Ethyl Formate Fumigation for Controlling Two Major Aphid Pests, Aphis spiraecola and Aphis gossypii, on Passion Fruit, from Cultivation to Post-Harvest Storage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fumigants and Application
2.2. Insects
2.3. EF Concentration and Determination of the Ct (Concentration × Time) Product
2.4. Efficacy of EF against A. spiraecola and A. gossypii in Laboratory Trials during Passion Fruit Tree Cultivation and Post-Harvest Passion Fruit Storage
2.5. Post-Harvest Storage Condition of Passion Fruit at 5 °C
2.5.1. Middle-Scale (0.8 m3) A. spiraecola Fumigation with Liquid EF
2.5.2. Phytotoxic Assessments
2.6. Cultivation Conditions of Passion Fruit Tree at 23 °C
2.6.1. Greenhouse Fumigation Using Liquid EF on A. spiraecola
2.6.2. Phytotoxic Assessments
2.6.3. Worker Safety
2.7. Statistical Analysis
3. Results
3.1. Efficacy of 4 h EF Fumigation against A. spiraecola and A. gossypii during Cultivation and Post-Harvest Storage in Laboratory Trials
3.2. Effect of EF Fumigation during Post-Harvest Storage at 5 °C
3.2.1. Mid-Scale (0.8 m3) EF Fumigation of A. spiraecola
3.2.2. Phytotoxic Effect of Post-Harvest EF Fumigation on Passion Fruits
3.3. Effect of EF Fumigation during Cultivation of Passion Fruit Tree at 23 °C
3.3.1. Effect of Greenhouse Fumigation (340 m3) with Liquid EF on Passion Fruit Trees
3.3.2. Phytotoxicity Assessments
3.3.3. Worker Safety
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, S.-T.; Youm, J.-W.; Yoo, J.-Y. A feasibility study on the cultivation of tropical fruit in Korea: Focused on mango. J. Korea Acad. Ind. Coop. Soc 2018, 19, 252–263. [Google Scholar]
- Kwonmin, K.; Youngeun, C.; Yujin, K.; Sookjoo, M.; Dasom, C.; Kiyoung, K.; Doyoung, L. The Classification of Climate Types and the Delineation of their Climatic Characteristics Using New Normals (1991–2020) in the Republic of Korea. J. Clim. Res. 2021, 16, 179–195. [Google Scholar]
- Choi, M.K.; Yun, S.W.; Kim, H.T.; Lee, S.Y.; Yoon, Y.C. Field survey on the maintenance status of greenhouses in Korea. J. Bio-Environ. Control 2014, 23, 148–157. [Google Scholar] [CrossRef]
- Carr, M.K.V. Advances in Irrigation Agronomy; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- FAO (Food and Agricultural Organization of the United Nations). Food Outlook: Biannual Report on Global Food Markets. Available online: www.fao.org/publications (accessed on 30 December 2022).
- APQA. Pest Information System. Available online: http://10.110.128.100 (accessed on 25 July 2023).
- APQA. Phytosanitary Disinfestation Guidelines. Available online: http://www.qia.go.kr/plant/disinpect/listXdclbzWebAction.do (accessed on 28 March 2024).
- O’Loughlin, J.; Ireson, J. Phytotoxicity of methyl bromide fumigation to a range of apple cultivars. Aust. J. Exp. Agric. 1977, 17, 853–858. [Google Scholar] [CrossRef]
- Park, M.-G.; Choi, J.; Hong, Y.-S.; Park, C.G.; Kim, B.-G.; Lee, S.-Y.; Lim, H.-J.; Mo, H.-H.; Lim, E.; Cha, W. Negative effect of methyl bromide fumigation work on the central nervous system. PLoS ONE 2020, 15, e0236694. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Cha, W.; Park, M.-G. Evaluation of the effect of photoplethysmograms on workers’ exposure to methyl bromide using second derivative. Front. Public Health 2023, 11, 1224143. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Hong, Y.-S.; Cha, W.; Mo, H.-h.; Park, M.-G. Heart rate variability analysis in workers exposed to methyl bromide as a quarantine treatment. J. Occup. Environ. Med. 2021, 63, e32. [Google Scholar] [CrossRef] [PubMed]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Wijs, J.D. A virus causing ringspot of Passiflora edulis in the Ivory Coast. Ann. Appl. Biol. 1974, 77, 33–40. [Google Scholar] [CrossRef]
- Garcêz, R.M.; Chaves, A.L.R.; Eiras, M.; Meletti, L.M.M.; de Azevedo Filho, J.A.; da Silva, L.A.; Colariccio, A. Survey of aphid population in a yellow passion fruit crop and its relationship on the spread Cowpea aphid-borne mosaic virus in a subtropical region of Brazil. SpringerPlus 2015, 4, 537. [Google Scholar] [CrossRef]
- Tsai, J.H.; Wang, J.-J. Effects of host plants on biology and life table parameters of Aphis spiraecola (Homoptera: Aphididae). Environ. Entomol. 2001, 30, 44–50. [Google Scholar] [CrossRef]
- Song, S.; Oh, H.; Motoyama, N. Insecticide resistance mechanism in the spiraea aphid, Aphis citricola (van der Goot). Korean J. Appl. Entomol. 1995, 34, 89–94. [Google Scholar]
- Bond, E.J. Manual of Fumigation for Insect Control, 2nd ed.; Food and Agriculture Organization: Rome, Italy, 1984. [Google Scholar]
- Kim, K.; Kim, C.; Kwon, T.H.; Jeon, H.-J.; Kim, Y.; Cho, Y.; Kim, D.; Lee, Y.; Kim, D.; Lee, B.-H. Optimizing ethyl formate fumigation in greenhouse cucurbit crops for efficient control of major agricultural pests, Myzus persicae and Thrips palmi. Chem. Biol. Technol. Agric. 2023, 10, 112. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D.; Kwon, S.H.; Roh, G.-H.; Lee, S.; Lee, B.-H.; Lee, S.-E. A novel ethyl formate fumigation strategy for managing yellow tea thrips (Scirtothrips dorsalis) in greenhouse cultivated mangoes and post-harvest fruits. Insects 2023, 14, 568. [Google Scholar] [CrossRef]
- Kwon, T.-H.; Kim, D.-B.; Lee, B.-H.; Cha, D.H.; Park, M.-G. Comparison of Methyl Bromide and Ethyl Formate for Fumigation of Snail and Fly Pests of Imported Orchids. Insects 2023, 14, 66. [Google Scholar] [CrossRef]
- Park, M.-G.; Park, C.-G.; Yang, J.-O.; Kim, G.-H.; Ren, Y.; Lee, B.-H.; Cha, D.H. Ethyl Formate as a Methyl Bromide Alternative for Phytosanitary Disinfestation of Imported Banana in Korea with Logistical Considerations. J. Econ. Entomol. 2020, 113, 1711–1717. [Google Scholar] [CrossRef] [PubMed]
- Pupin, F.; Bikoba, V.; Biasi, W.B.; Pedroso, G.M.; Ouyang, Y.; Grafton-Cardwell, E.E.; Mitcham, E.J. Postharvest Control of Western Flower Thrips (Thysanoptera: Thripidae) and California Red Scale (Hemiptera: Diaspididae) With Ethyl Formate and Its Impact on Citrus Fruit Quality. J. Econ. Entomol. 2014, 106, 2341–2348. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Park, Y.; Hyun, I.-H.; Kim, G.-H.; Kim, B.-S.; Lee, B.-H.; Ren, Y. A combination treatment using ethyl formate and phosphine to control Planococcus citri (Hemiptera: Pseudococcidae) on pineapples. J. Econ. Entomol. 2016, 109, 2355–2363. [Google Scholar] [CrossRef]
- Simpson, T.; Bikoba, V.; Tipping, C.; Mitcham, E. Ethyl formate as a postharvest fumigant for selected pests of table grapes. J. Econ. Entomol. 2007, 100, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Kyung, Y.; Kim, H.K.; Cho, S.W.; Kim, B.-S.; Yang, J.-O.; Koo, H.-N.; Kim, G.-H. Comparison of the efficacy and phytotoxicity of phosphine and ethyl formate for controlling Pseudococcus longispinus (Hemiptera: Pseudococcidae) and Pseudococcus orchidicola on imported foliage nursery plants. J. Econ. Entomol. 2019, 112, 2149–2156. [Google Scholar] [CrossRef]
- Bessi, H.; Bellagha, S.; Lebdi, K.G.; Bikoba, V.; Mitcham, E.J. Ethyl formate fumigation of dry and semidry date fruits: Experimental kinetics, modeling, and lethal effect on carob moth. J. Econ. Entomol. 2015, 108, 993–999. [Google Scholar] [CrossRef]
- Ren, Y.L.; Lee, B.H.; Padovan, B. Penetration of methyl bromide, sulfuryl fluoride, ethanedinitrile and phosphine into timber blocks and the sorption rate of the fumigants. J. Stored Prod. Res. 2011, 47, 63–68. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, G.; Yuan, J.; Zhu, P.; Gong, K. Biochemical mechanism of resistance of cotton aphids to organophosphorus insecticides. Acta Entomol. Sin. 1987, 30, 13–20. [Google Scholar]
- Devonshire, A.L.; Moores, G.D. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic. Biochem. Physiol. 1982, 18, 235–246. [Google Scholar] [CrossRef]
- Chandrasena, D.; DiFonzo, C.; Byrne, A. An aphid-dip bioassay to evaluate susceptibility of soybean aphid (Hemiptera: Aphididae) to pyrethroid, organophosphate, and neonicotinoid insecticides. J. Econ. Entomol. 2011, 104, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Kerns, D.; Gaylor, M. Insecticide resistance in field populations of the cotton aphid (Homoptera: Aphididae). J. Econ. Entomol. 1992, 85, 1–8. [Google Scholar] [CrossRef]
- Edwards, O.R.; Franzmann, B.; Thackray, D.; Micic, S. Insecticide resistance and implications for future aphid management in Australian grains and pastures: A review. Aust. J. Exp. Agric. 2008, 48, 1523–1530. [Google Scholar] [CrossRef]
- Döring, T.F.; Chittka, L. Visual ecology of aphids—A critical review on the role of colours in host finding. Arthropod-Plant Interact. 2007, 1, 3–16. [Google Scholar] [CrossRef]
- Dixon, A. Aphid ecology: Life cycles, polymorphism, and population regulation. Annu. Rev. Ecol. Syst. 1977, 8, 329–353. [Google Scholar] [CrossRef]
- University of Hawaii. Aphis Gossypii. Available online: http://www.extento.hawaii.edu/kbase/crop/Type/aphis_g.htm (accessed on 11 August 2023).
- Kim, B.S.; Yang, J.O.; Roh, G.H.; Ren, Y.L.; Lee, B.-H.; Lee, S.-E. Reciprocal effect of ethyl formate and phosphine gas on two quarantine pests, Tetranychus urticae (Acari: Tetranychidae) and Myzus persicae (Hemiptera: Aphididae). Korean J. Environ. Biol. 2021, 39, 336–343. [Google Scholar] [CrossRef]
- Park, M.-G.; Lee, B.-H.; Yang, J.-O.; Kim, B.-S.; Roh, G.H.; Kendra, P.E.; Cha, D.H. Ethyl Formate as a Methyl Bromide Alternative for Fumigation of Citrus: Efficacy, Fruit Quality, and Workplace Safety. J. Econ. Entomol. 2021, 114, 2290–2296. [Google Scholar] [CrossRef]
- Kwon, T.-H.; Cho, J.-H.; Kim, D.-B.; Kwon, G.-M.; Hong, K.-J.; Ren, Y.; Lee, B.-H.; Park, M.-G. Ethyl Formate Fumigation for Control of the Scale Insect Asiacornococcus kaki, a Quarantine Pest on Sweet Persimmon, Diospyros kaki: Efficacy, Phytotoxicity and Safety. Insects 2023, 14, 341. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, H.K.; Kyung, Y.; Park, G.-H.; Lee, B.-H.; Yang, J.-O.; Koo, H.-N.; Kim, G.-H. Fumigation activity of ethyl formate and phosphine against Tetranychus urticae (Acari: Tetranychidae) on imported sweet pumpkin. J. Econ. Entomol. 2018, 111, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Asadujjaman, M.; Mishuk, A.U.; Hossain, M.A.; Karmakar, U.K. Medicinal potential of Passiflora foetida L. plant extracts: Biological and pharmacological activities. J. Integr. Med. 2014, 12, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Carraz, M.; Lavergne, C.; Jullian, V.; Wright, M.; Gairin, J.E.; de La Cruz, M.G.; Bourdy, G. Antiproliferative activity and phenotypic modification induced by selected Peruvian medicinal plants on human hepatocellular carcinoma Hep3B cells. J. Ethnopharmacol. 2015, 166, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Sousa, C.; Valentão, P.; Andrade, P.B.; Seabra, R.M.; Gil-Izquierdo, A. New C-deoxyhexosyl flavones and antioxidant properties of Passiflora edulis leaf extract. J. Agric. Food Chem. 2007, 55, 10187–10193. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Kumar, D.; Chaudhary, A.K.; Maithani, M.; Singh, R. Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. J. Ethnopharmacol. 2012, 139, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Montanher, A.B.; Zucolotto, S.M.; Schenkel, E.P.; Fröde, T.S. Evidence of anti-inflammatory effects of Passiflora edulis in an inflammation model. J. Ethnopharmacol. 2007, 109, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Siebra, A.L.A.; Oliveira, L.R.; Martins, A.O.; Siebra, D.C.; Albuquerque, R.S.; Lemos, I.C.S.; Delmondes, G.A.; Tintino, S.R.; Figueredo, F.G.; Da Costa, J.G.M. Potentiation of antibiotic activity by Passiflora cincinnata Mast. front of strains Staphylococcus aureus and Escherichia coli. Saudi J. Biol. Sci. 2018, 25, 37–43. [Google Scholar] [CrossRef]
- Wasicky, A.; Hernandes, L.S.; Vetore-Neto, A.; Moreno, P.R.; Bacchi, E.M.; Kato, E.T.M.; Yoshida, M. Evaluation of gastroprotective activity of Passiflora alata. Rev. Bras. Farmacogn. 2015, 25, 407–412. [Google Scholar] [CrossRef]
- Fonseca, A.M.; Geraldi, M.V.; Junior, M.R.M.; Silvestre, A.J.; Rocha, S.M. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res. Int. 2022, 160, 111665. [Google Scholar] [CrossRef]
Temp. (°C) | Target Insect | Developmental Stage | Number of Individuals Treated | LCt50% a (95% CI, g h/m3) | LCt99% a (95% CI, g h/m3) | Slope ± SE b | df c | X2 d |
---|---|---|---|---|---|---|---|---|
23 | Aphis spiraecola | Nymph | 240 | 1.36 (1.24–1.48) | 4.45 (3.70–5.74) | 4.52 ± 0.4 | 6 | 10.26 |
Adult | 265 | 2.61 (2.19–3.00) | 7.55 (5.97–11.33) | 5.04 ± 0.7 | 7 | 40.25 | ||
Aphis gossypii | Nymph | 540 | 2.49 (2.12–2.77) | 4.42 (3.77–6.29) | 9.32 ± 1.8 | 15 | 4.88 | |
Adult | 540 | 1.48 (0.85–1.95) | 3.73 (3.18–4.42) | 5.78 ± 0.9 | 15 | 2.07 | ||
5 | Aphis spiraecola | Nymph | 600 | 1.62 (1.37–1.86) | 14.59 (11.11–21.07) | 2.44 ± 0.2 | 25 | 37.36 |
Adult | 540 | 2.02 (1.62–2.46) | 13.43 (9.64–21.85) | 2.82 ± 0.3 | 22 | 47.39 | ||
Aphis gossypii | Nymph | 480 | 1.71 (1.12–2.04) | 4.44 (3.66–6.79) | 5.62 ± 1.0 | 11 | 4.29 | |
Adult | 480 | 1.37 (1.00–1.64) | 3.80 (3.24–5.07) | 5.26 ± 0.7 | 11 | 2.33 |
Applied Dose (g/m3) | Exposure Time (h) | EF Concentration (Mean ± SE, g/m3) | Mortality 1 (Mean ± SE, %) | |||
---|---|---|---|---|---|---|
Top | Middle | Bottom | Adults | Nymphs | ||
5 | 0.1 | 4.7 ± 0.1 | 4.2 ± 0.1 | 4.4 ± 0.1 | 92.8 ± 1.8 | 87.3 ± 4.0 |
1.0 | 3.6 ± 0.1 | 3.4 ± 0.2 | 3.9 ± 0.2 | |||
2.0 | 2.1 ± 0.1 | 2.0 ± 0.1 | 2.4 ± 0.1 | |||
4.0 | 1.3 ± 0.1 | 1.2 ± 0.2 | 1.4 ± 0.1 | |||
Ct products (Mean ± SE, g h/m3) | 10.2 ± 0.1 | 9.5 ± 0.1 | 10.9 ± 0.1 | |||
10 | 0.1 | 9.4 ± 0.1 | 9.1 ± 0.1 | 9.6 ± 0.1 | 100 ± 0.0 | 100 ± 0.0 |
1.0 | 7.2 ± 0.0 | 7.0 ± 0.1 | 7.4 ± 0.0 | |||
2.0 | 4.2 ± 0.1 | 4.1 ± 0.1 | 4.4 ± 0.1 | |||
4.0 | 2.2 ± 0.1 | 2.1 ± 0.1 | 2.2 ± 0.1 | |||
Ct products (Mean ± SE, g h/m3) | 19.8 ± 0.1 | 19.2 ± 0.1 | 20.4 ± 0.1 |
Applied Dose (g/m3) | Exposure Time (h) | EF Concentration (Mean ± SE, g/m3) | Mortality 1 (Mean ± SE, %) | ||
---|---|---|---|---|---|
Top | Middle | Bottom | |||
4 | 0.1 | 3.6 ± 0.1 | 3.4 ± 0.0 | 3.5 ± 0.1 | 100 ± 0.0 |
1.0 | 3.0 ± 0.0 | 3.0 ± 0.1 | 3.0 ± 0.0 | ||
2.0 | 2.4 ± 0.0 | 1.6 ± 0.1 | 1.5 ± 0.0 | ||
4.0 | 1.0 ± 0.1 | 1.0 ± 0.1 | 1.1 ± 0.0 | ||
Ct products (Mean ± SE, g h/m3) | 8.9 ± 0.1 | 7.9 ± 0.1 | 7.9 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.O.; Kim, D.; Lee, Y.S.; Hong, K.-J.; Lee, B.-H.; Park, M.-G. Ethyl Formate Fumigation for Controlling Two Major Aphid Pests, Aphis spiraecola and Aphis gossypii, on Passion Fruit, from Cultivation to Post-Harvest Storage. Insects 2024, 15, 386. https://doi.org/10.3390/insects15060386
Yang JO, Kim D, Lee YS, Hong K-J, Lee B-H, Park M-G. Ethyl Formate Fumigation for Controlling Two Major Aphid Pests, Aphis spiraecola and Aphis gossypii, on Passion Fruit, from Cultivation to Post-Harvest Storage. Insects. 2024; 15(6):386. https://doi.org/10.3390/insects15060386
Chicago/Turabian StyleYang, Jeong Oh, Dongbin Kim, Young Su Lee, Ki-Jeong Hong, Byung-Ho Lee, and Min-Goo Park. 2024. "Ethyl Formate Fumigation for Controlling Two Major Aphid Pests, Aphis spiraecola and Aphis gossypii, on Passion Fruit, from Cultivation to Post-Harvest Storage" Insects 15, no. 6: 386. https://doi.org/10.3390/insects15060386
APA StyleYang, J. O., Kim, D., Lee, Y. S., Hong, K.-J., Lee, B.-H., & Park, M.-G. (2024). Ethyl Formate Fumigation for Controlling Two Major Aphid Pests, Aphis spiraecola and Aphis gossypii, on Passion Fruit, from Cultivation to Post-Harvest Storage. Insects, 15(6), 386. https://doi.org/10.3390/insects15060386