Bt Exposure-Induced Death of Dioryctria abietella (Lepidoptera: Pyralidae) Involvement in Alterations of Gene Expression and Enzyme Activity
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Pathogens
2.2. Bioassays
2.3. Enzyme Assays
2.4. RNA Extraction, cDNA Library Construction and Sequencing
2.5. De Novo Assembly and Gene Annotation
2.6. DEGs Analysis
2.7. Gene Expression Analysis
2.8. Statistical Analysis
3. Results
3.1. Toxicity of Bt Against D. abietella Larvae
3.2. Transcriptome Profiling Data
3.3. DEGs After Bt05041 Exposure in D. abietella
3.4. Bt Exposure-Induced Immune Responses of D. abietella
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lantschner, M.V.; Corley, J.C. Spatiotemporal outbreak dynamics of bark and wood-boring insects. Curr. Opin. Insect Sci. 2023, 55, 101003. [Google Scholar] [CrossRef]
- Fischbein, D.; Corley, J.C. Population ecology and classical biological control of forest insect pests in a changing world. For. Ecol. Manag. 2022, 520, 120400. [Google Scholar] [CrossRef]
- Pawar, P.; Baskaran, R.K.M.; Sharma, K.C.; Marathe, A. Enhancing biocontrol potential of Trichogramma chilonis against borer pests of wheat and chickpea. iScience 2023, 26, 106512. [Google Scholar] [CrossRef] [PubMed]
- Smagghe, F.; Spooner-Hart, R.; Chen, Z.H.; Donovan-Mak, M. Biological control of arthropod pests in protected cropping by employing entomopathogens: Efficiency, production and safety. Biol. Control 2023, 186, 105337. [Google Scholar] [CrossRef]
- Nascimento, J.D.; Goncalves, K.C.; Dias, N.P.; Oliveira, J.L.D.; Bravo, A.; Polanczyk, R.A. Adoption of Bacillus thuringiensis-based biopesticides in agricultural systems and new approaches to improve their use in Brazil. Biol. Control 2022, 165, 104792. [Google Scholar] [CrossRef]
- Höfte, H.; Whiteley, H.R. Insecticidal Crystal Proteins of Bacillus thuringiensis. Am. Soc. Microbiol. 1989, 53, 242–255. [Google Scholar] [CrossRef]
- Soberón, M.; Gill, S.S.; Bravo, A. Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cell. Mol. Life Sci. 2009, 66, 1337–1349. [Google Scholar] [CrossRef]
- Herrero, S.; Bel, Y.; Hernández-Martínez, P.; Ferré, J. Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp. Curr. Opin. Insect Sci. 2016, 15, 89–96. [Google Scholar] [CrossRef]
- Li, Q.L.; Li, M.G.; Zhu, M.Y.; Zhong, J.L.; Wen, L.; Zhang, J.; Zhang, R.; Gao, Q.; Yu, X.Q.; Lu, Y.Z. Genome-wide identification and comparative analysis of Cry toxin receptor families in 7 insect species with a focus on Spodoptera litura. Insect Sci. 2022, 29, 783–800. [Google Scholar] [CrossRef]
- Dutta, T.K.; Veeresh, A.; Phani, V.; Kundu, A.; Santhoshkumar, K.; Mathur, C.; Sagar, D.; Sreevathsa, R. Molecular characterization and functional analysis of Cry toxin receptor-like genes from the model insect Galleria mellonella. Insect Mol. Biol. 2022, 31, 434–446. [Google Scholar] [CrossRef]
- Gao, Y.L.; Jurat-Fuentes, J.L.; Oppert, B.; Fabrick, J.A.; Liu, C.X.; Gao, J.H.; Lei, Z.R. Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment. Pest Manag. Sci. 2011, 67, 1076–1081. [Google Scholar] [CrossRef]
- Fabrick, J.A.; Mathew, L.G.; LeRoy, D.M.; Hull, J.J.; Unnithan, G.C.; Yelich, A.G.; Carrière, Y.; Li, X.C.; Tabashnik, B.E. Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. Pest Manag. Sci. 2020, 76, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.L.; Guo, Z.J.; Kang, S.; Qin, J.Y.; Gong, L.J.; Sun, D.; Guo, L.; Zhu, L.H.; Bai, Y.; Zhang, Z.Z.; et al. Reduced expression of the P-glycoprotein gene PxABCB1 is linked to resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.). Pest Manag. Sci. 2020, 76, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.X.; Zhang, Z.; Jin, Z.; Wang, F.L.; Fabrick, J.A.; Wu, Y.D. Helicoverpa armigera ATP-binding cassette transporter ABCA2 is a functional receptor of Bacillus thuringiensis Cry2Ab toxin. Pestic. Biochem. Physiol. 2023, 197, 105658. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Wang, P.; Wu, T.; Li, B.; Wang, X.; Lei, C.; Lin, Y.; Zhao, J.; Ma, W. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. Insect Mol. Biol. 2018, 27, 83–89. [Google Scholar] [CrossRef]
- Brühl, C.A.; Després, L.; Frör, O.; Patil, C.D.; Poulin, B.; Tetreau, G.; Allgeier, S. Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). Sci. Total Environ. 2020, 724, 137800. [Google Scholar] [CrossRef]
- Gu, J.; Ye, R.; Xu, Y.; Yin, Y.; Li, S.; Chen, H. A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins. Microchem. J. 2021, 165, 106137. [Google Scholar] [CrossRef]
- Contreras, E.; Benito-Jardón, M.; López-Galiano, M.J.; Real, M.D.; Rausell, C. Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity. Dev. Comp. Immunol. 2015, 50, 139–145. [Google Scholar] [CrossRef]
- Wojda, I. Immunity of the greater wax moth Galleria mellonella. Insect Sci. 2017, 24, 342–357. [Google Scholar] [CrossRef]
- García-Robles, I.; Loma, J.D.; Capilla, M.; Roger, I.; Boix-Montesinos, P.; Carrión, P.; Vicente, M.; López-Galiano, M.J.; Real, M.D.; Rausell, C. Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis. Dev. Comp. Immunol. 2020, 104, 103525. [Google Scholar] [CrossRef]
- Xu, X.L.; Liang, X.M.; Wei, W.; Ding, X.H.; Peng, C.; Wang, X.F.; Chen, X.Y.; Yang, L.; Xu, J.F. Effects of non-lethal Cry1F toxin exposure on the growth, immune response, and intestinal microbiota of silkworm (Bombyx mori). Ecotoxicol. Environ. Safe. 2023, 267, 115648. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Yu, X.Q.; Wang, Q.; Tan, X.P.; Li, J.Y.; Zhang, S.S.; Xia, X.F.; You, M.S. Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 2020, 107, 103661. [Google Scholar] [CrossRef] [PubMed]
- Terra, W.R.; Dias, R.O.; Oliveira, P.L.; Ferreira, C.; Venancio, T.M. Transcriptomic analyses uncover emerging roles of mucins, lysosome/secretory addressing and detoxification pathways in insect midguts. Curr. Opin. Insect Sci. 2018, 29, 34–40. [Google Scholar] [CrossRef]
- Roe, A.D.; Stein, J.D.; Gillette, N.E.; Sperling, F.A.H. Identification of Dioryctria (Lepidoptera: Pyralidae) in a Seed Orchard at Chico, California. Ann. Entomol. Soc. Am. 2006, 99, 433–448. [Google Scholar] [CrossRef]
- Xing, Y.; Niu, F.; Wang, X.M.; Chen, H.W.; Chi, D.F. Molecular characterization and its binding properties of general odorant binding protein 2 in Dioryctria abietella (Lepidoptera: Pyralidae). J. Appl. Entomol. 2022, 146, 760–772. [Google Scholar] [CrossRef]
- Wang, X.M.; Chen, R.T.; Xing, Y.; Sun, J.X.; Chen, H.W.; Xie, D.; Jia, N.Y.; Chi, D.F. Microbiome and electron microscopy analyses of the mechanisms underlying the effects of Bacillus thuringiensis on Dioryctria abietella. Biol. Control 2023, 184, 105283. [Google Scholar] [CrossRef]
- Wang, X.M.; Chen, R.T.; Jia, N.Y.; Sun, J.X.; Luo, Y.X.; Yang, Y.Z.; Zhuang, Y.T.; Wang, J.F.; Guo, H.R.; Chi, D.F. The effect of spraying bacterial and fungal solutions on Korean pine Pinus koraiensis Sieb. et Zucc. cone development and seed quality when sprayed during the flowering phase. Bull. Entomol. Res. 2023, 113, 180–189. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Zhang, Y.; Chen, F.; Sun, M.; Li, S.; Zhang, J.; Zhang, F. Resistance to both aphids and nematodes in tobacco plants expressing a Bacillus thuringiensis crystal protein. Pest Manag. Sci. 2024, 80, 3098–3106. [Google Scholar] [CrossRef]
- Liu, S.W.; Elzaki, M.E.A.; Staehelin, C.; Ma, Z.H.; Qin, Z.; Wang, R.L. Exposure to herbicides reduces larval sensitivity to insecticides in Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci. 2019, 26, 711–720. [Google Scholar] [CrossRef]
- Singh, S.; Nebapure, S.M.; Taria, S.; Sagar, D.; Subramanian, S. Current status of phosphine resistance in Indian field populations of Tribolium castaneum and its influence on antioxidant enzyme activities. Sci. Rep.-UK 2023, 13, 16497. [Google Scholar] [CrossRef]
- Li, S.F.; Yang, Y.H.; Wen, J.Q.; He, M.; Hu, Q.B.; Zhang, K.; Weng, Q.F. Comparative transcriptome analysis reveals the molecular mechanism of sterility induced by irradiation of Plutella xylostella (Linnaeus). Ecotoxicol. Environ. Saf. 2024, 270, 115890. [Google Scholar] [CrossRef]
- Su, Q.C.; Wang, X.; Deng, C.; Yun, Y.L.; Zhao, Y.; Peng, Y. Transcriptome responses to elevated CO2 level and Wolbachia-infection stress in Hylyphantes graminicola (Araneae: Linyphiidae). Insect Sci. 2020, 27, 908–920. [Google Scholar] [CrossRef]
- Yang, J.; Wen, X.; Zou, J.; Huang, X.R.; Wu, T.; Huang, X.L. De novo transcriptome analysis of Protohermes xanthodes Navás (Megaloptera: Corydalidae) reveling the effects of sublethal chlorpyrifos on the expression of cholinergic neuronal genes. Pestic. Biochem. Physiol. 2024, 202, 105948. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Trinity: Reconstructing a full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.X.; Wang, S.; Liu, J.; Jiang, X.D.; Wen, J.; Suo, Z.Q.; Liu, J.; Zhong, M.C.; Wang, Q.; Gu, Z.; et al. A comparative full-length transcriptomic resource provides insight into the perennial monocarpic mass flowering. Plant J. 2023, 116, 1842–1855. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wu, H.F.; Zheng, L.; Tan, M.T.; Li, Y.N.; Xu, J.S.; Yan, S.C.; Jiang, D. Cd exposure-triggered susceptibility to Bacillus thuringiensis in Lymantria dispar involves in gut microbiota dysbiosis and hemolymph metabolic disorder. Ecotoxicol. Environ. Saf. 2022, 241, 113763. [Google Scholar] [CrossRef]
- Burgess, E.P.; Barraclough, E.I.; Kean, A.M.; Markwick, N.P.; Malone, L.A. Responses of 9 lepidopteran species to Bacillus thuringiensis: How useful is phylogenetic relatedness for selecting surrogate species for nontarget arthropod risk assessment? Insect Sci. 2015, 22, 803–812. [Google Scholar] [CrossRef]
- Baranek, J.; Banaszak, M.; Kaznowski, A.; Lorent, D. A novel Bacillus thuringiensis Cry9Ea-like protein with high insecticidal activity towards Cydia pomonella larvae. Pest Manag. Sci. 2021, 77, 1401–1408. [Google Scholar] [CrossRef]
- Trisyono, Y.A.; Chippendale, G.M. Susceptibility of field-collected populations of the Southwestern corn borer, Diatraea grandiosella, to Bacillus thuringiensis. Pest Manag. Sci. 2002, 58, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Oyediran, I.O.; Matthews, P.; Palekar, N.; French, W.; Conville, J.; Burd, T. Susceptibility of northern corn rootworm Diabrotica barberi (Coleoptera: Chrysomelidae) to mCry3A and eCry3.1Ab Bacillus thuringiensis proteins. Insect Sci. 2016, 23, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Bordalo, M.D.; Gravato, C.; Beleza, S.; Campos, D.; Lopes, I.; Pestana, J.L.T. Lethal and sublethal toxicity assessment of Bacillus thuringiensis var. israelensis and Beauveria bassiana based bioinsecticides to the aquatic insect Chironomus riparius. Sci. Total Environ. 2020, 698, 134155. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.P.; Martins-de-Sa, D.; Macedo, L.L.P.; Lourenço-Tessutti, I.T.; Ruffo, G.C.; Sousa, J.P.A.; Santana, J.M.D.R.; Oliveira-Neto, O.B.; Moura, S.M.; Silva, M.C.M.; et al. Cotton plants overexpressing the Bacillus thuringiensis Cry23Aa and Cry37Aa binary-like toxins exhibit high resistance to the cotton boll weevil (Anthonomus grandis). Plant Sci. 2024, 344, 112079. [Google Scholar] [CrossRef]
- Barbero, F.; Pogolotti, C.; Bonelli, S.; Ferracini, C. Is microbiological control of the box tree moth feasible? Effectiveness and impact on non-target diurnal Lepidoptera. Biol. Control 2024, 188, 105427. [Google Scholar] [CrossRef]
- Redmond, C.T.; Wallis, L.; Geis, M.; Williamson, R.C.; Potter, D.A. Strengths and limitations of Bacillus thuringiensis galleriae for managing Japanese beetle (Popillia japonica) adults and grubs with caveats for cross-order activity to monarch butterfly (Danaus plexippus) larvae. Pest Manag. Sci. 2020, 76, 472–479. [Google Scholar] [CrossRef]
- Pu, Y.C.; Ma, T.L.; Hou, Y.M.; Sun, M. An entomopathogenic bacterium strain, Bacillus thuringiensis, as a biological control agent against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Pest Manag. Sci. 2017, 73, 1494–1502. [Google Scholar] [CrossRef]
- Khan, M.; Johnson, K. Microplastics alter toxicity of the insecticide Bacillus thuringiensis israelensis to chironomid larvae in different ways depending on particle size. Sci. Total Environ. 2024, 954, 176637. [Google Scholar] [CrossRef]
- Shu, C.; Tan, S.; Yin, J.; Soberón, M.; Bravo, A.; Liu, C.; Geng, L.; Song, F.; Li, K.; Zhang, J. Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis. Appl. Microbiol. Biot. 2015, 99, 7209–7218. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, W.; Yin, C.; Ma, W.; Liao, M.; Li, F.; Zhang, J. Cry9A and Vip3A protein-induced transcriptional changes correspond to their synergistic damage to the midgut of Chilo suppressalis. Pestic. Biochem. Physiol. 2023, 196, 105596. [Google Scholar] [CrossRef]
- Chen, R.; Zhuang, Y.; Wang, M.; Yu, J.; Chi, D. Transcriptomic Analysis of the Response of the Dioryctria abietella larva midgut to Bacillus thuringiensis 2913 Infection. Int. J. Mol. Sci. 2024, 25, 10921. [Google Scholar] [CrossRef] [PubMed]
- Mason, K.L.; Stepien, T.A.; Blum, J.E.; Holt, J.F.; Labbe, N.H.; Rush, J.S.; Raffa, K.F.; Handelsman, J. From commensal to pathogen: Translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. mBio 2011, 2, e00065–e00111. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Zhang, Y.N.; Yang, X.; Hao, S.P.; Wang, Y.J.; Yang, X.X.; Shen, Y.Q.; Su, Q.; Xiao, Y.D.; Liu, J.Q.; et al. Proteotranscriptomic analyses of the midgut and Malpighian tubules after a sublethal concentration of Cry1Ab exposure on Spodoptera litura. Pest Manag. Sci. 2024, 80, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
- How, C.M.; Li, Y.S.; Huang, W.Y.; Wei, C.C. Early-life exposure to mycotoxin zearalenone exacerbates aberrant immune response, oxidative stress, and mortality of Caenorhabditis elegans under pathogen Bacillus thuringiensis infection. Ecotoxicol. Environ. Saf. 2024, 272, 116085. [Google Scholar] [CrossRef]
- Cancino-Rodezno, A.; Alexander, C.; Villaseñor, R.; Pacheco, S.; Porta, H.; Pauchet, Y.; Soberón, M.; Gill, S.S.; Bravo, A. The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 2010, 40, 58–63. [Google Scholar] [CrossRef]
- Grizanova, E.V.; Dubovskiy, I.M.; Whitten, M.M.; Glupov, V.V. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 2014, 119, 40–46. [Google Scholar] [CrossRef]
- Yaroslavtseva, O.N.; Dubovskiy, I.M.; Khodyrev, V.P.; Duisembekov, B.A.; Kryukov, V.Y.; Glupov, V.V. Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae. J. Insect Phys. 2017, 96, 14–20. [Google Scholar] [CrossRef]
- Li, E.T.; Wu, H.J.; Wang, Z.M.; Li, K.B.; Zhang, S.; Cao, Y.Z.; Yin, J. PI3K/Akt/CncC signaling pathway mediates the response to EPN-Bt infection in Holotrichia parallela larvae. Pest Manag. Sci. 2023, 79, 1660–1673. [Google Scholar] [CrossRef]
- Endo, H.; Tanaka, S.; Adegawa, S.; Ichino, F.; Tabunoki, H.; Kikuta, S.; Sato, R. Extracellular loop structures in silkworm ABCC transporters determine their specificities for Bacillus thuringiensis Cry toxins. J. Biol. Chem. 2018, 293, 8569–8577. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Tan, J.; Wei, P.; Yu, S.; Liu, R.; Gao, J. Transcriptome profiling analysis of the intoxication response in midgut tissue of Agrotis ipsilon larvae to Bacillus thuringiensis Vip3Aa protoxin. Pestic. Biochem. Physiol. 2019, 160, 20–29. [Google Scholar] [CrossRef]
- Ren, X.L.; Ma, Y.; Cui, J.J.; Li, G.Q. RNA interference-mediated knockdown of three putative aminopeptidases N affects susceptibility of Spodoptera exigua larvae to Bacillus thuringiensis Cry1Ca. J. Insect Physiol. 2014, 67, 28–36. [Google Scholar] [CrossRef]
- Guo, Z.; Kang, S.; Zhu, Z.; Xia, J.; Wu, Q.; Wang, S.; Xie, W.; Zhang, Y. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). Insect Biochem. Mol. Biol. 2015, 59, 30–40. [Google Scholar] [CrossRef]
Treatment | N | Slope ± SE | X2 | df | R2 | LC50 (CFU mL−1) | 95% CL | p Value |
---|---|---|---|---|---|---|---|---|
Bt2913 | 180 | 0.231 ± 0.069 | 1.757 | 7 | 0.972 | 6.52 × 109 | 2.19 × 108–7.65 × 1014 | 0.001 |
Bt05041 | 180 | 0.293 ± 0.068 | 1.897 | 7 | 0.965 | 3.15 × 108 | 4.02 × 107–2.98 × 1010 | 0.000 |
Bt223176 | 180 | 0.086 ± 0.065 | 0.609 | 7 | 0.999 | 1.62 × 1015 | - | 0.184 |
Sample | Raw Reads | Clean Reads | Q20(%) | Q30(%) | GC(%) | N Percentage (%) | Total Mapping (%) | Uniquely Mapping (%) |
---|---|---|---|---|---|---|---|---|
Bt2-1 | 63,064,626 | 48,014,480 | 98.61 | 95.09 | 49.27 | 0.00 | 84.44 | 26.22 |
Bt2-2 | 60,253,896 | 54,363,680 | 98.74 | 95.56 | 51.42 | 0.00 | 88.11 | 22.86 |
Bt2-3 | 154,500,618 | 148,944,106 | 98.57 | 94.90 | 47.28 | 0.00 | 80.38 | 25.80 |
Bt8-1 | 51,279,414 | 49,466,618 | 98.52 | 95.12 | 48.39 | 0.20 | 88.95 | 24.96 |
Bt8-2 | 60,099,620 | 58,089,538 | 98.55 | 95.17 | 47.83 | 0.20 | 89.15 | 24.14 |
Bt8-3 | 50,968,208 | 49,377,024 | 98.62 | 95.38 | 48.21 | 0.20 | 89.01 | 24.78 |
CK-1 | 48,258,260 | 46,652,676 | 98.59 | 95.27 | 47.94 | 0.20 | 89.34 | 23.60 |
CK-2 | 59,812,572 | 57,894,058 | 98.61 | 95.35 | 47.89 | 0.20 | 89.16 | 24.29 |
CK-3 | 55,878,090 | 53,937,654 | 98.55 | 95.19 | 48.09 | 0.20 | 89.13 | 24.01 |
Pathways | Bt2 vs. CK | Bt2 vs. Bt8 | Bt8 vs. CK | ||||||
---|---|---|---|---|---|---|---|---|---|
Up | Down | Total | Up | Down | Total | Up | Down | Total | |
Signaling pathway | |||||||||
p53 | 4 | 0 | 4 | 2 | 0 | 2 | 0 | 0 | 0 |
AMPK | 10 | 9 | 19 | 12 | 9 | 21 | 0 | 0 | 0 |
MAPK | 14 | 1 | 15 | 19 | 0 | 19 | 0 | 0 | 0 |
Rap1 | 20 | 0 | 20 | 21 | 1 | 22 | 0 | 0 | 0 |
cAMP | 22 | 3 | 25 | 24 | 2 | 26 | 0 | 0 | 0 |
JAK-STAT | 9 | 0 | 9 | 8 | 0 | 8 | 0 | 0 | 0 |
Toll | 12 | 0 | 12 | 9 | 0 | 9 | 0 | 0 | 0 |
Imd | 11 | 1 | 12 | 10 | 0 | 10 | 0 | 0 | 0 |
Pattern recognition receptors | |||||||||
NOD-like receptors | 7 | 3 | 10 | 6 | 0 | 6 | 0 | 0 | 0 |
Toll-like receptors | 9 | 1 | 10 | 7 | 0 | 7 | 0 | 0 | 0 |
RIG-I-like receptors | 3 | 1 | 4 | 4 | 0 | 4 | 0 | 0 | 0 |
C-type lectin receptors | 14 | 1 | 15 | 11 | 0 | 11 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Sun, J.; Xing, Y.; Chen, R.; Chi, D. Bt Exposure-Induced Death of Dioryctria abietella (Lepidoptera: Pyralidae) Involvement in Alterations of Gene Expression and Enzyme Activity. Insects 2025, 16, 1010. https://doi.org/10.3390/insects16101010
Wang X, Sun J, Xing Y, Chen R, Chi D. Bt Exposure-Induced Death of Dioryctria abietella (Lepidoptera: Pyralidae) Involvement in Alterations of Gene Expression and Enzyme Activity. Insects. 2025; 16(10):1010. https://doi.org/10.3390/insects16101010
Chicago/Turabian StyleWang, Xiaomei, Jiaxing Sun, Ya Xing, Ruting Chen, and Defu Chi. 2025. "Bt Exposure-Induced Death of Dioryctria abietella (Lepidoptera: Pyralidae) Involvement in Alterations of Gene Expression and Enzyme Activity" Insects 16, no. 10: 1010. https://doi.org/10.3390/insects16101010
APA StyleWang, X., Sun, J., Xing, Y., Chen, R., & Chi, D. (2025). Bt Exposure-Induced Death of Dioryctria abietella (Lepidoptera: Pyralidae) Involvement in Alterations of Gene Expression and Enzyme Activity. Insects, 16(10), 1010. https://doi.org/10.3390/insects16101010