Different Sensitivity of Flower-Visiting Diptera to a Neonicotinoid Insecticide: Expanding the Base for a Multiple-Species Risk Assessment Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species, Populations, and Test Conditions
2.2. Imidacloprid Solutions
2.3. Experimental Design, Exposure, and Mortality Assessment
2.4. Sublethal Effect Assessment: Reproduction (Oviposition Rate and Fecundity)
2.5. Ecotoxicological Data from Literature
2.6. Statistical Analysis
3. Results
3.1. Species Sensitivity Distribution: Mortality
3.2. Sublethal Effects: Reproduction (Oviposition Rate and Fecundity)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Ollerton, J.; Winfree, R.; Tarrant, S. How Many Flowering Plants Are Pollinated by Animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Rader, R.; Bartomeus, I.; Garibaldi, L.A.; Garratt, M.P.D.; Howlett, B.G.; Winfree, R.; Cunningham, S.A.; Mayfield, M.M.; Arthur, A.D.; Andersson, G.K.S.; et al. Non-Bee Insects Are Important Contributors to Global Crop Pollination. Proc. Natl. Acad. Sci. USA 2016, 113, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Skevington, J.H.; Dang, P.T. Exploring the Diversity of Flies (Diptera). Biodiversity 2002, 3, 3–27. [Google Scholar] [CrossRef]
- Ssymank, A.; Kearns, C.A.; Pape, T.; Thompson, F.C. Pollinating Flies (Diptera): A Major Contribution to Plant Diversity and Agricultural Production. Biodiversity 2008, 9, 86–89. [Google Scholar] [CrossRef]
- Courtney, G.W.; Pape, T.; Skevington, J.H.; Sinclair, B.J. Biodiversity of Diptera. In Insect Biodiversity; Wiley: Hoboken, NJ, USA, 2017; pp. 229–278. [Google Scholar]
- Woodcock, T.S.; Larson, B.M.H.; Kevan, P.G.; Inouye, D.W.; Lunau, K. Flies and Flowers II: Floral Attractants and Rewards. J. Pollinat. Ecol. 2014, 12, 63–94. [Google Scholar] [CrossRef]
- Inouye, D.W.; Larson, B.M.H.; Ssymank, A.; Kevan, P.G. Flies and Flowers III: Ecology of Foraging and Pollination. J. Pollinat. Ecol. 2015, 16, 115–133. [Google Scholar] [CrossRef]
- Roquer-Beni, L.; Arnan, X.; Rodrigo, A.; Bosch, J. What Makes a Good Pollinator? Relationship between Pollinator Traits and Pollination Effectiveness in Apple Flowers. Entomol. Gen. 2022, 42, 875–882. [Google Scholar] [CrossRef]
- Rodríguez-Gasol, N.; Alins, G.; Veronesi, E.R.; Wratten, S. The Ecology of Predatory Hoverflies as Ecosystem-Service Providers in Agricultural Systems. Biol. Control 2020, 151, 104405. [Google Scholar] [CrossRef]
- Larson, B.M.H.; Kevan, P.G.; Inouye, D.W. Flies and Flowers: Taxonomic Diversity of Anthophiles and Pollinators. Can. Entomol. 2001, 133, 439–465. [Google Scholar] [CrossRef]
- Raguso, R.A. Don’t Forget the Flies: Dipteran Diversity and Its Consequences for Floral Ecology and Evolution. Appl. Entomol. Zool. 2020, 55, 1–7. [Google Scholar] [CrossRef]
- Rader, R.; Cunningham, S.A.; Howlett, B.G.; Inouye, D.W. Non-Bee Insects as Visitors and Pollinators of Crops: Biology, Ecology, and Management. Annu. Rev. Entomol. 2020, 65, 391–407. [Google Scholar] [CrossRef] [PubMed]
- Al-Dobai, S.; Reitz, S.; Sivinski, J. Tachinidae (Diptera) Associated with Flowering Plants: Estimating Floral Attractiveness. Biol. Control 2012, 61, 230–239. [Google Scholar] [CrossRef]
- Orford, K.A.; Vaughan, I.P.; Memmott, J. The Forgotten Flies: The Importance of Non-Syrphid Diptera as Pollinators. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142934. [Google Scholar] [CrossRef] [PubMed]
- Dunn, L.; Lequerica, M.; Reid, C.R.; Latty, T. Dual Ecosystem Services of Syrphid Flies (Diptera: Syrphidae): Pollinators and Biological Control Agents. Pest Manag. Sci. 2020, 76, 1973–1979. [Google Scholar] [CrossRef]
- Dindo, M.L.; Grenier, S. Production of Dipteran Parasitoids. In Mass Production of Beneficial Organisms; Elsevier: Amsterdam, The Netherlands, 2023; pp. 71–100. [Google Scholar]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemuller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Zattara, E.E.; Aizen, M.A. Worldwide Occurrence Records Suggest a Global Decline in Bee Species Richness. One Earth 2021, 4, 114–123. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 Percent Decline over 27 Years in Total Flying Insect Biomass in Protected Areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Ssymank, A.; Sorg, M.; de Kroon, H.; Jongejans, E. Insect Biomass Decline Scaled to Species Diversity: General Patterns Derived from a Hoverfly Community. Proc. Natl. Acad. Sci. USA 2021, 118, e2002554117. [Google Scholar] [CrossRef]
- Barendregt, A.; Zeegers, T.; van Steenis, W.; Jongejans, E. Forest Hoverfly Community Collapse: Abundance and Species Richness Drop over Four Decades. Insect Conserv. Divers. 2022, 15, 510–521. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Rundlöf, M.; Andersson, G.K.S.; Bommarco, R.; Fries, I.; Hederström, V.; Herbertsson, L.; Jonsson, O.; Klatt, B.K.; Pedersen, T.R.; Yourstone, J.; et al. Seed Coating with a Neonicotinoid Insecticide Negatively Affects Wild Bees. Nature 2015, 521, 77–80. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Bullock, J.M.; Shore, R.F.; Heard, M.S.; Pereira, M.G.; Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P.; et al. Country-Specific Effects of Neonicotinoid Pesticides on Honey Bees and Wild Bees. Science 2017, 356, 1393–1395. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA); Health Canada Pest Management Regulatory Agency (PMRA); California Departament of Pesticide Regulatio. USEPA Guidance for Assessing Pesticide Risks to Bees, USEPA: Washington, DC, USA, 2014.
- EFSA Guidance on the Risk Assessment of Plant Protection Products on Bees (Apis Mellifera, Bombus Spp. and Solitary Bees). EFSA J. 2013, 11, 3295. [CrossRef]
- Sgolastra, F.; Medrzycki, P.; Bortolotti, L.; Maini, S.; Porrini, C.; Simon-Delso, N.; Bosch, J. Bees and Pesticide Regulation: Lessons from the Neonicotinoid Experience. Biol. Conserv. 2020, 241, 108356. [Google Scholar] [CrossRef]
- Sanchez-Bayo, F.; Goka, K. Pesticide Residues and Bees–A Risk Assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef]
- Azpiazu, C.; Bosch, J.; Bortolotti, L.; Medrzycki, P.; Teper, D.; Molowny-Horas, R.; Sgolastra, F. Toxicity of the Insecticide Sulfoxaflor Alone and in Combination with the Fungicide Fluxapyroxad in Three Bee Species. Sci. Rep. 2021, 11, 6821. [Google Scholar] [CrossRef]
- Arena, M.; Sgolastra, F. A Meta-Analysis Comparing the Sensitivity of Bees to Pesticides. Ecotoxicology 2014, 23, 324–334. [Google Scholar] [CrossRef]
- Sgolastra, F.; Medrzycki, P.; Bortolotti, L.; Renzi, M.T.; Tosi, S.; Bogo, G.; Teper, D.; Porrini, C.; Molowny-Horas, R.; Bosch, J. Synergistic Mortality between a Neonicotinoid Insecticide and an Ergosterol-Biosynthesis-Inhibiting Fungicide in Three Bee Species. Pest Manag. Sci. 2017, 73, 1236–1243. [Google Scholar] [CrossRef]
- Biddinger, D.J.; Robertson, J.L.; Mullin, C.; Frazier, J.; Ashcraft, S.A.; Rajotte, E.G.; Joshi, N.K.; Vaughn, M. Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis Mellifera (L.) and Osmia Cornifrons (Radoszkowski). PLoS ONE 2013, 8, e72587. [Google Scholar] [CrossRef]
- Heard, M.S.; Baas, J.; Dorne, J.-L.; Lahive, E.; Robinson, A.G.; Rortais, A.; Spurgeon, D.J.; Svendsen, C.; Hesketh, H. Comparative Toxicity of Pesticides and Environmental Contaminants in Bees: Are Honey Bees a Useful Proxy for Wild Bee Species? Sci. Total Environ. 2017, 578, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.; Hesketh, H.; Lahive, E.; Horton, A.A.; Svendsen, C.; Rortais, A.; Dorne, J.L.; Baas, J.; Heard, M.S.; Spurgeon, D.J. Comparing Bee Species Responses to Chemical Mixtures: Common Response Patterns? PLoS ONE 2017, 12, e0176289. [Google Scholar] [CrossRef] [PubMed]
- Linguadoca, A.; Jürison, M.; Hellström, S.; Straw, E.A.; Šima, P.; Karise, R.; Costa, C.; Serra, G.; Colombo, R.; Paxton, R.J.; et al. Intra-Specific Variation in Sensitivity of Bombus Terrestris and Osmia Bicornis to Three Pesticides. Sci. Rep. 2022, 12, 17311. [Google Scholar] [CrossRef] [PubMed]
- de Assis, J.C.; Tadei, R.; Menezes-Oliveira, V.B.; Silva-Zacarin, E.C.M. Are Native Bees in Brazil at Risk from the Exposure to the Neonicotinoid Imidacloprid? Environ. Res. 2022, 212, 113127. [Google Scholar] [CrossRef] [PubMed]
- Lourencetti, A.P.S.; Azevedo, P.; Miotelo, L.; Malaspina, O.; Nocelli, R.C.F. Surrogate Species in Pesticide Risk Assessments: Toxicological Data of Three Stingless Bees Species. Environ. Pollut. 2023, 318, 120842. [Google Scholar] [CrossRef] [PubMed]
- Beneficial Arthropod Regulatory Testing Group; European and Mediterranean Plant Protection Organisation; Council of Europe; Organisation for Economic Co-operation and Development; International Organisation for Biological and Integrated Control of Noxious Animals and Plants; Society of Environmental Toxicology and Chemistry-Europe; Commission of the European Communities. Guidance Document on Regulatory Testing and Risk Assessment Procedures for Plant Protection Products with Non-Target Arthropods: From the ESCORT 2 Workshop (European Standard Characteristics of Non-Target Arthropod Regulatory Testing), Candolfi, M.P., Barrett, K.L., Campbell, P.J., Forster, R., Grandy, N., Huet, M.-C., Lewis, G., Oomen, P.A., Schmuck, R., Vog, H., Eds.; SETAC: Brussels, Belgium, 2001; ISBN 9781880611524.
- Williams, J.H.; Bordoni, A.; Bednarska, A.; Pinto, A.; Martins, C.A.H.; Henriques, D.; Sgolastra, F.; Knapp, J.; Loureiro, J.; Sousa, J.P.; et al. Roadmap for Action on the Environmental Risk Assessment of Chemicals for Insect Pollinators (IPol-ERA). EFSA Support. Publ. 2023, 20, 8431E. [Google Scholar] [CrossRef]
- Basley, K.; Davenport, B.; Vogiatzis, K.; Goulson, D. Effects of Chronic Exposure to Thiamethoxam on Larvae of the Hoverfly Eristalis Tenax (Diptera, Syrphidae). PeerJ 2018, 6, e4258. [Google Scholar] [CrossRef] [PubMed]
- Moens, J.; De Clercq, P.; Tirry, L. Side Effects of Pesticides on the Larvae of the Hoverfly Episyrphus Balteatus in the Laboratory. Phytoparasitica 2011, 39, 1–9. [Google Scholar] [CrossRef]
- Nagloo, N.; Rigosi, E.; O’Carroll, D.C. Acute and Chronic Toxicity of Imidacloprid in the Pollinator Fly, Eristalis Tenax L., Assessed Using a Novel Oral Bioassay. Ecotoxicol. Environ. Saf. 2023, 251, 114505. [Google Scholar] [CrossRef]
- Benelli, M.; Tóth, F.; Dindo, M.L. Low-temperature Storage of Exorista Larvarum Puparia as a Tool for Assisting Parasitoid Production. Entomol. Exp. Appl. 2018, 166, 914–924. [Google Scholar] [CrossRef]
- Mellini, E.; Coulibaly, A.K. Un Decennio Di Sperimentazione Sul Sistema Ospite-Parassita Galleria Mellonella L.-Pseudogonia rufifrons Wied: Sintesi dei risultati. Boll. Ist. Ent. “G. Grandi” Univ. Bologna 1991, 45, 191–249. [Google Scholar]
- Amorós-Jiménez, R.; Pineda, A.; Fereres, A.; Marcos-García, M.Á. Prey Availability and Abiotic Requirements of Immature Stages of the Aphid Predator Sphaerophoria Rueppellii. Biol. Control 2012, 63, 17–24. [Google Scholar] [CrossRef]
- Amorós-Jiménez, R.; Pineda, A.; Fereres, A.; Marcos-García, M.Á. Feeding Preferences of the Aphidophagous Hoverfly Sphaerophoria Rueppellii Affect the Performance of Its Offspring. BioControl 2014, 59, 427–435. [Google Scholar] [CrossRef]
- Pekas, A.; De Craecker, I.; Boonen, S.; Wäckers, F.L.; Moerkens, R. One Stone; Two Birds: Concurrent Pest Control and Pollination Services Provided by Aphidophagous Hoverflies. Biol. Control 2020, 149, 104328. [Google Scholar] [CrossRef]
- Sánchez, M.; Belliure, B.; Montserrat, M.; Gil, J.; Velásquez, Y. Pollination by the Hoverfly Eristalinus Aeneus (Diptera: Syrphidae) in Two Hybrid Seed Crops: Celery and Fennel (Apiaceae). J. Agric. Sci. 2022, 160, 194–206. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic Insecticides (Neonicotinoids and Fipronil): Trends, Uses, Mode of Action and Metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- van der Sluijs, J.P.; Amaral-Rogers, V.; Belzunces, L.P.; Bijleveld van Lexmond, M.F.I.J.; Bonmatin, J.-M.; Chagnon, M.; Downs, C.A.; Furlan, L.; Gibbons, D.W.; Giorio, C.; et al. Conclusions of the Worldwide Integrated Assessment on the Risks of Neonicotinoids and Fipronil to Biodiversity and Ecosystem Functioning. Environ. Sci. Pollut. Res. 2015, 22, 148–154. [Google Scholar] [CrossRef]
- Maini, S.; Medrzycki, P.; Porrini, C. The Puzzle of Honey Bee Losses: A Brief Review. Bull. Insectology 2010, 63, 153–160. [Google Scholar]
- Lundin, O.; Rundlöf, M.; Smith, H.G.; Fries, I.; Bommarco, R. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS ONE 2015, 10, e0136928. [Google Scholar] [CrossRef]
- OJEU Commission Implementing Regulation (EU) 2018/783 of 29 May 2018 Amending Implementing Regulation (EU) No 540/2011 as Regards the Conditions of Approval of the Active Substance Imidacloprid. Off. J. Eur. Union 2018, 132, 31–34.
- Goulson, D. Pesticides, Corporate Irresponsibility, and the Fate of Our Planet. One Earth 2020, 2, 302–305. [Google Scholar] [CrossRef]
- OECD. Test No. 214: Honeybees, Acute Contact Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD: Paris, France, 1998; ISBN 9789264070189.
- OECD. Test No. 213: Honeybees, Acute Oral Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD: Paris, France, 1998; ISBN 9789264070165.
- OECD. Test No. 246: Bumblebee, Acute Contact Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD: Paris, France, 2017; ISBN 9789264284104.
- OECD. Test No. 247: Bumblebee, Acute Oral Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD: Paris, France, 2017; ISBN 9789264284128.
- Posthuma, L.; Suter II, G.W.; Traas, T.P. Species Sensitivity Distributions in Ecotoxicology; CRC Press: Boca Raton, FL, USA, 2001; ISBN 1420032313. [Google Scholar]
- Wheeler, J.; Grist, E.P.; Leung, K.M.; Morritt, D.; Crane, M. Species Sensitivity Distributions: Data and Model Choice. Mar. Pollut. Bull. 2002, 45, 192–202. [Google Scholar] [CrossRef] [PubMed]
- van Straalen, N.M. Biodiversity of Ecotoxicological Responses in Animals. Netherlands J. Zool. 1994, 44, 112–129. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Flatt, T. Endocrine Uncoupling of the Trade-off between Reproduction and Somatic Maintenance in Eusocial Insects. Curr. Opin. Insect Sci. 2016, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sgolastra, F.; Hinarejos, S.; Pitts-Singer, T.L.; Boyle, N.K.; Joseph, T.; Lūckmann, J.; Raine, N.E.; Singh, R.; Williams, N.M.; Bosch, J. Pesticide Exposure Assessment Paradigm for Solitary Bees. Environ. Entomol. 2019, 48, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Dindo, M.L.; Modesto, M.; Rossi, C.; Di Vito, M.; Burgio, G.; Barbanti, L.; Mattarelli, P. Monarda Fistulosa Hydrolate as Antimicrobial Agent in Artificial Media for the in Vitro Rearing of the Tachinid Parasitoid Exorista Larvarum. Entomol. Exp. Appl. 2021, 169, 79–89. [Google Scholar] [CrossRef]
- Dindo, M.L.; Marchetti, E.; Baronio, P. In Vitro Rearing of the Parasitoid Exorista Larvarum (Diptera: Tachinidae) from Eggs Laid Out of Host. J. Econ. Entomol. 2007, 100, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Dindo, M.L.; Rezaei, M.; De Clercq, P. Improvements in the Rearing of the Tachinid Parasitoid Exorista Larvarum (Diptera: Tachinidae): Influence of Adult Food on Female Longevity and Reproduction Capacity. J. Insect Sci. 2019, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Branquart, E.; Hemptinne, J.-L.; Bauffe, C.; Benfekih, L. Cannibalism In Episyrphus Balteatus (Ditp: Syrphidae). BioControl 1997, 42, 145–152. [Google Scholar] [CrossRef]
- Campoy, A.; Lutsyk, M.; Pérez-Bañón, C.; Rojo, S. Age-Stage Two-Sex Life Table Analysis of Eristalinus Aeneus (Diptera, Syrphidae) Reared with Two Different Larval Media. Bull. Entomol. Res. 2022, 112, 13–20. [Google Scholar] [CrossRef]
- Gladis, T. Laborzucht Einiger Eristalinen (Diptera, Syrphidae) Und Möglichkeiten Für Ihren Einsatz in Der Pflanzenzüchtung [Laboratory Rearing of Some Eristalines (Diptera, Syrphidae) and the Possibility of Their Use in Plant Cultures]. Verhandlungen der Westdtsch. Entomol. 1994, 1993, 139–152. [Google Scholar]
- Straw, E.A.; Carpentier, E.N.; Brown, M.J.F. Roundup Causes High Levels of Mortality Following Contact Exposure in Bumble Bees. J. Appl. Ecol. 2021, 58, 1167–1176. [Google Scholar] [CrossRef]
- Straw, E.A.; Brown, M.J.F. Co-Formulant in a Commercial Fungicide Product Causes Lethal and Sub-Lethal Effects in Bumble Bees. Sci. Rep. 2021, 11, 21653. [Google Scholar] [CrossRef] [PubMed]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.r-project.org/ (accessed on 30 March 2022).
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Suchail, S.; Guez, D.; Belzunces, L.P. Characteristics of Imidacloprid Toxicity in Two Apis Mellifera Subspecies. Environ. Toxicol. Chem. 2000, 19, 1901–1905. [Google Scholar] [CrossRef]
- Thorley, J.; Schwarz, C. Ssdtools: An R Package to Fit Species Sensitivity Distributions. J. Open Source Softw. 2018, 3, 1082. [Google Scholar] [CrossRef]
- OECD. Current Approaches in the Statistical Analysis of Ecotoxicity Data: A Guidance to Application, OECD Environment Health and Safety Publications Series on Testing and Assessment; OECD: Paris, France, 2016.
- Laskowski, R. Some Good Reasons to Ban the Use of NOEC, LOEC and Related Concepts in Ecotoxicology. Oikos 1995, 73, 140–144. [Google Scholar] [CrossRef]
- USEPA Benchmark Dose Tools (BMDS) Online. Available online: https://bmdsonline.epa.gov/ (accessed on 12 April 2023).
- Yasuda, M.; Sakamoto, Y.; Goka, K.; Nagamitsu, T.; Taki, H. Insecticide Susceptibility in Asian Honey Bees (Apis Cerana (Hymenoptera: Apidae)) and Implications for Wild Honey Bees in Asia. J. Econ. Entomol. 2017, 110, 447–452. [Google Scholar] [CrossRef]
- Soares, H.M.; Jacob, C.R.O.; Carvalho, S.M.; Nocelli, R.C.F.; Malaspina, O. Toxicity of Imidacloprid to the Stingless Bee Scaptotrigona Postica Latreille, 1807 (Hymenoptera: Apidae). Bull. Environ. Contam. Toxicol. 2015, 94, 675–680. [Google Scholar] [CrossRef]
- da Costa, L.M.; Grella, T.C.; Barbosa, R.A.; Malaspina, O.; Nocelli, R.C.F. Determination of Acute Lethal Doses (LD50 and LC50) of Imidacloprid for the Native Bee Melipona Scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology 2015, 62. [Google Scholar] [CrossRef]
- Kueh Tai, F.; Pattemore, D.E.; Jochym, M.; Beggs, J.R.; Northcott, G.L.; Mortensen, A.N. Honey Bee Toxicological Responses Do Not Accurately Predict Environmental Risk of Imidacloprid to a Solitary Ground-Nesting Bee Species. Sci. Total Environ. 2022, 839, 156398. [Google Scholar] [CrossRef]
- Youn, Y.N.; Seo, M.J.; Shin, J.G.; Jang, C.; Yu, Y.M. Toxicity of Greenhouse Pesticides to Multicolored Asian Lady Beetles, Harmonia Axyridis (Coleoptera: Coccinellidae). Biol. Control 2003, 28, 164–170. [Google Scholar] [CrossRef]
- Lucas, É.; Giroux, S.; Demougeot, S.; Duchesne, R.-M.; Coderre, D. Compatibility of a Natural Enemy, Coleomegilla Maculata Lengi (Col., Coccinellidae) and Four Insecticides Used against the Colorado Potato Beetle (Col., Chrysomelidae). J. Appl. Entomol. 2004, 128, 233–239. [Google Scholar] [CrossRef]
- Hartfelder, K.; Engels, W. Allometric and Multivariate Analysis of Sex and Caste Polymorphism in the Neotropical Stingless Bee, Scaptotrigona Postica. Insectes Soc. 1992, 39, 251–266. [Google Scholar] [CrossRef]
- Lourenço, C.T.; Carvalho, S.M.; Malaspina, O.; Nocelli, R.C.F. Oral Toxicity of Fipronil Insecticide Against the Stingless Bee Melipona Scutellaris (Latreille, 1811). Bull. Environ. Contam. Toxicol. 2012, 89, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H. Extrapolation of Acute Toxicity across Bee Species. Integr. Environ. Assess. Manag. 2016, 12, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Beadle, K.; Singh, K.S.; Troczka, B.J.; Randall, E.; Zaworra, M.; Zimmer, C.T.; Hayward, A.; Reid, R.; Kor, L.; Kohler, M.; et al. Genomic Insights into Neonicotinoid Sensitivity in the Solitary Bee Osmia Bicornis. PLoS Genet. 2019, 15, e1007903. [Google Scholar] [CrossRef] [PubMed]
- Phan, N.T.; Joshi, N.K.; Rajotte, E.G.; López-Uribe, M.M.; Zhu, F.; Biddinger, D.J. A New Ingestion Bioassay Protocol for Assessing Pesticide Toxicity to the Adult Japanese Orchard Bee (Osmia Cornifrons). Sci. Rep. 2020, 10, 9517. [Google Scholar] [CrossRef] [PubMed]
- Uhl, P.; Awanbor, O.; Schulz, R.S.; Brühl, C.A. Osmia Bicornis Is Rarely an Adequate Regulatory Surrogate Species. Comparing Its Acute Sensitivity towards Multiple Insecticides with Regulatory Apis Mellifera Endpoints. PLoS ONE 2019, 14, e0201081. [Google Scholar] [CrossRef]
- ECOTOX Curated Toxicity Data Were Retrieved from the ECOTOXicology Knowledgebase. U.S. Environmental Protection Agency. Available online: http://www.epa.gov/ecotox/ (accessed on 1 November 2022).
- Bortolotti, L.; Porrini, C.; Sbrenna, G. Effetti Dell’imidacloprid Nei Confronti Di Bombus Terrestris (L.). Prove Di Laboratorio. Inf. Fitopatol. 2002, 3, 66–71. [Google Scholar]
- Hagen, M.; Wikelski, M.; Kissling, W.D. Space Use of Bumblebees (Bombus Spp.) Revealed by Radio-Tracking. PLoS ONE 2011, 6, e19997. [Google Scholar] [CrossRef] [PubMed]
- Suchail, S.; Debrauwer, L.; Belzunces, L.P. Metabolism of Imidacloprid in Apis Mellifera. Pest Manag. Sci. 2004, 60, 291–296. [Google Scholar] [CrossRef]
- Calvo-Agudo, M.; González-Cabrera, J.; Picó, Y.; Calatayud-Vernich, P.; Urbaneja, A.; Dicke, M.; Tena, A. Neonicotinoids in Excretion Product of Phloem-Feeding Insects Kill Beneficial Insects. Proc. Natl. Acad. Sci. USA 2019, 116, 16817–16822. [Google Scholar] [CrossRef] [PubMed]
- Tosi, S.; Démares, F.J.; Nicolson, S.W.; Medrzycki, P.; Pirk, C.W.W.; Human, H. Effects of a Neonicotinoid Pesticide on Thermoregulation of African Honey Bees (Apis Mellifera Scutellata). J. Insect Physiol. 2016, 93–94, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.L.; Harmon-Threatt, A.N. Chronic Contact with Realistic Soil Concentrations of Imidacloprid Affects the Mass, Immature Development Speed, and Adult Longevity of Solitary Bees. Sci. Rep. 2019, 9, 3724. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.; Clarke, R.M.; Oldfield, S.E.; Wood, L.K.; Hempel de Ibarra, N.; Cresswell, J.E. The Effect of Dietary Neonicotinoid Pesticides on Non-Flight Thermogenesis in Worker Bumble Bees (Bombus Terrestris). J. Insect Physiol. 2018, 104, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Haddi, K.; Mendes, M.V.; Barcellos, M.S.; Lino-Neto, J.; Freitas, H.L.; Guedes, R.N.C.; Oliveira, E.E. Sexual Success after Stress? Imidacloprid-Induced Hormesis in Males of the Neotropical Stink Bug Euschistus Heros. PLoS ONE 2016, 11, e0156616. [Google Scholar] [CrossRef] [PubMed]
- Agathokleous, E.; Calabrese, E.J. Environmental Toxicology and Ecotoxicology: How Clean Is Clean? Rethinking Dose-Response Analysis. Sci. Total Environ. 2020, 746, 138769. [Google Scholar] [CrossRef]
- Cutler, G.C.; Amichot, M.; Benelli, G.; Guedes, R.N.C.; Qu, Y.; Rix, R.R.; Ullah, F.; Desneux, N. Hormesis and Insects: Effects and Interactions in Agroecosystems. Sci. Total Environ. 2022, 825, 153899. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormetic Mechanisms. Crit. Rev. Toxicol. 2013, 43, 580–606. [Google Scholar] [CrossRef] [PubMed]
- De Smet, L.; Hatjina, F.; Ioannidis, P.; Hamamtzoglou, A.; Schoonvaere, K.; Francis, F.; Meeus, I.; Smagghe, G.; de Graaf, D.C. Stress Indicator Gene Expression Profiles, Colony Dynamics and Tissue Development of Honey Bees Exposed to Sub-Lethal Doses of Imidacloprid in Laboratory and Field Experiments. PLoS ONE 2017, 12, e0171529. [Google Scholar] [CrossRef] [PubMed]
- Derecka, K.; Blythe, M.J.; Malla, S.; Genereux, D.P.; Guffanti, A.; Pavan, P.; Moles, A.; Snart, C.; Ryder, T.; Ortori, C.A. Transient Exposure to Low Levels of Insecticide Affects Metabolic Networks of Honeybee Larvae. PLoS ONE 2013, 8, e68191. [Google Scholar] [CrossRef] [PubMed]
- Erofeeva, E.A. Environmental Hormesis: From Cell to Ecosystem. Curr. Opin. Environ. Sci. Heal. 2022, 29, 100378. [Google Scholar] [CrossRef]
- Crossthwaite, A.J.; Bigot, A.; Camblin, P.; Goodchild, J.; Lind, R.J.; Slater, R.; Maienfisch, P. The Invertebrate Pharmacology of Insecticides Acting at Nicotinic Acetylcholine Receptors. J. Pestic. Sci. 2017, 42, 67–83. [Google Scholar] [CrossRef]
- Jones, A.K.; Brown, L.A.; Sattelle, D.B. Insect Nicotinic Acetylcholine Receptor Gene Families: From Genetic Model Organism to Vector, Pest and Beneficial Species. Invertebr. Neurosci. 2007, 7, 67–73. [Google Scholar] [CrossRef]
- Maloney, E.M.; Taillebois, E.; Gilles, N.; Morrissey, C.A.; Liber, K.; Servent, D.; Thany, S.H. Binding Properties to Nicotinic Acetylcholine Receptors Can Explain Differential Toxicity of Neonicotinoid Insecticides in Chironomidae. Aquat. Toxicol. 2021, 230, 105701. [Google Scholar] [CrossRef]
- Pamminger, T. Extrapolating Acute Contact Bee Sensitivity to Insecticides Based on Body Weight Using a Phylogenetically Informed Interspecies Scaling Framework. Environ. Toxicol. Chem. 2021, 40, 2042–2050. [Google Scholar] [CrossRef]
- Bailey, E.; Field, L.; Rawlings, C.; King, R.; Mohareb, F.; Pak, K.-H.; Hughes, D.; Williamson, M.; Ganko, E.; Buer, B.; et al. A Near-Chromosome Level Genome Assembly of the European Hoverfly, Sphaerophoria Rueppellii (Diptera: Syrphidae), Provides Comparative Insights into Insecticide Resistance-Related Gene Family Evolution. BMC Genom. 2022, 23, 198. [Google Scholar] [CrossRef]
- Doyle, T.; Jimenez-Guri, E.; Hawkes, W.L.S.; Massy, R.; Mantica, F.; Permanyer, J.; Cozzuto, L.; Hermoso Pulido, T.; Baril, T.; Hayward, A.; et al. Genome-wide Transcriptomic Changes Reveal the Genetic Pathways Involved in Insect Migration. Mol. Ecol. 2022, 31, 4332–4350. [Google Scholar] [CrossRef]
- Yuan, H.; Gao, B.; Wu, C.; Zhang, L.; Li, H.; Xiao, Y.; Wu, K. Genome of the Hoverfly Eupeodes Corollae Provides Insights into the Evolution of Predation and Pollination in Insects. BMC Biol. 2022, 20, 157. [Google Scholar] [CrossRef] [PubMed]
- Haas, J.; Hayward, A.; Buer, B.; Maiwald, F.; Nebelsiek, B.; Glaubitz, J.; Bass, C.; Nauen, R. Phylogenomic and Functional Characterization of an Evolutionary Conserved Cytochrome P450-Based Insecticide Detoxification Mechanism in Bees. Proc. Natl. Acad. Sci. USA 2022, 119, e2205850119. [Google Scholar] [CrossRef] [PubMed]
- Uhl, P.; Franke, L.A.; Rehberg, C.; Wollmann, C.; Stahlschmidt, P.; Jeker, L.; Brühl, C.A. Interspecific Sensitivity of Bees towards Dimethoate and Implications for Environmental Risk Assessment. Sci. Rep. 2016, 6, 34439. [Google Scholar] [CrossRef] [PubMed]
- Belanger, S.; Barron, M.; Craig, P.; Dyer, S.; Galay-Burgos, M.; Hamer, M.; Marshall, S.; Posthuma, L.; Raimondo, S.; Whitehouse, P. Future Needs and Recommendations in the Development of Species Sensitivity Distributions: Estimating Toxicity Thresholds for Aquatic Ecological Communities and Assessing Impacts of Chemical Exposures. Integr. Environ. Assess. Manag. 2017, 13, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Schmolke, A.; Galic, N.; Feken, M.; Thompson, H.; Sgolastra, F.; Pitts-Singer, T.; Elston, C.; Pamminger, T.; Hinarejos, S. Assessment of the Vulnerability to Pesticide Exposures across Bee Species. Environ. Toxicol. Chem. 2021, 40, 2640–2651. [Google Scholar] [CrossRef]
- Topping, C.J.; Aldrich, A.; Berny, P. Overhaul Environmental Risk Assessment for Pesticides. Science 2020, 367, 360–363. [Google Scholar] [CrossRef]
- Hätönen, M.; Kantner, C.; Lopez Losada, R.; Ludwig, N.; Benavent González, A.; Riedhammer, C.; Kunz, P.; Panico, S.C.; Laakkonen, E.; Parramon Dolcet, L.; et al. European Arthropods and Their Role in Pollination: Scientific Report of Their Biodiversity, Ecology and Sensitivity to Biocides; European Chemicals Agency: Helsinki, Finland, 2022; ISBN 978-92-9468-131-7. [Google Scholar]
Species | n | Model | Slope | Log-Likelihood | Residual Standard Error (df) | AIC | p-Value | 48 h LD50 | 95% CI | 48 h LD50 | 95% CI |
---|---|---|---|---|---|---|---|---|---|---|---|
(ng/Insect) | (µg/g Insect) | ||||||||||
Exorista larvarum | 233 | Log-logistic | −0.765 | −14.87 | 4.89 (3) | 37.75 | 0.0087 | 467.46 | 302.28–632.65 | 11.66 | 7.54–15.79 |
Sphaerophoria rueppellii | 205 | Log-logistic | −1.668 | −19.35 | 5.11 (3) | 46.85 | 0.012 | 10.23 | 7.81–12.65 | 1.35 | 0.83–1.86 |
Eristalinus aeneus * | 193 | Log-logistic | −1.062 | −9.86 | 2.75 (2) | 27.74 | 0.036 | 18,176.20 | 8005.6–28,346.9 | 344.77 | 151.85–537.69 |
Species | n | Model | BMDL | BMD | BMDU | p-Value | AIC |
---|---|---|---|---|---|---|---|
(ng/Insect) | (ng/Insect) | (ng/Insect) | |||||
Exorista larvarum | 178 | Multistage 1° | 47.08 | 75.11 | 127.12 | 0.639 | 33.535 |
Sphaerophoria rueppellii | 174 | Logistic | 1.70 | 2.50 | 4.69 | 0.649 | 190.797 |
Eristalinus aeneus | 209 | Log-Logistic | 356.79 | 1080.91 | 8498.47 | 0.178 | 165.298 |
Species | LD50 | BMDL | SSI |
---|---|---|---|
(ng/Insect) | (ng/Insect) | ||
Exorista larvarum | 467.46 | 47.08 | 9.93 |
Sphaerophoria rueppellii | 10.23 | 1.70 | 6.01 |
Eristalinus aeneus | 18,176.20 | 356.79 | 50.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henriques Martins, C.A.; Azpiazu, C.; Bosch, J.; Burgio, G.; Dindo, M.L.; Francati, S.; Sommaggio, D.; Sgolastra, F. Different Sensitivity of Flower-Visiting Diptera to a Neonicotinoid Insecticide: Expanding the Base for a Multiple-Species Risk Assessment Approach. Insects 2024, 15, 317. https://doi.org/10.3390/insects15050317
Henriques Martins CA, Azpiazu C, Bosch J, Burgio G, Dindo ML, Francati S, Sommaggio D, Sgolastra F. Different Sensitivity of Flower-Visiting Diptera to a Neonicotinoid Insecticide: Expanding the Base for a Multiple-Species Risk Assessment Approach. Insects. 2024; 15(5):317. https://doi.org/10.3390/insects15050317
Chicago/Turabian StyleHenriques Martins, Cátia Ariana, Celeste Azpiazu, Jordi Bosch, Giovanni Burgio, Maria Luisa Dindo, Santolo Francati, Daniele Sommaggio, and Fabio Sgolastra. 2024. "Different Sensitivity of Flower-Visiting Diptera to a Neonicotinoid Insecticide: Expanding the Base for a Multiple-Species Risk Assessment Approach" Insects 15, no. 5: 317. https://doi.org/10.3390/insects15050317