes Containing Locked Nucleic Acids. Anal. Biochem. 2004, 324, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Palmano, S.; Mulholland, V.; Kenyon, D.; Saddler, G.S.; Jeffries, C. Diagnosis of Phytoplasmas by Real-Time PCR Using Locked Nucleic Acid (LNA) Probes. In Plant Pathology. Techniques and Protocols; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1302, pp. 113–122. ISBN 978-1-4939-2619-0. [Google Scholar]
- Lis, A.; Maryańska-Nadachowska, A.; Lachowska-Cierlik, D.; Kajtoch, L. The Secondary Contact Zone of Phylogenetic Lineages of the Philaenus spumarius (Hemiptera: Aphrophoridae): An Example of Incomplete Allopatric Speciation. J. Insect Sci. 2014, 14, 227. [Google Scholar] [CrossRef] [PubMed]
- Baek, D.; Lee, K.M.; Park, K.W.; Suh, J.W.; Choi, S.M.; Park, K.H.; Lee, J.W.; Kim, S.H. Inhibition of miR-449a Promotes Cartilage Regeneration and Prevents Progression of Osteoarthritis in In Vivo Rat Models. Mol. Ther. Nucleic Acids 2018, 13, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Ghosh, S.; Mukhopadhyay, R. Regulating the On-Surface LNA Probe Density for the Highest Target Recognition Efficiency. Langmuir 2014, 30, 10389–10397. [Google Scholar] [CrossRef]
- Mishra, S.; Lahiri, H.; Banerjee, S.; Mukhopadhyay, R. Molecularly Resolved Label-Free Sensing of Single Nucleobase Mismatches by Interfacial LNA Probes. Nucleic Acids Res. 2016, 44, 3739–3749. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Zhang, J.; Song, G. LNA Real-Time PCR Probe Quantification of Hepatitis B Virus DNA. Exp. Ther. Med. 2012, 3, 503–508. [Google Scholar] [CrossRef]
- Braasch, D.A.; Corey, D.R. Locked Nucleic Acid (LNA): Fine-Tuning the Recognition of DNA and RNA. Chem. Biol. 2001, 8, 1–7. [Google Scholar] [CrossRef]
- Alonso, J.L.; Amorós, I.; Cuesta, G. LNA Probes in a Real-Time TaqMan PCR Assay for Genotyping of Giardia Duodenalis in Wastewaters. J. Appl. Microbiol. 2010, 108, 1594–1601. [Google Scholar] [CrossRef]
- Cao, Y.; Yao, R.; Wang, Y.; Huang, C.; Zhang, Y.; Liu, W.; Li, J.; Lin, L.; Tan, L.; Yan, F.; et al. Unlocking Precision: Advancing Rapid Field Molecular Identification of Tuta Absoluta across Its Life Cycle Using Locked Nucleic Acid Strategies. Sens. Actuators B Chem. 2024, 416, 136059. [Google Scholar] [CrossRef]
- Rizzo, D.; Pecori, F.; Moriconi, M.; Zubieta, C.G.; Palmigiano, B.; Bartolini, L.; Downes, A.; Ranaldi, C.; Papini, V.; Luchi, N.; et al. Molecular Identification of Agrilus anxius (Coleoptera: Buprestidae) Using a qPCR Assay with Locked Nucleic Acid (LNA) Probe. J. Appl. Entomol. 2025, 149, 757–768. [Google Scholar] [CrossRef]
- Gilioli, G.; De Francesco, A.; Simonetto, A. Ten Challenges for Plant Pest Modelling. In Proceedings of the Book of Abstract of XXVIII Congresso Nazionale Italiano di Entomologia, Siena, Italy, 16 June 2025; Volume 1, p. 138. [Google Scholar]
- Ioos, R.; Fourrier, C.; Iancu, G.; Gordon, T.R. Sensitive Detection of Fusarium circinatum in Pine Seed by Combining an Enrichment Procedure with a Real-Time Polymerase Chain Reaction Using Dual-Labeled Probe Chemistry. Phytopathology 2009, 99, 582–590. [Google Scholar] [CrossRef]
- Rodrigues, A.S.B.; Silva, S.E.; Marabuto, E.; Silva, D.N.; Wilson, M.R.; Thompson, V.; Yurtsever, S.; Halkka, A.; Borges, P.A.V.; Quartau, J.A.; et al. New Mitochondrial and Nuclear Evidences Support Recent Demographic Expansion and an Atypical Phylogeographic Pattern in the Spittlebug Philaenus spumarius (Hemiptera, Aphrophoridae). PLoS ONE 2014, 9, e98375. [Google Scholar] [CrossRef]
- Marchi, G.; Cinello, T.; Rizzo, D.; Stefani, L.; Goti, E.; Della Bartola, M.; Luvisi, A.; Panattoni, A.; Materazzi, A. Occurrence of Different Phytoplasma Infections in Wild Herbaceous Dicots Growing in Vineyards Affected by Bois Noir in Tuscany (Italy). Phytopathol. Mediterr. 2015, 54, 504–515. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Mol. Biol. Evol. 2024, 41, 1–9. [Google Scholar] [CrossRef]
- Kang, A.R.; Kim, M.J.; Park, I.A.; Kim, K.Y.; Kim, I. Extent and Divergence of Heteroplasmy of the DNA Barcoding Region in Anapodisma miramae (Orthoptera: Acrididae). Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016, 27, 3405–3414. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- EPPO. PM 7/98 (5) Specific Requirements for Laboratories Preparing Accreditation for a Plant Pest Diagnostic Activity. EPPO Bull. 2021, 51, 468–498. [Google Scholar] [CrossRef]
- Godefroid, M.; Morente, M.; Schartel, T.; Cornara, D.; Purcell, A.; Gallego, D.; Moreno, A.; Pereira, J.A.; Fereres, A. Climate Tolerances of Philaenus spumarius Should Be Considered in Risk Assessment of Disease Outbreaks Related to Xylella fastidiosa. J. Pest Sci. 2022, 95, 855–868. [Google Scholar] [CrossRef]
- Velasco-Amo, M.P.; Vicent, A.; Zarco-Tejada, P.J.; Navas-Cortés, J.A.; Landa, B.B. Recent Research Accomplishments on Early Detection of Xylella fastidiosa Outbreaks in the Mediterranean Basin. Phytopathol. Mediterr. 2023, 61, 549–561. [Google Scholar] [CrossRef]
- Fierro, A.; Liccardo, A.; Porcelli, F. A Lattice Model to Manage the Vector and the Infection of the Xylella fastidiosa on Olive Trees. Sci. Rep. 2019, 9, 8723. [Google Scholar] [CrossRef]
- Liccardo, A.; Fierro, A.; Garganese, F.; Picciotti, U.; Porcelli, F. A Biological Control Model to Manage the Vector and the Infection of Xylella fastidiosa on Olive Trees. PLoS ONE 2020, 15, e0232363. [Google Scholar] [CrossRef] [PubMed]
- D’Onghia, A.M.; Santoro, F.; Minutillo, S.A.; Frasheri, D.; Gallo, M.; Gualano, S.; Cavallo, G.; Valentini, F. Optimisation of Sampling and Testing for Asymptomatic Olive Trees Infected by Xylella fastidiosa in Apulia Region, Italy. Phytopathol. Mediterr. 2022, 61, 439–449. [Google Scholar] [CrossRef]
- Di Serio, F.; Imbriani, G.; Girelli, C.R.; Miglietta, P.P.; Scortichini, M.; Fanizzi, F.P. A Decade after the Outbreak of Xylella fastidiosa subsp. Pauca in Apulia (Southern Italy): Methodical Literature Analysis of Research Strategies. Plants 2024, 13, 1433. [Google Scholar] [CrossRef]
- Jeger, M.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Grégoire, J.C.; Miret, J.A.J.; MacLeod, A.; Navarro, M.N.; et al. Updated Pest Categorisation of Xylella fastidiosa. EFSA J. 2018, 16, 5357. [Google Scholar] [CrossRef] [PubMed]
- Di Serio, F.; Bodino, N.; Cavalieri, V.; Demichelis, S.; Di Carolo, M.; Dongiovanni, C.; Fumarola, G.; Gilioli, G.; Guerrieri, E.; Picciotti, U.; et al. Collection of Data and Information on Biology and Control of Vectors of Xylella fastidiosa. EFSA J. 2019, 16, 1–102. [Google Scholar] [CrossRef]
- Raouhi, E.M.; Lachgar, M.; Hrimech, H.; Kartit, A. Optimizing Olive Disease Classification through Transfer Learning with Unmanned Aerial Vehicle Imagery. Int. J. Electr. Comput. Eng. 2024, 14, 891–903. [Google Scholar] [CrossRef]
- Picciotti, U.; Lahbib, N.; Sefa, V.; Porcelli, F.; Garganese, F. Aphrophoridae Role in Xylella fastidiosa subsp. Pauca ST53 Invasion in Southern Italy. Pathogens 2021, 10, 1035. [Google Scholar] [CrossRef]
- Saddoud Debbabi, O.; Miazzi, M.M.; Elloumi, O.; Fendri, M.; Ben Amar, F.; Savoia, M.A.; Sion, S.; Souabni, H.; Mnasri, S.; Ben Abdelaali, S.; et al. Recovery, Assessment, and Molecular Characterization of Minor Olive Genotypes in Tunisia. Plants 2020, 9, 382. [Google Scholar] [CrossRef]
- Savoia, M.A.; Fanelli, V.; Miazzi, M.M.; Taranto, F.; Procino, S.; Susca, L.; Montilon, V.; Potere, O.; Nigro, F.; Montemurro, C. Apulian Autochthonous Olive Germplasm: A Promising Resource to Restore Cultivation in Xylella fastidiosa-Infected Areas. Agriculture 2023, 13, 1746. [Google Scholar] [CrossRef]
- Krugner, R.; Sisterson, M.S.; Backus, E.A.; Burbank, L.P.; Redak, R.A. Sharpshooters: A Review of What Moves Xylella fastidiosa. Austral Entomol. 2019, 58, 248–267. [Google Scholar] [CrossRef]
- Miazzi, M.M.; Pasqualone, A.; Zammitt-Mangion, M.; Savoia, M.A.; Fanelli, V.; Procino, S.; Gadaleta, S.; Aurelio, L.; Montemurro, C. A Glimpse into the Genetic Heritage of the Olive Tree in Malta. Agriculture 2024, 14, 495. [Google Scholar] [CrossRef]
- Carlucci, M.; Savoia, M.A.; Lucchese, P.G.; Fanelli, V.; Mascio, I.; Aurelio, F.L.; Miazzi, M.M.; Pacifico, A.; Montemurro, C.; Nigro, F. Behavior of Olive Genotypes Against Quick Decline Syndrome (QDS) Caused by Xylella fastidiosa subsp. Pauca in Apulia. Plants 2025, 14, 157. [Google Scholar] [CrossRef]
- Dáder, B.; Viñuela, E.; Moreno, A.; Plaza, M.; Garzo, E.; Del Estal, P.; Fereres, A. Sulfoxaflor and Natural Pyrethrin with Piperonyl Butoxide Are Effective Alternatives to Neonicotinoids against Juveniles of Philaenus spumarius, the European Vector of Xylella fastidiosa. Insects 2019, 10, 225. [Google Scholar] [CrossRef]
Order | Family | Species | Place of Collection | Number of Assayed Insects | Instar |
---|---|---|---|---|---|
Hemiptera | Pentatomidae | Rhaphigaster nebulosa (Poda, 1761) | RPS—Florence | 1 | Adult |
Tingidae | Stephanitis lauri Rietschel, 2014 | University of Pisa | 1 | Adult | |
Ricaniidae | Ricania speculum (Walker, 1851) | University of Pisa and RPS—Pistoia | 10 | Adult | |
Cicadellidae | Cicadella viridis (Linnaeus, 1758) | RPS—Florence | 1 | Adult | |
Synophropsis lauri (Horvath, 1897) | University of Florence | 1 | Adult | ||
Membracidae | Stictocephala bisonia Kopp & Yonke, 1977 | University of Florence | 1 | Adult | |
Aphrophoridae | Philaenus spumarius (Linnaeus, 1758) | University of Florence | 178 | Adult | |
Philaenus italosignus Drosopoulos & Remane, 2000 | University of Florence | 76 | Adult | ||
University of Bari Aldo Moro | 5 | Adult | |||
Neophilaenus lineatus (Linnaeus, 1758) | University of Bari Aldo Moro | 12 | Adult | ||
Philaenus tesselatus (Melichar, 1899) | University of Bari Aldo Moro | 12 | Adult | ||
Neophilaenus campestris (Fallén, 1805) | University of Florence | 194 | Adult | ||
Cercopidae | Lepyronia coleoptrata (Linnaeus, 1758) | University of Florence | 3 | Adult | |
Cercopis sanguinolenta (Scopoli, 1763) | University of Florence | 3 | Adult | ||
Cercopis vulnerata Rossi, 1807 | University of Florence | 3 | Adult | ||
Dictyopharidae | Dictyophara europaea (Linnaeus, 1767) | RPS—Florence | 1 | Adult | |
Aleyrodidae | Dialeurodes citri (Ashmead, 1885) | RPS—Florence | 1 | Juvenile | |
Lepidoptera | Crambidae | Cydalima perspectalis (Walker, 1859) | RPS—Florence | 1 | Larva |
Tortricidae | Grapholita molesta (Busck, 1916) | University of Florence | 1 | Adult | |
Cydia pomonella (Linnaeus, 1758) | University of Florence | 1 | Adult | ||
Cryptoblabes gnidiella (Millière, 1867) | University of Florence | 1 | Adult | ||
Diptera | Tephritidae | Ceratitis capitata (Wiedemann 1824) | University of Florence | 2 | Adult |
2 | Larva | ||||
Rhagoletis cerasi (Linnaeus, 1758) | University of Florence | 1 | Pupa | ||
Rhagoletis completa Cresson, 1929 | RPS—Florence | 1 | Larva | ||
Acanthiophilus helianthi (Rossi, 1794) | University of Pisa | 1 | Adult |
Name | Sequence | Amplicon Size (bp) | Reference Sequence |
---|---|---|---|
Pitalo_63F | GGGATTTGCCGTTGATAA | 170 | FJ664097.1 |
Pitalo_232R | AAGGGTGAAATGGAATCTTA | ||
Pitalo_83P | FAM—caa{C}at{T}ga{C}ac{G}attctt—BHQ1 |
Parameter | Adults |
---|---|
Concentration (ng/µL) | 36.00 (±1.80) |
Quality (A260nm/A230nm) | 1.92 (±0.24) |
Cq value | 17.46 (±1.36) |
Concentration | A | B | C | Average Cq | SD (±) |
---|---|---|---|---|---|
5 ng/μL | 21.94 | 22.06 | 21.66 | 21.89 | 0.21 |
1 ng/μL | 24.41 | 24.54 | 24.21 | 24.39 | 0.17 |
0.2 ng/μL | 26.73 | 26.92 | 27.06 | 26.90 | 0.17 |
0.04 ng/μL | 29.06 | 28.95 | 28.93 | 28.98 | 0.07 |
0.008 ng/μL | 31.68 | 31.47 | 31.33 | 31.49 | 0.18 |
1.6 pg/μL | 33.33 | 33.37 | 33.40 | 33.37 | 0.04 |
0.32 pg/μL | 34.91 | 35.24 | 35.95 | 35.37 | 0.53 |
0.064 pg/μL | 38.59 | 34.80 | 38.31 | 37.23 | 2.11 |
12.8 fg/μL | n/a | n/a | n/a | n/a | n/a |
ng/μL | Replicas | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
0.008 | A | 32.08 | 31.54 | 31.91 | 32.05 | 32.10 | 31.98 | 32.03 | 31.89 |
B | 32.13 | 31.72 | 31.55 | 31.77 | 31.78 | 31.66 | 32.24 | 31.77 | |
C | 31.61 | 31.43 | 31.60 | 31.41 | 31.54 | 31.33 | 31.64 | 31.46 | |
Average Cq | 31.9 | 31.6 | 31.7 | 31.7 | 31.8 | 31.7 | 32.0 | 31.7 | |
SD | 0.29 | 0.15 | 0.20 | 0.32 | 0.28 | 0.33 | 0.30 | 0.22 |
ng/μL | Replicas | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
0.008 | F | 31.61 | 31.28 | 31.37 | 31.71 | 31.79 | 31.41 | 31.86 | 31.29 |
G | 31.46 | 31.21 | 31.42 | 31.63 | 31.60 | 32.06 | 31.47 | 31.72 | |
H | 31.39 | 31.41 | 31.94 | 31.72 | 31.41 | 31.63 | 31.47 | 32.15 | |
Average Cq | 31.5 | 31.2 | 31.4 | 31.7 | 31.7 | 31.7 | 31.7 | 31.5 | |
SD | 0.11 | 0.10 | 0.32 | 0.05 | 0.19 | 0.33 | 0.23 | 0.43 |
N. | Sample | Lab 1 | Lab 2 | Expected Result |
---|---|---|---|---|
1 | Philaenus italosignus | Positive | Positive | Positive |
2 | Philaenus spumarius | Negative | Negative | Negative |
3 | Neophilaenus campestris | Negative | Negative | Negative |
4 | NTC | Negative | Negative | Negative |
5 | Neophilaenus lineatus | Negative | Negative | Negative |
6 | Philaenus spumarius | Negative | Negative | Negative |
7 | Philaenus tesselatus | Negative | Negative | Negative |
8 | Philaenus italosignus | Positive | Positive | Positive |
9 | Neophilaenus campestris | Negative | Negative | Negative |
10 | Neophilaenus lineatus | Negative | Negative | Negative |
11 | Philaenus tesselatus | Negative | Negative | Negative |
12 | NTC | Negative | Negative | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, D.; Downes, A.; Campigli, S.; Palmigiano, B.; Zubieta, C.G.; Papini, V.; Moriconi, M.; Garganese, F.; Picciotti, U.; Husein, A.; et al. Rapid Detection of Philaenus italosignus Drosopoulos & Remane, 2000 (Hemiptera: Aphrophoridae) with Real-Time PCR Probe LNA Technology. Insects 2025, 16, 1014. https://doi.org/10.3390/insects16101014
Rizzo D, Downes A, Campigli S, Palmigiano B, Zubieta CG, Papini V, Moriconi M, Garganese F, Picciotti U, Husein A, et al. Rapid Detection of Philaenus italosignus Drosopoulos & Remane, 2000 (Hemiptera: Aphrophoridae) with Real-Time PCR Probe LNA Technology. Insects. 2025; 16(10):1014. https://doi.org/10.3390/insects16101014
Chicago/Turabian StyleRizzo, Domenico, Alice Downes, Sara Campigli, Bruno Palmigiano, Claudia Gabriela Zubieta, Viola Papini, Michela Moriconi, Francesca Garganese, Ugo Picciotti, Aziza Husein, and et al. 2025. "Rapid Detection of Philaenus italosignus Drosopoulos & Remane, 2000 (Hemiptera: Aphrophoridae) with Real-Time PCR Probe LNA Technology" Insects 16, no. 10: 1014. https://doi.org/10.3390/insects16101014
APA StyleRizzo, D., Downes, A., Campigli, S., Palmigiano, B., Zubieta, C. G., Papini, V., Moriconi, M., Garganese, F., Picciotti, U., Husein, A., Ranaldi, C., Bolige, E., Bartolini, L., & Porcelli, F. (2025). Rapid Detection of Philaenus italosignus Drosopoulos & Remane, 2000 (Hemiptera: Aphrophoridae) with Real-Time PCR Probe LNA Technology. Insects, 16(10), 1014. https://doi.org/10.3390/insects16101014