Engineering Gut Symbionts: A Way to Promote Bee Growth?
Abstract
Simple Summary
Abstract
1. Introduction
2. Engineering Gut Symbionts
3. Proposed Engineering Strategies to Promote Bee Growth
3.1. Digestion and Essential Nutrient Provision
3.2. Detoxification
Main Role | Target (Gene or Metabolic Function) | Engineering Strategy | Expected Outcome | Reference |
---|---|---|---|---|
Digestion and nutrient provision | Pectin breakdown -PL1 encoding pectin lyase | Overexpression | Improved pectin breakdown resulting in degraded toxic pectin to avoid intoxication and facilitate pollen perforation | [36] |
Mannose degradation -manA encoding mannose-6-phosphate isomerase | Overexpression | Improved mannose degradation resulting in degraded toxic mannose and improved bee dietary tolerance | [15] | |
Detoxification | Pyrethroid degradation -est encoding carboxyesterase | Expression | Improved pyrethroid degradation resulting in mitigation of pesticide-induced toxicity | [71,72] |
Neonicotinoid degradation -anhD, anhE, and anhA encoding nitrile hydratase | Expression | Improved neonicotinoid degradation resulting in mitigation of pesticide-induced toxicity | [79] | |
Chlorpyrifos degradation -opd encoding phosphotriesterase -mpd encoding metallo-β-lactamase | Expression | Improved chlorpyrifos degradation resulting in mitigation of pesticide-induced toxicity | [87] |
4. Prospects in Gut Symbiont Engineering: Evaluating Strategies, Approaches, and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wakgari, M.; Yigezu, G. Honeybee Keeping Constraints and Future Prospects. Cogent Food Agric. 2021, 7, 1872192. [Google Scholar] [CrossRef]
- St Clair, A.L.; St Clair, A.L.; Zhang, G.; Dolezal, A.G.; O’Neal, M.E.; Toth, A.L.; Toth, A.L. Diversified Farming in a Monoculture Landscape: Effects on Honey Bee Health and Wild Bee Communities. Environ. Entomol. 2020, 49, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Stuligross, C.; Williams, N.M. Past Insecticide Exposure Reduces Bee Reproduction and Population Growth Rate. Proc. Natl. Acad. Sci. USA 2021, 118, e2109909118. [Google Scholar] [CrossRef] [PubMed]
- Brosi, B.J.; Daily, G.C.; Shih, T.M.; Oviedo, F.; Durán, G. The Effects of Forest Fragmentation on Bee Communities in Tropical Countryside. J. Appl. Ecol. 2008, 45, 773–783. [Google Scholar] [CrossRef]
- Halabi, N.E.; Achkar, R.; Haidar, G.A. The Effect of Cell Phone Radiations on the Life Cycle of Honeybees. In Proceedings of the Eurocon 2013, Zagreb, Croatia, 1–4 July 2013; IEEE: New York City, NY, USA, 2013; pp. 529–536. [Google Scholar]
- Settele, J.; Bishop, J.; Potts, S.G. Climate Change Impacts on Pollination. Nat. Plants 2016, 2, 16092. [Google Scholar] [CrossRef] [PubMed]
- Espregueira Themudo, G.; Rey-Iglesia, A.; Robles Tascón, L.; Bruun Jensen, A.; da Fonseca, R.R.; Campos, P.F. Declining Genetic Diversity of European Honeybees along the Twentieth Century. Sci. Rep. 2020, 10, 10520. [Google Scholar] [CrossRef] [PubMed]
- Fünfhaus, A.; Ebeling, J.; Genersch, E. Bacterial Pathogens of Bees. Curr. Opin. Insect Sci. 2018, 26, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Evans, J.D. Honey Bee Fungal Diseases. In Honey Bee Medicine for the Veterinary Practitioner; John Wiley & Sons.: Hoboken, NJ, USA, 2021; pp. 295–305. ISBN 9781119583417. [Google Scholar]
- Yañez, O.; Piot, N.; Dalmon, A.; de Miranda, J.R.; Chantawannakul, P.; Panziera, D.; Amiri, E.; Smagghe, G.; Schroeder, D.; Chejanovsky, N. Bee Viruses: Routes of Infection in Hymenoptera. Front. Microbiol. 2020, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Raymann, K.; Moran, N.A. The Role of the Gut Microbiome in Health and Disease of Adult Honey Bee Workers. Curr. Opin. Insect Sci. 2018, 26, 97–104. [Google Scholar] [CrossRef]
- Jing, T.Z.; Qi, F.H.; Wang, Z.Y. Most Dominant Roles of Insect Gut Bacteria: Digestion, Detoxification, or Essential Nutrient Provision? Microbiome 2020, 8, 38. [Google Scholar] [CrossRef]
- Sinpoo, C.; In-On, A.; Noirungsee, N.; Attasopa, K.; Chantawannakul, P.; Chaimanee, V.; Phokasem, P.; Ling, T.C.; Purahong, W.; Disayathanoowat, T. Microbial Community Profiling and Culturing Reveal Functional Groups of Bacteria Associated with Thai Commercial Stingless Worker Bees (Tetragonula pagdeni). PLoS ONE 2023, 18, e0280075. [Google Scholar] [CrossRef] [PubMed]
- Paray, B.A.; Kumari, I.; Hajam, Y.A.; Sharma, B.; Kumar, R.; Albeshr, M.F.; Farah, M.A.; Khan, J.M. Honeybee Nutrition and Pollen Substitutes: A Review. Saudi J. Biol. Sci. 2021, 28, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Nishida, A.; Kwong, W.K.; Koch, H.; Engel, P.; Steele, M.I.; Moran, N.A. Metabolism of Toxic Sugars by Strains of the Bee Gut Symbiont Gilliamella Apicola. MBio 2016, 7, e01326-16. [Google Scholar] [CrossRef]
- Bonilla-Rosso, G.; Engel, P. Functional Roles and Metabolic Niches in the Honey Bee Gut Microbiota. Curr. Opin. Microbiol. 2018, 43, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Kwong, W.K.; Moran, N.A. Gut Microbial Communities of Social Bees. Nat. Rev. Microbiol. 2016, 14, 374–384. [Google Scholar] [CrossRef]
- Su, Q.; Tang, M.; Hu, J.; Tang, J.; Zhang, X.; Li, X.; Niu, Q.; Zhou, X.; Luo, S.; Zhou, X. Significant Compositional and Functional Variation Reveals the Patterns of Gut Microbiota Evolution among the Widespread Asian Honeybee Populations. Front. Microbiol. 2022, 13, 934459. [Google Scholar] [CrossRef]
- Vásquez, A.; Forsgren, E.; Fries, I.; Paxton, R.J.; Flaberg, E.; Szekely, L.; Olofsson, T.C. Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees. PLoS ONE 2012, 7, e0033188. [Google Scholar] [CrossRef]
- Kwong, W.K.; Moran, N.A. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: Description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int. J. Syst. Evol. Microbiol. 2013, 63, 2008–2018. [Google Scholar] [CrossRef]
- Horak, R.D.; Leonard, S.P.; Moran, N.A. Symbionts Shape Host Innate Immunity in Honeybees: Symbionts Shape Honey Bee Immunity. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201184. [Google Scholar] [CrossRef]
- Kwong, W.K.; Engel, P.; Koch, H.; Moran, N.A. Genomics and Host Specialization of Honey Bee and Bumble Bee Gut Symbionts. Proc. Natl. Acad. Sci. USA 2014, 111, 11509–11514. [Google Scholar] [CrossRef]
- Zheng, H.; Perreau, J.; Elijah Powell, J.; Han, B.; Zhang, Z.; Kwong, W.K.; Tringe, S.G.; Moran, N.A. Division of Labor in Honey Bee Gut Microbiota for Plant Polysaccharide Digestion. Proc. Natl. Acad. Sci. USA 2019, 116, 25909–25916. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Y.; Chen, Y.; Wang, S.; Chen, Y.; Hu, F.; Zheng, H. Honey Bee (Apis mellifera) Gut Microbiota Promotes Host Endogenous Detoxification Capability via Regulation of P450 Gene Expression in the Digestive Tract. Microb. Biotechnol. 2020, 13, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Steele, M.I.; Motta, E.V.S.; Gattu, T.; Martinez, D.; Moran, N.A. The Gut Microbiota Protects Bees from Invasion by a Bacterial Pathogen. Microbiol. Spectr. 2021, 9, e0039421. [Google Scholar] [CrossRef]
- Lang, H.; Duan, H.; Wang, J.; Zhang, W.; Guo, J.; Zhang, X.; Hu, X.; Zheng, H. Specific Strains of Honeybee Gut Lactobacillus Stimulate Host Immune System to Protect against Pathogenic Hafnia alvei. Microbiol. Spectr. 2022, 10, e0189621. [Google Scholar] [CrossRef] [PubMed]
- Lang, H.; Wang, H.; Wang, H.; Zhong, Z.; Xie, X.; Zhang, W.; Guo, J.; Meng, L.; Hu, X.; Zhang, X.; et al. Engineered Symbiotic Bacteria Interfering Nosema Redox System Inhibit Microsporidia Parasitism in Honeybees. Nat. Commun. 2023, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kwong, W.K.; Mancenido, A.L.; Moran, N.A. Immune System Stimulation by the Native Gut Microbiota of Honey Bees. R. Soc. Open Sci. 2017, 4, 170003. [Google Scholar] [CrossRef]
- Rangberg, A.; Mathiesen, G.; Amdam, G.V.; Diep, D.B. The Paratransgenic Potential of Lactobacillus kunkeei in the Honey Bee Apis Mellifera. Benef. Microbes 2015, 6, 513–523. [Google Scholar] [CrossRef]
- Yan, X. Engineered Gut Symbiont Inhibits Microsporidian Parasite and Improves Honey Bee Survival. Proc. Natl. Acad. Sci. USA 2023, 120, e2220922120. [Google Scholar] [CrossRef]
- Chhun, A.; Moriano-Gutierrez, S.; Zoppi, F.; Cabirol, A.; Engel, P.; Schaerli, Y. An engineered bacterial symbiont allows noninvasive biosensing of the honey bee gut environment. PLoS Biol. 2024, 22, e3002523. [Google Scholar] [CrossRef]
- Leonard, S.P.; Perutka, J.; Powell, J.E.; Geng, P.; Richhart, D.D.; Byrom, M.; Kar, S.; Davies, B.W.; Ellington, A.D.; Moran, N.A.; et al. Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolkit for Modular Assembly of Broad-Host-Range Plasmids. ACS Synth. Biol. 2018, 7, 1279–1290. [Google Scholar] [CrossRef]
- Elston, K.M.; Leonard, S.P.; Geng, P.; Bialik, S.B.; Robinson, E.; Barrick, J.E. Engineering Insects from the Endosymbiont Out. Trends Microbiol. 2022, 30, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Garbian, Y.; Maori, E.; Kalev, H.; Shafir, S.; Sela, I. Bidirectional Transfer of RNAi between Honey Bee and Varroa Destructor: Varroa Gene Silencing Reduces Varroa Population. PLoS Pathog. 2012, 8, e1003035. [Google Scholar] [CrossRef]
- Muntaabski, I.; Scannapieco, A.C.; Liendo, M.C.; Niz, J.M.; Russo, R.; Salvador, R. Bacterially Expressed DsRNA Induces Varroa Destructor Gene Knockdown by Honey Bee-Mediated Oral Administration. J. Apic. Res. 2022, 61, 511–518. [Google Scholar] [CrossRef]
- Engel, P.; Martinson, V.G.; Moran, N.A. Functional Diversity within the Simple Gut Microbiota of the Honey Bee. Proc. Natl. Acad. Sci. USA 2012, 109, 11002–11007. [Google Scholar] [CrossRef]
- Zheng, H.; Powell, J.E.; Steele, M.I.; Dietrich, C.; Moran, N.A. Honeybee Gut Microbiota Promotes Host Weight Gain via Bacterial Metabolism and Hormonal Signaling. Proc. Natl. Acad. Sci. USA 2017, 114, 4775–4780. [Google Scholar] [CrossRef] [PubMed]
- Kruger, N.J.; Ratcliffe, R.G. Fluxes through Plant Metabolic Networks: Measurements, Predictions, Insights and Challenges. Biochem. J. 2015, 465, 27–38. [Google Scholar] [CrossRef]
- Fang, X.; Lloyd, C.J.; Palsson, B.O. Reconstructing Organisms in Silico: Genome-Scale Models and Their Emerging Applications. Nat. Rev. Microbiol. 2020, 18, 731–743. [Google Scholar] [CrossRef]
- Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current Status and Applications of Genome-Scale Metabolic Models. Genome Biol. 2019, 20, 121. [Google Scholar] [CrossRef]
- Jansma, J.; El Aidy, S. Understanding the Host-Microbe Interactions Using Metabolic Modeling. Microbiome 2021, 9, 16. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Q.; Qian, J.; Ye, C.; Huang, H. Construction and Application of the Genome-Scale Metabolic Model of Streptomyces radiopugnans. Front. Bioeng. Biotechnol. 2023, 11, 1108412. [Google Scholar] [CrossRef]
- Li, P.; Roos, S.; Luo, H.; Ji, B.; Nielsen, J. Metabolic Engineering of Human Gut Microbiome: Recent Developments and Future Perspectives. Metab. Eng. 2023, 79, 1–13. [Google Scholar] [CrossRef]
- Esvap, E.; Ulgen, K.O. Advances in Genome-Scale Metabolic Modeling toward Microbial Community Analysis of the Human Microbiome. ACS Synth. Biol. 2021, 10, 2121–2137. [Google Scholar] [CrossRef] [PubMed]
- Ankrah, N.Y.D.; Bernstein, D.B.; Matthew, B.; Maureen, C.; Melinda, E.; Beatriz, G.-J.; Meiyappan, L.; Pacheco, A.R.; Snorre, S.; Medlock, G.L. Enhancing Microbiome Research through Genome-Scale Metabolic Modeling. mSystems 2021, 6, e00599-21. [Google Scholar] [CrossRef]
- Beura, S.; Kundu, P.; Das, A.K.; Ghosh, A. Metagenome-Scale Community Metabolic Modelling for Understanding the Role of Gut Microbiota in Human Health. Comput. Biol. Med. 2022, 149, 105997. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gao, C.; Ye, C.; Guo, L.; Liu, J.; Chen, X.; Song, W.; Wu, J.; Liu, L. Systems Engineering of Escherichia coli for High-Level Shikimate Production. Metab. Eng. 2023, 75, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Khusnutdinova, A.; Chen, J.; Crisante, D.; Batyrova, K.; Raj, K.; Feigis, M.; Shirzadi, E.; Wang, X.; Dorakhan, R.; et al. Systems Engineering of Escherichia coli for N-Butane Production. Metab. Eng. 2022, 74, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Orešič, M. Metabolic Modeling of Human Gut Microbiota on a Genome Scale: An Overview. Metabolites 2019, 9, 22. [Google Scholar] [CrossRef]
- Proffitt, C.; Bidkhori, G.; Lee, S.; Tebani, A.; Mardinoglu, A.; Uhlen, M.; Moyes, D.L.; Shoaie, S. Genome-Scale Metabolic Modelling of the Human Gut Microbiome Reveals Changes in the Glyoxylate and Dicarboxylate Metabolism in Metabolic Disorders. iScience 2022, 25, 104513. [Google Scholar] [CrossRef]
- Molina Ortiz, J.P.; Read, M.N.; McClure, D.D.; Holmes, A.; Dehghani, F.; Shanahan, E.R. High Throughput Genome Scale Modeling Predicts Microbial Vitamin Requirements Contribute to Gut Microbiome Community Structure. Gut Microbes 2022, 14, 2118831. [Google Scholar] [CrossRef]
- Belén, H.; Naschla, G.; Guillermo, O.; Marco, V.-S.; Pedro, S.; Martín, G.; Daniel, G. Metabolic Modeling and Bidirectional Culturing of Two Gut Microbes Reveal Cross-Feeding Interactions and Protective Effects on Intestinal Cells. mSystems 2022, 7, e00646-22. [Google Scholar] [CrossRef]
- Blasco, T.; Pérez-Burillo, S.; Balzerani, F.; Hinojosa-Nogueira, D.; Lerma-Aguilera, A.; Pastoriza, S.; Cendoya, X.; Rubio, Á.; Gosalbes, M.J.; Jiménez-Hernández, N.; et al. An Extended Reconstruction of Human Gut Microbiota Metabolism of Dietary Compounds. Nat. Commun. 2021, 12, 4728. [Google Scholar] [CrossRef] [PubMed]
- Rios Garza, D.; Gonze, D.; Zafeiropoulos, H.; Liu, B.; Faust, K. Metabolic Models of Human Gut Microbiota: Advances and Challenges. Cell Syst. 2023, 14, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.; Andrejev, S.; Tramontano, M.; Patil, K.R. Fast Automated Reconstruction of Genome-Scale Metabolic Models for Microbial Species and Communities. Nucleic Acids Res. 2018, 46, 7542–7553. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, S.N.; Olivier, B.G.; Molenaar, D.; Teusink, B. A Systematic Assessment of Current Genome-Scale Metabolic Reconstruction Tools. Genome Biol. 2019, 20, 158. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, R.; Edwards, J.S.; Doyle, F.J. Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli. Biophys. J. 2002, 83, 1331–1340. [Google Scholar] [CrossRef]
- Chan, S.H.J.; Simons, M.N.; Maranas, C.D. SteadyCom: Predicting Microbial Abundances While Ensuring Community Stability. PLoS Comput. Biol. 2017, 13, e1005539. [Google Scholar] [CrossRef] [PubMed]
- Diener, C.; Gibbons, S.M. More Is Different: Metabolic Modeling of Diverse Microbial Communities. mSystems 2023, 8, e0127022. [Google Scholar] [CrossRef] [PubMed]
- Kešnerová, L.; Mars, R.A.T.; Ellegaard, K.M.; Troilo, M.; Sauer, U.; Engel, P. Disentangling Metabolic Functions of Bacteria in the Honey Bee Gut. PLoS Biol. 2017, 15, e2003467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mu, X.; Cao, Q.; Shi, Y.; Hu, X.; Zheng, H. Honeybee Gut Lactobacillus Modulates Host Learning and Memory Behaviors via Regulating Tryptophan Metabolism. Nat. Commun. 2022, 13, 2037. [Google Scholar] [CrossRef]
- Liberti, J.; Kay, T.; Quinn, A.; Kesner, L.; Frank, E.T.; Cabirol, A.; Richardson, T.O.; Engel, P.; Keller, L. The Gut Microbiota Affects the Social Network of Honeybees. Nat. Ecol. Evol. 2022, 6, 1471. [Google Scholar] [CrossRef]
- Clark, R.L.; Connors, B.M.; Stevenson, D.M.; Hromada, S.E.; Hamilton, J.J.; Amador-Noguez, D.; Venturelli, O.S. Design of Synthetic Human Gut Microbiome Assembly and Butyrate Production. Nat. Commun. 2021, 12, 3254. [Google Scholar] [CrossRef]
- Sanchez-Bayo, F.; Goka, K. Pesticide Residues and Bees—A Risk Assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef] [PubMed]
- FAO. Good Beekeeping Practices: Practical Manual on How to Identify and Control the Main Diseases of the Honeybee (Apis mellifera); FAO: Rome, Italy, 2020; ISBN 978-92-5-132664-0. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/7cd2bde9-dc4f-46a0-bd27-11a82e8d521f/content (accessed on 14 September 2023).
- Dong, Z.-X.; Tang, Q.-H.; Li, W.-L.; Wang, Z.-W.; Li, X.-J.; Fu, C.-M.; Li, D.; Qian, K.; Tian, W.-L.; Guo, J. Honeybee (Apis mellifera) Resistance to Deltamethrin Exposure by Modulating the Gut Microbiota and Improving Immunity. Environ. Pollut. 2022, 314, 120340. [Google Scholar] [CrossRef]
- Qi, S.; Al Naggar, Y.; Li, J.; Liu, Z.; Xue, X.; Wu, L.; El-Seedi, H.R.; Wang, K. Acaricide Flumethrin-Induced Sublethal Risks in Honeybees Are Associated with Gut Symbiotic Bacterium Gilliamella apicola through Microbe-Host Metabolic Interactions. Chemosphere 2022, 307, 136030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jia, L.; Wang, S.; Qu, J.; Li, K.; Xu, L.; Shi, Y.; Yan, Y. Bio-degradation of Beta-Cypermethrin by Two Serratia spp. with Different Cell Surface Hydrophobicity. Bioresour. Technol. 2010, 101, 3423–3429. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.E.; Maule, A.; Smith, A.R. Microbial Transformation of the Pyrethroid Insecticides: Permethrin, Deltamethrin, Fastac, Fenvalerate, and Fluvalinate. Appl. Environ. Microbiol. 1988, 54, 2874–2876. [Google Scholar] [CrossRef]
- Zhan, H.; Huang, Y.; Lin, Z.; Bhatt, P.; Chen, S. New Insights into the Microbial Degradation and Catalytic Mechanism of Synthetic Pyrethroids. Environ. Res. 2020, 182, 109138. [Google Scholar] [CrossRef]
- Wei, T.; Feng, S.; Shen, Y.; He, P.; Ma, G.; Yu, X.; Zhang, F.; Mao, D. Characterization of a Novel Thermophilic Pyrethroid-Hydrolyzing Carboxylesterase from Sulfolobus tokodaii into a New Family. J. Mol. Catal. B Enzym. 2013, 97, 225–232. [Google Scholar] [CrossRef]
- Wu, P.C.; Liu, Y.H.; Wang, Z.Y.; Zhang, X.Y.; Li, H.; Liang, W.Q.; Luo, N.; Hu, J.M.; Lu, J.Q.; Luan, T.G.; et al. Molecular Cloning, Purification, and Biochemical Characterization of a Novel Pyrethroid-Hydrolyzing Esterase from Klebsiella sp. Strain ZD112. J. Agric. Food Chem. 2006, 54, 836–842. [Google Scholar] [CrossRef]
- Disayathanoowat, T.; Yoshiyama, M.; Kimura, K.; Chantawannakul, P. Isolation and Characterization of Bacteria from the Midgut of the Asian Honey Bee (Apis cerana Indica). J. Apic. Res. 2012, 51, 312–319. [Google Scholar] [CrossRef]
- Botías, C.; David, A.; Horwood, J.; Abdul-Sada, A.; Nicholls, E.; Hill, E.; Goulson, D. Neonicotinoid Residues in Wildflowers, a Potential Route of Chronic Exposure for Bees. Environ. Sci. Technol. 2015, 49, 12731–12740. [Google Scholar] [CrossRef] [PubMed]
- Rouzé, R.; Moné, A.; Delbac, F.; Belzunces, L.; Blot, N. The Honeybee Gut Microbiota Is Altered after Chronic Exposure to Different Families of Insecticides and Infection by Nosema ceranae. Microbes Environ. 2019, 34, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Maté, A.; Renelies-Hamilton, J.; Kryger, P.; Jensen, A.B.; Sinotte, V.M.; Poulsen, M. Resistance and Vulnerability of Honeybee (Apis mellifera) Gut Bacteria to Commonly Used Pesticides. Front. Microbiol. 2021, 12, 717990. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Qiao, N.H.; Diao, Q.Y.; Jing, Z.; Vukanti, R.; Dai, P.L.; Ge, Y. Thiacloprid Exposure Perturbs the Gut Microbiota and Reduces the Survival Status in Honeybees. J. Hazard. Mater. 2020, 389, 121818. [Google Scholar] [CrossRef]
- El Khoury, S.; Gauthier, J.; Bouslama, S.; Cheaib, B.; Giovenazzo, P.; Derome, N. Dietary Contamination with a Neonicotinoid (Clothianidin) Gradient Triggers Specific Dysbiosis Signatures of Microbiota Activity along the Honeybee (Apis mellifera) Digestive Tract. Microorganisms 2021, 9, 2283. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Fang, W.W.; Guo, L.L.; Yao, C.F.; Zhao, Y.X.; Ge, F.; Dai, Y.J. Biodegradation of the Neonicotinoid Insecticide Acetamiprid by Actinomycetes Streptomyces canus CGMCC 13662 and Characterization of the Novel Nitrile Hydratase Involved. J. Agric. Food Chem. 2019, 67, 5922–5931. [Google Scholar] [CrossRef]
- Zhao, Y.-X.; Jiang, H.-Y.; Chen, X.; Zhu, Y.-X.; Fan, Z.-X.; Dai, Z.-L.; Guo, L.; Liu, Z.-H.L.; Dai, Y.-J. Neonicotinoid Thiacloprid Transformation by the N2-Fixing Bacterium Microvirga flocculans CGMCC 1.16731 and Toxicity of the Amide Metabolite. Int. Biodeterior. Biodegrad. 2019, 145, 104806. [Google Scholar] [CrossRef]
- El Khoury, S.; Giovenazzo, P.; Derome, N. Endogenous Honeybee Gut Microbiota Metabolize the Pesticide Clothianidin. Microorganisms 2022, 10, 493. [Google Scholar] [CrossRef]
- Ravoet, J.; Reybroeck, W.; De Graaf, D.C. Pesticides for Apicultural and/or Agricultural Application Found in Belgian Honey Bee Wax Combs. Bull. Environ. Contam. Toxicol. 2015, 94, 543–548. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Yan, Z.; Liu, F.; Diao, Q.; Dai, P. Effects of Three Common Pesticides on Survival, Food Consumption and Midgut Bacterial Communities of Adult Workers Apis cerana and Apis mellifera. Environ. Pollut. 2019, 249, 860–867. [Google Scholar] [CrossRef]
- Shelton, D.R.; Somich, C.J. Isolation and Characterization of Coumaphos-Metabolizing Bacteria from Cattle Dip. Appl. Environ. Microbiol. 1988, 54, 2566–2571. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, H.; Iqbal, S.; Anwar, S. Biodegradation of Chlorpyrifos and 3, 5, 6-Trichloro-2-Pyridinol by a Novel Rhizobial Strain Mesorhizobium sp. HN3. Water Environ. J. 2015, 29, 151–160. [Google Scholar] [CrossRef]
- Singh, B.K.; Walker, A. Microbial Degradation of Organophosphorus Compounds. FEMS Microbiol. Rev. 2006, 30, 428–471. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.; Iken, B.; Damania, A. A Comparison of Organophosphate Degradation Genes and Bioremediation Applications. Environ. Microbiol. Rep. 2013, 5, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Hayden, C.; Road, E.A.; Gilliam, M. Identification and Roles of Non-Pathogenic Microflora Associated with Honey Bees. FEMS Microbiol. Lett. 2000, 155, 1–10. [Google Scholar]
- Cycoń, M.; Wójcik, M.; Piotrowska-Seget, Z. Biodegradation of the Organophosphorus Insecticide Diazinon by Serratia sp. and Pseudomonas sp. and Their Use in Bioremediation of Contaminated Soil. Chemosphere 2009, 76, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.M.A.; Math, R.K.; Cho, K.M.; Lim, W.J.; Hong, S.Y.; Kim, J.M.; Yun, M.G.; Cho, J.J.; Yun, H.D. Organophosphorus Hydrolase (OpdB) of Lactobacillus brevis WCP902 from Kimchi Is Able to Degrade Organophosphorus Pesticides. J. Agric. Food Chem. 2010, 58, 5380–5386. [Google Scholar] [CrossRef] [PubMed]
- Armenova, N.; Tsigoriyna, L.; Arsov, A.; Petrov, K.; Petrova, P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023, 12, 1163. [Google Scholar] [CrossRef] [PubMed]
- Elzakey, E.M.; El-Sabbagh, S.M.; Eldeen, E.E.S.N.; Adss, I.A.A.; Nassar, A.M.K. Bioremediation of Chlorpyrifos Residues Using Some Indigenous Species of Bacteria and Fungi in Wastewater. Environ. Monit. Assess. 2023, 195, 779. [Google Scholar] [CrossRef]
- Schuhmann, A.; Sohl, L.; Thamm, M.; Scheiner, R.; Noll, M. Fungicides and Insecticides Can Alter the Microbial Community on the Cuticle of Honey Bees. Front. Microbiol. 2023, 14, 1271498. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Schuster, L.A.; Reisch, C.R. A Plasmid Toolbox for Controlled Gene Expression across the Proteobacteria. Nucleic Acids Res. 2021, 49, 7189–7202. [Google Scholar] [CrossRef] [PubMed]
- Shade, A.; Peter, H.; Allison, S.D.; Baho, D.L.; Berga, M.; Bürgmann, H.; Huber, D.H.; Langenheder, S.; Lennon, J.T.; Martiny, J.B.H.; et al. Fundamentals of Microbial Community Resistance and Resilience. Front. Microbiol. 2012, 3, 417. [Google Scholar] [CrossRef] [PubMed]
- Smart, M.; Pettis, J.; Rice, N.; Browning, Z.; Spivak, M. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use. PLoS ONE 2016, 11, e0152685. [Google Scholar] [CrossRef] [PubMed]
- Smriti; Rana, A.; Singh, G.; Gupta, G. Prospects of Probiotics in Beekeeping: A Review for Sustainable Approach to Boost Honeybee Health. Arch. Microbiol. 2024, 206, 205. [Google Scholar] [CrossRef] [PubMed]
- Damico, M.E.; Beasley, B.; Greenstein, D.; Raymann, K. Testing the Effectiveness of a Commercially Sold Probiotic on Restoring the Gut Microbiota of Honey Bees: A Field Study. Probiotics Antimicrob. Proteins 2023. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.P.; Powell, J.E.; Perutka, J.; Geng, P.; Heckmann, L.C.; Horak, R.D.; Davies, B.W.; Ellington, A.D.; Barrick, J.E.; Moran, N.A. Engineered Symbionts Activate Honey Bee Immunity and Limit Pathogens. Science 2020, 367, 573–576. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Powell, J.E.; Leonard, S.P.; Moran, N.A. Prospects for Probiotics in Social Bees. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20210156. [Google Scholar] [CrossRef]
Purpose | Symbiont | Outcome | Reference |
---|---|---|---|
Investigation of gut symbiosis and development of genetic toolkits for bee gut symbionts | S. alvi | Successful observation of bacterial colonization and developed bee microbiome toolkit (BTK) used for genetic engineering based on broad-host-range plasmid system (pRSF1010) | [32] |
G. apicola | Successful observation of bacterial colonization and developed bee microbiome toolkit (BTK) used for genetic engineering based on broad-host-range plasmid system (pRSF1010) | [32] | |
S. marcescens | Successful observation of bacterial colonization and developed bee microbiome toolkit (BTK) used for genetic engineering based on broad-host-range plasmid system (pRSF1010) | [32] | |
B. apis | Successful observation of bacterial colonization and developed bee microbiome toolkit (BTK) used for genetic engineering based on CRISPR system | [32] | |
Biosensor development for gut environment | S. alvi | Successful development of a biosensor system for fluorescence readouts through gut tissue and feces | [31] |
Pathogen or parasite resistance | L. kunkeei | Successful transformation with no obvious adverse effects on honeybee survival | [28] |
S. alvi | Successful development of an engineered strain to induce RNAi mechanisms in honeybees for microsporidian parasite | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sattayawat, P.; Inwongwan, S.; Noirungsee, N.; Li, J.; Guo, J.; Disayathanoowat, T. Engineering Gut Symbionts: A Way to Promote Bee Growth? Insects 2024, 15, 369. https://doi.org/10.3390/insects15050369
Sattayawat P, Inwongwan S, Noirungsee N, Li J, Guo J, Disayathanoowat T. Engineering Gut Symbionts: A Way to Promote Bee Growth? Insects. 2024; 15(5):369. https://doi.org/10.3390/insects15050369
Chicago/Turabian StyleSattayawat, Pachara, Sahutchai Inwongwan, Nuttapol Noirungsee, Jilian Li, Jun Guo, and Terd Disayathanoowat. 2024. "Engineering Gut Symbionts: A Way to Promote Bee Growth?" Insects 15, no. 5: 369. https://doi.org/10.3390/insects15050369
APA StyleSattayawat, P., Inwongwan, S., Noirungsee, N., Li, J., Guo, J., & Disayathanoowat, T. (2024). Engineering Gut Symbionts: A Way to Promote Bee Growth? Insects, 15(5), 369. https://doi.org/10.3390/insects15050369