Integrated Pest Management of Wireworms in Potatoes: Use of Tolerant Varieties to Implement Damage Prevention
Simple Summary
Abstract
1. Introduction
- The α-chaconine and caffeic acid content under the periderm could play a defensive role against PTM;
- The PTM-tolerant 4x-breeding clone ISCI 181/10-4, which has high levels of these bio-compounds and a conspicuous phenolic content, may be useful in future breeding programs designed to defend plants and enhance nutritional value.
- That new 4x-breeding clones showing PTM tolerance may reduce wireworm damage as well;
- That wireworm-tolerant genotypes with good agronomic potential can be used to implement IPM packages immediately and prevent significant wireworm damage, mainly by exploiting IPM Principle 1 (prevention with tolerant varieties), without synthetic insecticides being applied.
2. Materials and Methods
2.1. Pot Experiments
2.1.1. Potato Inspections and Surveys
- Alive and moving (left on the towel and moving away quickly);
- Dying (on the towel for a minute without moving in a specific direction), or almost immobile but alive;
- Dead.
- -
- Number of superficial scars/holes;
- -
- Number of deep scars/holes.
2.2. Field Experiments
2.2.1. Cultivation
2.2.2. Assessment of Wireworm Species/Density
2.2.3. Estimation of Soil-Pest Damage to Potatoes
2.3. Larvae Identification
2.4. Statistical Analysis
3. Results
3.1. Pot Trials
3.2. Field Experiments
Assessment of Wireworm Species/Density
4. Discussion
- -
- yield;
- -
- factors in the physical environment (e.g., susceptibility to damage);
- -
- resistance to harmful organisms (e.g., blackleg, common scab or leafroll);
- -
- quality (e.g., crisping/French fry quality, sensory texture quality).
5. Conclusions
- -
- using the tolerant ISCI 4x-breeding clones or their donor parent Q 115-6 in breeding programs;
- -
- reproducing the most agronomically promising genotypes (Table 10) to increase the amount of land farmed with tolerant potato varieties.
- -
- test tolerance to wireworm attacks in breeding programs, with a range of species and climatic conditions;
- -
- publish yearly tables of variety susceptibility to wireworms, along with other agronomic characteristics based on independent public assessment (e.g., Table 11).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vernon, R.S.; van Herk, W.G. Wireworms as pests of potato. Insect pests of potato: Global perspectives on biology and management. In Insect Pests of Potato; Alyokhin, A., Vincent, C., Giordanengo, P., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 103–164. [Google Scholar] [CrossRef]
- FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#home (accessed on 23 August 2024).
- RUCIP European Committee. Rules and Practices of the Inter-European Trade in Potatoes. 2021. Available online: https://rucip.eu/wp-content/uploads/2021/02/RUCIP-2021-EN.pdf (accessed on 23 August 2024).
- Le Cointe, R.; Larroudé, P.; Thibord, I.B.; Lehmus, J.; Ogier, J.C.; Mahéo, F.; Malet, M.; Dolo, P.; Ngala, B.; Plantegenest, M.; et al. Etat des lieux des connaissances sur les taupins (Coléoptères: Elatéridés) et des stratégies alternatives aux pesticides pour la gestion des dégâts. Innov. Agron. 2023, 89, 78–90. [Google Scholar]
- European Court of Auditors, Special Report, Sustainable Use of Plant Protection Products: Limited Progress in Measuring and Reducing Risks. 2020. Available online: https://op.europa.eu/webpub/eca/special-reports/pesticides-5-2020/en/index.html (accessed on 23 August 2024).
- Tijjani, A.; Abdullahi, A.; Khairulmazmi, A. The role of crop protection in sustainable potato (Solanum tuberosum L.) production to alleviate global starvation problem: An overview. In Solanum tuberosum—A Promising Crop for Starvation Problem; Yildiz, M., Ozgen, Y., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.; Bonmatin, J.-M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.; Giorio, C.; Girolami, V.; et al. Systemic Insecticides (Neonicotinoids and Fipronil): Trends, Uses, Mode of Action and Metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Pisa, L.; Goulson, D.; Yang, E.C.; Gibbons, D.; Sánchez-Bayo, F.; Mitchell, E.; Aebi, A.; van der Sluijs, J.; MacQuarrie, C.J.K.; Giorio, C.; et al. An Update of the Worldwide Integrated Assessment (WIA) on Systemic Insecticides. Part 2: Impacts on Organisms and Ecosystems. Environ. Sci. Pollut. Res. 2021, 28, 11749–11797. [Google Scholar] [CrossRef] [PubMed]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight Principles of Integrated Pest Management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Andrews, N.; Ambrosino, M.; Fisher, G.; Rondon, S.I. Wireworm Biology and Nonchemical Management in Potatoes in the Pacific Northwest; Pacific Northwest Publications, 607; Oregon State University: Corvallis, OR, USA, 2008. [Google Scholar]
- Yang, Y.; Achaerandio, I.; Pujolà, M. Classification of potato cultivars to establish their processing aptitude. J. Sci. Food Agric. 2016, 96, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Fasulati, S.R.; Ivanova, O.V.; Zhukovskaya, M.I. The attractiveness of tubers of different potato cultivars for larvae of the click beetle Agriotes lineatus L. (Coleoptera, Elateridae). J. Evol. Biochem. Physiol. 2019, 55, 249–251. [Google Scholar] [CrossRef]
- Johnson, S.N.; Anderson, E.A.; Dawson, G.; Griffiths, D.W. Varietal susceptibility of potatoes to wireworm herbivory. Agric. For. Entomol. 2008, 10, 167–174. [Google Scholar] [CrossRef]
- Jonasson, T.; Olsson, K. The influence of glycoalkaloids, chlorogenic acid and sugars on the susceptibility of potato tubers to wireworm damage. Potato Res. 1994, 37, 205–216. [Google Scholar] [CrossRef]
- Olsson, K.; Jonasson, T. Genotypic differences in susceptibility to wireworm attack in potato: Mechanisms and implications for plant breeding. Plant Breed. 1995, 114, 66–69. [Google Scholar] [CrossRef]
- Yencho, G.C.; Kowalski, S.P.; Kennedy, G.G.; Sanford, L.L. Segregation of leptine glycoalkaloids and resistance to Colorado potato beetle (Leptinotarsa decemlineata (Say)) in F2 Solanum tuberosum and S. chacoense potato progenies. Am. J. Potato Res. 2000, 77, 167–178. [Google Scholar] [CrossRef]
- Altesor, P.; García, A.; Font, E.; Rodríguez-Haralambides, A.; Vilaró, F.; Oesterheld, M.; Soler, R.; González, A. Glycoalkaloids of wild and cultivated Solanum: Effects on specialist and generalist insect herbivores. J. Chem. Ecol. 2014, 40, 599–608. [Google Scholar] [CrossRef]
- Chowański, S.; Adamski, Z.; Marciniak, P.; Rosiński, G.; Büyükgüzel, E.; Büyükgüzel, K.; Falabella, P.; Scrano, L.; Ventrella, E.; Lelario, F.; et al. A Review of Bioinsecticidal Activity of Solanaceae Alkaloids. Toxins 2016, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Hlywka, J.J.; Stephenso, G.R.; Sears, M.K.; Yada, R.Y. Effects of insect damage on glycoalkaloid content in potatoes (Solanum tuberosum). J. Agric. Food Chem. 1994, 42, 2545–2550. [Google Scholar] [CrossRef]
- Tajner-Czopek, A.; Jarych-Szyszka, M.; Lisinska, G. Changes in glycoalkaloids content of potatoes destined for consumption. Food Chem. 2008, 106, 706–711. [Google Scholar] [CrossRef]
- Knuthsen, P.; Jensen, U.; Schmidt, B.; Larsen, I.K. Glycoalkaloids in potatoes: Content of glycoalkaloids in potatoes for consumption. J. Food Compos. Anal. 2009, 22, 577–581. [Google Scholar] [CrossRef]
- OECD. Consensus document on compositional considerations for new varieties of potatoes: Key food and feed nutrients, anti-nutrients and toxicants. In OECD Environmental Health and Safety Publications; OECD, Ed.; Safety of Novel Foods and Feeds No. 4; OECD: Paris, France, 2002. [Google Scholar]
- German Federal Institute for Risk Assessment (BfR). Table Potatoes Should Contain Low Levels of Glycoalkaloids (Solanine). BfR Opinion No. 010/2018; 2018. Available online: https://mobil.bfr.bund.de/cm/349/table-potatoes-should-contain-low-levels-of-glycoalkaloids-solanine.pdf (accessed on 20 December 2024).
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic compounds in the potato and its byproducts: An overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Deußer, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem. 2012, 135, 2814–2824. [Google Scholar] [CrossRef]
- Brown, C.R. Antioxidants in potato. Am. J. Potato Res. 2005, 82, 163–172. [Google Scholar] [CrossRef]
- Novy, R.G.; Alvarez, J.M.; Sterrett, S.B.; Kuhar, T.P.; Horton, D. Progeny of a tri-species potato somatic hybrid express resistance to wireworm in eastern and western potato production regions of the US. Am. J. Potato Res. 2006, 83, 126. [Google Scholar]
- Suszkiw, J. New potatoes withstand destructive wireworms. Agric. Res. 2011, 59, 22. [Google Scholar]
- Ross, H. Potato Breeding Problems and Perspectives; Horn, W., Robbelen, G., Eds.; Advances in plant breeding; Paul Parey Scientific Pub: Hamburg, Germany, 1986; Volume 13, pp. 82–86. Available online: https://openlibrary.org/books/OL12740302M/Potato_Breeding_Problems_and_Perspectives (accessed on 10 September 2024).
- Wright, R.J.; Dimock, M.B.; Tingey, W.M.; Plaisted, R.L. Colorado potato beetle (Coleoptera: Chrysomelidae): Expression of resistance in Solanum berthaultii and interspecific potato hybrids. J. Econ. Entomol. 1985, 78, 576–582. [Google Scholar] [CrossRef]
- Kalazich, J.C.; França, F.H.; Tingey, W.M.; Lorenzen, J. In 7th Annual Report Chile-Brazil-Cornell-NDSU. Obtaining Potatoes Less Dependent on Pesticides Through Broad Spectrum Insect Resistance; The Mcknight Foundation Collaborative Crop Research Program: First Annual Scientific Progress Report; McKnight Foundation: Minneapolis, MN, USA, 2003; pp. 1–67. [Google Scholar]
- Musmeci, S.; Gambino, P.; Innocenzi, V.; Arnone, S.; Lai, A. Eliciting of resistance against potato tuber moth larvae in tubers of Solanum tuberosum (+) S. pinnatisectum hybrids. Acta Hortic. 2005, 684, 135–142. [Google Scholar] [CrossRef]
- Pacifico, D.; Musmeci, S.; Sanchez del Pulgar, J.; Onofri, C.; Parisi, B.; Sasso, R.; Mandolino, G.; Lombardi-Boccia, G. Caffeic acid and α-chaconine influence the resistance of potato tuber to Phthorimaea operculella (Lepidoptera: Gelechiidae). Am. J. Potato Res. 2019, 96, 403–413. [Google Scholar] [CrossRef]
- Civolani, S.; Benvegnù, I.; Accinelli, G.; Martina, B.; Bernacchia, G.; Parisi, B.; Furlan, L. Evaluation of natural active ingredients for the protection of potato tubers from wireworm damage. Arthropod-Plant Interact. 2023, 17, 455–463. [Google Scholar] [CrossRef]
- Furlan, L. The biology of Agriotes sordidus Illiger (Col.; Elateridae). J. Appl. Entomol. 2004, 128, 696–706. [Google Scholar] [CrossRef]
- Chabert, A.; Blot, Y. Estimation des populations larvaires de taupins par un piège attractif. Phytoma 1992, 436, 26–30. [Google Scholar]
- Furlan, L. IPM thresholds for Agriotes wireworm species in maize in Southern Europe. J. Pest Sci. 2014, 87, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Furlan, L.; Benvegnù, I.; Bilò, M.F.; Lehmhus, J.; Ruzzier, E. Species identification of wireworms (Agriotes spp.; coleoptera: Elateridae) of agricultural importance in Europe: A new “horizontal identification table”. Insects 2021, 12, 534. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Corporation. Microsoft Excel (Version 16.0.4266.1001); Microsoft Corporation: Redmond, WA, USA, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 10 September 2024).
- Wickham, H.; Bryan, J. ‘readxl’: Read Excel Files. R Package version 1.4.2. 2023. Available online: https://CRAN.R-project.org/package=readxl (accessed on 10 September 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 10 September 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K. ‘dplyr’: A Grammar of Data Manipulation. R Package Version 1.1.2. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 10 September 2024).
- Kassambara, A.; ‘ggpubr’: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. 2023. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 10 September 2024).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; Available online: https://CRAN.R-project.org/package=MASS (accessed on 10 September 2024).
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://CRAN.R-project.org/package=car (accessed on 10 September 2024).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting. Linear Mixed-Effects Models Using ‘lme4’. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M. ‘Matrix’: Sparse and Dense Matrix Classes and Methods. R Package version 1.5-1. 2023. Available online: https://CRAN.R-project.org/package=Matrix (accessed on 10 April 2024).
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Rank Transformations as a Bridge Between Parametric and Nonparametric Statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Noguchi, K.; Abel, R.S.; Marmolejo-Ramos, F.; Konietschke, K. Nonparametric multiple comparisons. Behav. Res. Methods 2020, 52, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Hahm, Y.I.; Shin, K.Y.; Ahn, Y.J. Evaluation of various potato cultivars for resistance to wireworms (Coleoptera: Elateridae). Am. J. Potato Res. 1999, 76, 317–319. [Google Scholar] [CrossRef]
- Langdon, K.W.; Abney, M.R. Relative susceptibility of selected potato cultivars to feeding by two wireworm species at two soil moisture levels. Crop Prot. 2017, 101, 24–28. [Google Scholar] [CrossRef]
- Staudacher, K.; Schallhart, N.; Thalinger, B.; Wallinger, C.; Juen, A.; Traugott, M. Plant diversity affects behavior of generalist root herbivores, reduces crop damage, and enhances crop yield. Ecol. Appl. 2013, 23, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Traugott, M.; Schallhart, N.; Kaufmann, R.; Juen, A. The feeding ecology of elaterid larvae in central European arable land: New perspectives based on naturally occurring stable isotopes. Soil Biol. Biochem. 2008, 40, 342–349. [Google Scholar] [CrossRef]
- Wallinger, C.; Staudacher, K.; Schallhart, N.; Mitterrutzner, E.; Steiner, E.M.; Juen, A.; Traugott, M. How generalist herbivores exploit belowground plant diversity in temperate grasslands. Mol. Ecol. 2014, 23, 3826–3837. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, A.C.; Ruhland, F.; Boullis, A.; Verheggen, F.J. Potato varietal susceptibility to wireworms: Feeding behaviour, fitness and semiochemical-based host selection. Entomol. Gen. 2023, 43, 1193–1201. [Google Scholar] [CrossRef]
- Garuma, N.; Getahun, B. Plants and Insects’ Interaction: A Review on the Mechanisms of Plant Defense Against Herbivorous Insects. Acad. J. Entomol. 2023, 16, 130–140. [Google Scholar]
- CREA. 2024. Available online: https://www.crea.gov.it/documents/63509/2305939/Linee-guida-agrarie-2024.pdf/168ab914-1cbc-490d-646c-4957961e76bc?t=1704388280446 (accessed on 10 September 2024).
- CREA. 2024. Available online: https://www.crea.gov.it/documents/63509/2305939/Elenco+testimoni+primavera+2024-sito.pdf/d4e5cdaa-9cba-d35a-759a-86461432e01f?t=1712331039698 (accessed on 10 September 2024).
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative Strategies for Controlling Wireworms in Field Crops: A Review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Furlan, L.; Contiero, B.; Chiarini, F.; Colauzzi, M.; Sartori, E.; Benvegnù, I.; Fracasso, F.; Giandon, P. Risk assessment of maize damage by wireworms (Coleptera: Elateridae) as the first step in implementing IPM and in reducing the environmental impact of soil insecticides. Environ. Sci. Pollut. Res. 2017, 24, 236–251. [Google Scholar] [CrossRef]
- Poggi, S.; Le Cointe, R.; Riou, J.B.; Larroudé, P.; Thibord, J.B.; Plantegenest, M. Relative influence of climate and agroenvironmental factors on wireworm damage risk in maize crops. J. Pest. Sci. 2018, 91, 585–599. [Google Scholar] [CrossRef]
- Furlan, L.; Contiero, B.; Chiarini, F.; Benvegnù, I.; Toth, M. The use of click-beetle pheromone traps to optimize the risk assessment of wireworm (Coleoptera: Elateridae) maize damage. Sci. Rep. 2020, 10, 8780. [Google Scholar] [CrossRef]
- Furlan, L.; Bonetto, C.; Costa, B.; Finotto, A.; Lazzeri, L. Observations on natural mortality factors in wireworm populations and evaluation of management options. IOBC/WPRS Bull. 2009, 45, 436–439. [Google Scholar]
- Furlan, L.; Bonetto, C.; Finotto, A.; Lazzeri, L.; Malaguti, L.; Patalano, G.; Parker, W. The efficacy of biofumigant meals and plants to control wireworm populations. Ind. Crops Prod. 2010, 31, 245–254. [Google Scholar] [CrossRef]
- Brunner, M.; Zeisler, C.; Neu, D.; Rotondo, C.; Rennstam Rubbmark, O.; Reinbacher, L.; Grabenweger, G.; Traugott, M. Trap crops enhance the control efficacy of Metarhizium brunneum against a soil-dwelling pest. J. Pest Sci. 2024, 97, 609–617. [Google Scholar] [CrossRef]
Genotype | Dealer/Breeder/Maintainer |
---|---|
Agata | AGRICO, Emmeloord, The Netherlands |
Ambra | HZPC, Joure, The Netherlands |
Avanti | STET HOLLAND, Emmeloord, The Netherlands |
Belami | IPM, Tincques, France |
Colomba | HZPC, Joure, The Netherlands |
ISCI 181/10-3 | CREA-CI, Bologna, Italy |
ISCI 181/10-4 | CREA-CI, Bologna, Italy |
ISCI 201/10-1 | CREA-CI, Bologna, Italy |
ISCI 207/11-2 | CREA-CI, Bologna, Italy |
Q 115-6 | INIA, Osorno, Chile |
JB007 | BERNARD, Gomiècourt, France |
Monalisa | HZPC, Joure, The Netherlands |
Sensation | IPM, Tincques, France |
Solanum chacoense #GLKS30919# | IPK-GLKS, Gross Luesewitz, Germany |
Vivaldi | HZPC, Joure, The Netherlands |
Type of Erosion | Diameter (mm) | Characteristics |
---|---|---|
Small | 1–2 | Open wound |
Ordinary | 2–5 | Open wound |
Large | >5 | Open wound |
Old | Variable | Healed, deformed hole due to early attack and subsequent tuber development |
Region | Emilia- Romagna | Emilia- Romagna | Emilia- Romagna | Emilia- Romagna | Emilia- Romagna | Veneto | Veneto | Lombardy | Friuli- Venezia Giulia |
---|---|---|---|---|---|---|---|---|---|
Site | Budrio | Budrio | Budrio | Budrio | Budrio | Asigliano Veneto | Noventa Vicentina | Madesimo | Valvasone Arzene |
Geographical coordinates | 44.53630, 11.49303 | 44.53630, 11.49303 | 44.53630, 11.49303 | 44.53630, 11.49303 | 44.53630, 11.49303 | 45.30562, 11.44751 | 45.29612, 11.55413 | 46.25444, 9.20416 | 46.00559, 12.83533 |
Year | 2018 | 2019 | 2020 | 2022 | 2023 | 2022 | 2023 | 2023 | 2023 |
Soil texture classification | Sandy clay loam | Sandy clay loam | Sandy clay loam | Sandy clay loam | Sandy clay loam | Clay loam | Clay loam | Sandy loam | Silty loam |
Genotype | ISCI 181/10-3 ISCI 181/10-4 ISCI 201/10-1 ISCI 207/11-2 ISCI 232/12-1 Q 115-6 Bionica Monalisa Monique Morene | ISCI 181/10-3 ISCI 181/10-4 ISCI 201/10-1 ISCI 207/11-2 Q 115-6 Bionica Monalisa Monique Morene | ISCI 181/10-3 ISCI 181/10-4 ISCI 201/10-1 ISCI 207/11-2 Q 115-6 Bionica Monalisa Morene | ISCI 133/12-7 ISCI 181/10-3 ISCI 181/10-4 ISCI 201/10-1 ISCI 207/11-2 Primura | ISCI 133/12-7 ISCI 181/10-3 ISCI 181/10-4 Agata Vivaldi | ISCI 133/12-7 ISCI 181/10-4 ISCI 201/10-1 ISCI 207/11-2 Primura | ISCI 181/10-3 ISCI 181/10-4 ISCI 133/12-7 Agata Vivaldi | ISCI 133/12-7 ISCI 181/10-3 ISCI 181/10-4 Monique | ISCI 181/10-3 ISCI 181/10-4 Agata Vivaldi |
Seed spacing (cm) | 90*30 | 90*30 | 90*30 | 90*30 | 90*30 | 80*27 | 90*24 | 80*24 | 80*28 |
Tuber-seed size (Ø mm), no cutted | 45–55 | 45–55 | 45–55 | 45–55 | 45–55 | 35–45 | 34–45 | 35–45 | 35–50 |
Planting date | 7 March | 3 March | 9 March | 5 March | 6 March | 12 March | 8 March | 6 June | 30 March |
Harvest date | 21 August | 19 August | 21 August | 20 July (Primura) 14 August | 14 July (Agata) 22 August | 03 August | 11 >August | 22 October | 17 August |
Genotype | Total Erosions | Severe Erosions | ||
---|---|---|---|---|
Colomba | 7.5 | a | 7 | a |
Ambra | 5.5 | ab | 5 | ab |
Monalisa | 5.5 | abc | 5 | ab |
JB 007 | 5.5 | ab | 4.5 | ab |
Sensation | 5 | abc | 4 | ab |
Vivaldi | 4.5 | abc | 4.5 | ab |
Avanti | 4 | abc | 2.5 | ab |
ISCI 201/10-1 | 3.5 | abc | 3 | ab |
ISCI 181/10-4 | 3 | abc | 3 | ab |
Agata | 3.5 | abc | 2 | ab |
Belami | 3 | abc | 2.5 | ab |
Q 115-6 | 2.5 | bc | 2 | b |
ISCI 181/10-3 | 1.5 | bc | 1 | b |
ISCI 207/11-2 | 1.5 | bc | 1 | b |
Solanum chacoense #GLKS30919# | 1 | c | 1 | b |
Genotype Comparison | Probability (%) | ||
---|---|---|---|
Total Erosions | Severe Damage | ||
Colomba vs. | Solanum chacoense #GLKS30919# | 0.10 | 0.27 |
ISCI 181/10-3 | 0.82 | 1.48 | |
Q 115-6 | 2.44 | 1.61 | |
ISCI 207/11-2 | 3.32 | 3.72 | |
ISCI 201/10-1 | 24.92 | 20.90 | |
Belami | 38.11 | 21.79 | |
Agata | 44.65 | 19.46 | |
ISCI 181/10-4 | 32.06 | 35.42 | |
Avanti | 61.84 | 40.95 | |
Sensation | 98.25 | 98.29 | |
Monalisa | 98.64 | 99.73 | |
Ambra | 99.98 | 99.47 | |
Vivaldi | 99.53 | 99.97 | |
JB 007 | 99.68 | 99.91 |
Genotype | % Alive Larvae | % Dying Larvae | % Dead Larvae | % Missing Larvae | ||||
---|---|---|---|---|---|---|---|---|
Agata | 83.3 | 0.0 | a | 0.0 | 16.7 | |||
Ambra | 91.7 | 0.0 | a | 0.0 | 8.3 | |||
Avanti | 66.7 | 0.0 | a | 0.0 | 33.3 | |||
Belami | 83.3 | 0.0 | a | 0.0 | 16.7 | |||
Colomba | 75.0 | 0.0 | a | 0.0 | 25.0 | |||
ISCI 181/10-3 | 100.0 | 0.0 | a | 0.0 | 0.0 | |||
ISCI 181/10-4 | 75.0 | 0.0 | a | 0.0 | 25.0 | |||
ISCI 201/10-1 | 75.0 | 0.0 | a | 0.0 | 25.0 | |||
ISCI 207/11-2 | 91.7 | 0.0 | a | 0.0 | 8.3 | |||
Q 115-6 | 83.3 | a | 0.0 | a | 0.0 | 16.7 | ||
JB 007 | 91.7 | a | 0.0 | a | 0.0 | 8.3 | ||
Monalisa | 83.3 | a | 0.0 | a | 0.0 | 16.7 | ||
Sensation | 83.3 | a | 0.0 | a | 0.0 | 16.7 | ||
Solanum chacoense #GLKS30919# | 91.7 | a | 0.0 | a | 0.0 | 8.3 | ||
Vivaldi | 91.7 | a | 0.0 | a | 0.0 | 0.0 | ||
Sign. | NS | NS | NS | NS | ||||
P | 0.5896 | 0.1772 | 0.6774 | 0.5008 | ||||
DoF | 89 | 89 | 89 | 89 |
Year | Region | Site | Wireworm Species | |
---|---|---|---|---|
No./Bait Trap | No. in Damaged Potatoes | |||
2018 | Emilia-Romagna | Budrio | n.a. | 5, A. sordidus |
2019 | Emilia-Romagna | Budrio | n.a. | 3, A. sordidus |
2020 | Emilia-Romagna | Budrio | n.a. | 0 |
2022 | Emilia-Romagna | Budrio | n.a. | 0 |
2022 | Veneto | Asigliano Veneto | 0.10 A. sordidus | 1, A. sordidus |
2023 | Emilia-Romagna | Budrio | 1.11 A. sordidus | 2, A. sordidus |
2023 | Veneto | Noventa Vicentina | n.a. | 2, A. sordidus |
2023 | Lombardy | Madesimo | n.a. | 0 |
2023 | Friuli-Venezia Giulia | Valvasone Arzene | n.a. | 1, A. brevis |
Region | Emilia- Romagna | Emilia- Romagna | Emilia- Romagna | Emilia- Romagna | Emilia- Romagna | Veneto | Veneto | Lombardy | Friuli- Venezia Giulia | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | Budrio | Budrio | Budrio | Budrio | Budrio | Asigliano Veneto | Noventa Vicentina | Madesimo | Valvasone Arzene | |||||||||
Q 115-6 | 26.40 | c | 5.36 | c | 0.00 | c | ||||||||||||
ISCI 133/12-7 | 7.83 | ab | 23.90 | bc | 4.31 | bc | 4.35 | b | 0.00 | c | ||||||||
ISCI 181/10-3 | 26.60 | c | 6.36 | c | 1.79 | bc | 3.45 | b | 15.00 | c | 1.65 | c | 0.00 | c | 3.14 | ab | ||
ISCI 181/10-4 | 44.30 | abc | 9.35 | bc | 5.83 | a | 5.79 | ab | 22.20 | bc | 5.47 | ab | 4.72 | b | 0.96 | b | 2.19 | b |
ISCI 201/10-1 | 26.40 | c | 7.41 | c | 0.98 | c | 2.52 | b | 1.87 | c | ||||||||
ISCI 207/11-2 | 46.80 | abc | 10.00 | bc | 4.76 | ab | 4.92 | ab | 2.20 | c | ||||||||
ISCI 232/12-1 | 56.70 | abc | ||||||||||||||||
Agata | 86.40 | a | 8.43 | a | 4.38 | ab | ||||||||||||
Bionica | 40.20 | abc | 9.02 | bc | 0.92 | c | ||||||||||||
Monalisa | 89.20 | a | 41.50 | a | 22.50 | a | ||||||||||||
Monique | 61.00 | ab | 24.80 | ab | 9.00 | a | ||||||||||||
Morene | 64.30 | ab | 13.00 | bc | 4.23 | ab | ||||||||||||
Primura | 14.70 | a | 8.62 | a | ||||||||||||||
Vivaldi | 78.70 | ab | 16.50 | a | 7.67 | a |
Region | Emilia- Romagna | Emilia- Romagna | Emilia- Romagna | Emilia- Romagna | Emilia- Romagna | Veneto | Veneto | Lombardy | Friuli- Venezia Giulia | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | Budrio | Budrio | Budrio | Budrio | Budrio | Asigliano Veneto | Noventa Vicentina | Madesimo | Valvasone Arzene | |||||||||
Q 115-6 | 16.10 | bc | 1.82 | c | 0.00 | c | ||||||||||||
ISCI 133/12-7 | 5.22 | ab | 20.70 | bc | 4.02 | ab | 3.62 | bc | 0.00 | B | ||||||||
ISCI 181/10-3 | 21.50 | abc | 4.42 | c | 0.93 | bc | 4.42 | ab | 10.20 | c | 0.75 | c | 0.00 | B | 2.02 | ab | ||
ISCI 181/10-4 | 11.30 | c | 8.11 | c | 2.91 | a | 5.79 | ab | 18.10 | bc | 3.95 | ab | 3.77 | bc | 0.00 | B | 0.58 | b |
ISCI 201/10-1 | 11.20 | bc | 6.48 | bc | 0.00 | a | 1.68 | b | 0.90 | b | ||||||||
ISCI 207/11-2 | 33.90 | abc | 7.27 | c | 2.86 | ab | 0.86 | b | 2.20 | ab | ||||||||
ISCI 232/12-1 | 43.30 | ab | ||||||||||||||||
Agata | 83.90 | a | 5.08 | ab | 2.35 | ab | ||||||||||||
Bionica | 34.50 | abc | 5.74 | bc | 0.92 | bc | ||||||||||||
Monalisa | 56.80 | a | 31.10 | a | 15.30 | a | ||||||||||||
Monique | 48.80 | ab | 20.00 | ab | 7.00 | A | ||||||||||||
Morene | 48.80 | abc | 5.41 | c | 2.82 | ab | ||||||||||||
Primura | 20.20 | a | 5.98 | a | ||||||||||||||
Vivaldi | 64.80 | ab | 13.40 | a | 5.07 | a |
Genotype | Maturity | Tuber Shape | Skin and Flesh Color | Tuber Dry Matter Content (%) | Total Yield Range (t ha−1) | Weaknesses | EAPR Cooking Type | Strengths | Market End-Use and Perspectives |
---|---|---|---|---|---|---|---|---|---|
Colomba | early | round oval-oval | yellow/ yellow | 16.5–17.5 | 50–60 | sensibility to second growth and sprouting, PVY | B (suitable for multiple uses) | very good tuber appearance, good taste and texture | early and ware potatoes |
ISCI 133/12-7 | mid-late | oval-round | yellow/ yellow | 20.5–21.5 | 45–50 | rhizo cracks, PVYand stem-end rot | AB (suitable for salad and multiple uses) | good tuber appearance, taste and texture | ware potatoes |
ISCI 181/10-3 | late to very late | oval-round | yellow/ yellow | 21.5–22.5 | 50–55 | strong netted skin, skin disorders and blemishes, tuber bruising | BC (suitable for home fries) | high tolerance to potato tuber moth | for breeding use only, high pollen fertility |
ISCI 181/10-4 | mid-late to late | oval-round | yellow/ yellow | 18.5–19.5 | 45–50 | netted skin, misshapen tubers | BC (suitable for home fries) | high tolerance to potato tuber moth | ware potatoes, for the market of unwashed potatoes only |
ISCI 201/10-1 | mid-early | round-oval | yellow/white | 16.5–17.5 | 50–55 | skin disorders and blemishes | AB (suitable for salad and multiple uses) | high tolerance to potato tuber moth | for breeding use only, high pollen fertility |
ISCI 207/11-2 | mid-late to late | oval-round | yellow/ yellow | 18.5–19.5 | 45–50 | netted skin, severe after cooking blackening | B (suitable for multiple uses) | high tuber set per plant | for breeding use only, high pollen fertility |
ISCI 232/12-1 | mid-late to late | round-oval | yellow/white | 17.5–18.5 | 50–55 | netted skin, skin, disorders and blemishes | B (suitable for multiple uses) | high total yield potential | for breeding use only, high pollen fertility |
Variety | Number of Plots | Number of Locations | Ranking Wireworm Attacks | Ranking Percentage Erosion Ordinary + Large | Total Ranking |
---|---|---|---|---|---|
ISCI 201/10-1 | 15 | 5 | 2.5 | 1 | 1 |
ISCI 181/10-3 | 27 | 9 | 2.5 | 2 | 2.5 |
Q 115-6 | 9 | 3 | 1 | 3 | 2.5 |
ISCI 133/12-7 | 16 | 5 | 4 | 4 | 4 |
ISCI 181/10-4 | 31 | 10 | 5 | 5 | 5 |
Agata | 12 | 4 | 6 | 6 | 6 |
ISCI 207/11-2 | 16 | 5 | 7 | 7.5 | 7 |
Vivaldi | 12 | 4 | 8.5 | 7.5 | 8 |
Bionica | 9 | 3 | 8.5 | 9 | 9 |
Morene | 9 | 3 | 11 | 10 | 10 |
Primura | 8 | 2 | 10 | 11 | 11 |
ISCI 232/12-1 | 3 | 1 | 12 | 13 | 12 |
Monique | 9 | 3 | 13 | 12 | 13 |
Monalisa | 9 | 3 | 14 | 14 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzo, F.; Stefano, B.; Isadora, B.; Valentina, C.; Fausto, G.; Bruno, P. Integrated Pest Management of Wireworms in Potatoes: Use of Tolerant Varieties to Implement Damage Prevention. Insects 2025, 16, 4. https://doi.org/10.3390/insects16010004
Lorenzo F, Stefano B, Isadora B, Valentina C, Fausto G, Bruno P. Integrated Pest Management of Wireworms in Potatoes: Use of Tolerant Varieties to Implement Damage Prevention. Insects. 2025; 16(1):4. https://doi.org/10.3390/insects16010004
Chicago/Turabian StyleLorenzo, Furlan, Bona Stefano, Benvegnù Isadora, Cacitti Valentina, Govoni Fausto, and Parisi Bruno. 2025. "Integrated Pest Management of Wireworms in Potatoes: Use of Tolerant Varieties to Implement Damage Prevention" Insects 16, no. 1: 4. https://doi.org/10.3390/insects16010004
APA StyleLorenzo, F., Stefano, B., Isadora, B., Valentina, C., Fausto, G., & Bruno, P. (2025). Integrated Pest Management of Wireworms in Potatoes: Use of Tolerant Varieties to Implement Damage Prevention. Insects, 16(1), 4. https://doi.org/10.3390/insects16010004