Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives
Simple Summary
Abstract
1. Introduction
2. Phytohormones Against Aphids
3. Plant Secondary Metabolites Against Aphids
3.1. Cardiac Glycosides (Cardenolides)
3.2. Alkaloids
3.3. Benzoxazinoids
3.4. Glucosinolates
3.5. Camalexin
4. Antimetabolic Lectins and Protease Inhibitors Against Aphids
Metabolites | Host Plant/Bioassay | Target Aphid | References |
---|---|---|---|
Caffeic and gallic acid | Cereals | S. avenae | [64] |
Saponin | Alfalfa | A. pisum | [65] |
Tannic acid and saponin | Alfalfa | T. trifolii | [66] |
Cucurbitacin B | Artificial diet | A. gossypii | [67] |
1-hexadecanol, gliotoxin, cyclopaldic acid, and seiridin | Legumes | A. pisum | [68] |
Benzoxazinoids | Maize | R. maidis | [71,72] |
Amino acids | Winter wheat | S. avenae, S. graminum, and R. padi | [75] |
Non-protein amino acids (L-DOPA (L-3,4-dihydroxyphenylalanine) and Nδ-acetylornithine | Arabidopsis | M. persicae | [76,77] |
Betulin | Chinese wild peach | M. persicae | [78] |
Oxylipin | Maize | R. maidis | [79] |
Pisatin | Pea | A. pisum | [80] |
Enzymes (superoxide dismutase, glutathione reductase, PAL, and PPO) | Bread wheat | S. avenae, S. miscanthi, R. padi, and R. maidis | [86] |
Cardenolides | Milkweed | M. persicae, A. nerii, A. asclepiadis and M. asclepiadis | [92,93] |
Indolizidine and quinolizidine alkaloids | Artificial diet | A. pisum | [98] |
Aglycones | Artificial diet | M. euphorbiae | [99] |
α-chaconine, and α-solanine | Potato | M. persicae | [100] |
Nicotine | Artificial diet | M. persicae | [105] |
Sinigrin and myrosinase | Artificial diet | M. persicae | [111] |
Indole glucosinolates | Artificial diet and Arabidopsis | M. persicae | [111,112] |
Indole glucosinolates | Artificial diet | M. persicae | [115,116] |
Indole glucosinolates | Wild and cultivated brassica species | B. brassicae | [120] |
Camalexin biosynthesis enzymes (phytoalexin deficient 3) | Arabidopsis | B. brassicae | [121] |
Camalexin | Arabidopsis and artificial diet | M. persicae | [122,123,124] |
4-methoxy-indolyl-glucosinolate | Arabidopsis | M. persicae | [125] |
Camalexin and tryptophan | Arabidopsis | M. persicae, B. brassicae, and L. pseudobrassicae | [125] |
Lectin (Phloem Protein2-A1 (PP2-A1)) | Arabidopsis and artificial diet | M. persicae and A. glycines | [130] |
Lectins | Jackbean and maize | A. pisum, R. padi, and R. maidis | [131,132,133] |
Protease inhibitor (cystatin) | Arabidopsis and oilseed rape | A. pisum, A. gossypii, M. euphorbiae, and M. persicae | [138,139] |
Protease inhibitor (Bowman-Birk type) | Pea and oilseed rape | A. pisum and M. euphorbiae | [140,141] |
Proteins (Pinellia ternata agglutinin (PTA) and Arisaema heterophyllum agglutinin (AHA)) | Wheat | S. miscanthi | [142] |
Serine protease inhibitors (SerPIN-II1, 2 and 3) | N. benthamiana | M. persicae | [145] |
5. Plant Perception of Aphids and Plant Immunity
6. Plant Defense Elicitors
7. Plant Resistance Genes Against Aphids
8. Plant Defense Signaling
9. Aphid Salivary Proteins
Resistance Genes/Transcripts | Host Plant | Target Aphid | References |
---|---|---|---|
PAL family genes | Sorghum | M. sacchari | [22] |
SA and ABA-related marker genes | Soybean | A. glycines | [29] |
Phytohormones-related marker genes | Sorghum | M. sacchari | [43] |
SA and JA defense-responsive marker genes and flavonoid pathway genes | Sorghum | M. sacchari | [44] |
JAZ (SbJAZ) genes | Sorghum | M. sacchari | [59] |
Genes related to JA pathway | Sorghum | M. sacchari | [73] |
Pinellia pedatisecta agglutinin (ppa) | Wheat | S. graminum | [143] |
Protease inhibitor CI2c gene | Arabidopsis | M. persicae | [146,147] |
Dn4 gene | Wheat | D. noxia | [160] |
Sb06g001620, Sb06g001630, Sb06g001640, Sb06g001645, and Sb06g001650, which encode for three NBS–LRR proteins | Sorghum | M. sacchari | [161] |
Mi-1.2 gene and Vat gene | Tomato | M. persicae and A. gossypii | [184,185,186] |
NBS-LRR type R genes | M. truncatula | A. pisum and A. kondoi | [189,190] |
Rag (resistance against Aphis glycines) | Soybean | A. glycines | [191,192,193,194,195,196,197] |
Genes related to signal perception, signal transduction, and plant defense | Sorghum | M. sacchari | [198] |
Genes associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism, and sugar metabolism pathways | Cucumber | A. gossypii | [199] |
WRKY, MYB, ERF, and MAPK | Peach | M. persicae | [200] |
Glyma.13 g190200, Glyma.13 g190500, and Glyma.13 g190600 | Soybean | A. glycines biotype 2 | [201] |
WRKY22 | Arabidopsis | M. persicae | [206] |
IQD1, a nuclear protein | Arabidopsis | M. persicae | [208] |
BAK1 | Arabidopsis | A. pisum | [209] |
TaCaM genes, as well as callose synthase genes | Wheat | S. graminum | [210] |
ROS-scavenging enzymes | Sorghum | M. sacchari | [211] |
Dn resistance 1 (Adnr1) | Wheat | D. noxia | [212] |
WRKY TF, SbWRKY86 | Sorghum | M. sacchari | [213] |
SbWRKY86 | Arabidopsis and N. benthamiana | M. persicae | [213] |
TF MYB31 | Wheat | R. padi | [214] |
NBS gene (Sobic.003G325100) | Sorghum | M. sacchari | [240] |
WRKY70 and MYC2 | Arabidopsis | B. brassicae | [245] |
10. Conclusions, Limitations, and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goggin, F.L. Plant–Aphid Interactions: Molecular and Ecological Perspectives. Curr. Opin. Plant Biol. 2007, 10, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.-C.; Peccoud, J. Rapid Evolution of Aphid Pests in Agricultural Environments. Curr. Opin. Insect Sci. 2018, 26, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Nalam, V.; Louis, J.; Shah, J. Plant Defense against Aphids, the Pest Extraordinaire. Plant Sci. 2019, 279, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Erb, M.; Reymond, P. Molecular Interactions between Plants and Insect Herbivores. Annu. Rev. Plant Biol. 2019, 70, 527–557. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, G. Aphids. In Polyphagous Pests of Crops; Omkar, Ed.; Springer: Singapore, 2021; pp. 105–182. [Google Scholar] [CrossRef]
- Yates, A.D.; Michel, A. Mechanisms of Aphid Adaptation to Host Plant Resistance. Curr. Opin. Insect Sci. 2018, 26, 41–49. [Google Scholar] [CrossRef]
- Belete, T. Defense Mechanisms of Plants to Insect Pests: From Morphological to Biochemical Approach. Trends Tech. Sci. Res. 2018, 2, 30–38. [Google Scholar] [CrossRef]
- Kumaraswamy, S.; Sotelo-Cardona, P.; Shivanna, A.; Mohan, M.; Srinivasan, R. Evaluation of Resistance in Wild Tomato Accessions to the Whitefly Bemisia tabaci and the Invasive Tomato Leafminer Tuta absoluta. Entomol. Gen. 2024, 44, 307–314. [Google Scholar] [CrossRef]
- Jaouannet, M.; Rodriguez, P.A.; Thorpe, P.; Lenoir, C.J.G.; MacLeod, R.; Escudero-Martinez, C.; Bos, J.I.B. Plant Immunity in Plant–Aphid Interactions. Front. Plant Sci. 2014, 5, 663. [Google Scholar] [CrossRef]
- Züst, T.; Agrawal, A.A. Mechanisms and Evolution of Plant Resistance to Aphids. Nat. Plants 2016, 2, 15206. [Google Scholar] [CrossRef]
- Morkunas, I.; Mai, V.C.; Gabryś, B. Phytohormonal Signaling in Plant Responses to Aphid Feeding. Acta Physiol. Plant. 2011, 33, 2057–2073. [Google Scholar] [CrossRef]
- Grover, S.; Agpawa, E.; Sarath, G.; Sattler, S.E.; Louis, J. Interplay of Phytohormones Facilitate Sorghum Tolerance to Aphids. Plant Mol. Biol. 2022, 109, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.-Y.; Sugio, A.; Simon, J.-C. Molecular Mechanisms Underlying Host Plant Specificity in Aphids. Annu. Rev. Entomol. 2023, 68, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Mou, D.-F.; Kundu, P.; Pingault, L.; Puri, H.; Shinde, S.; Louis, J. Monocot Crop–Aphid Interactions: Plant Resilience and Aphid Adaptation. Curr. Opin. Insect Sci. 2023, 57, 101038. [Google Scholar] [CrossRef] [PubMed]
- Walling, L.L. The Myriad Plant Responses to Herbivores. J. Plant Growth Regul. 2000, 19, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhong, X.; Zhang, H.; Luo, X.; Wang, Y.; Wang, Y.; Liu, T.; Zhang, Y.; Wang, X.; An, H.; et al. GhMYB18 Confers Aphis gossypii Glover Resistance through Regulating the Synthesis of Salicylic Acid and Flavonoids in Cotton Plants. Plant Cell Rep. 2023, 42, 355–369. [Google Scholar] [CrossRef]
- Koch, K.G.; Palmer, N.A.; Donze-Reiner, T.; Scully, E.D.; Seravalli, J.; Amundsen, K.; Twigg, P.; Louis, J.; Bradshaw, J.D.; Heng-Moss, T.M.; et al. Aphid-Responsive Defense Networks in Hybrid Switchgrass. Front. Plant Sci. 2020, 11, 1145. [Google Scholar] [CrossRef]
- Dempsey, D.A.; Vlot, A.C.; Wildermuth, M.C.; Klessig, D.F. Salicylic Acid Biosynthesis and Metabolism. Arab. Book 2011, 9, e0156. [Google Scholar] [CrossRef]
- Chaman, M.E.; Copaja, S.V.; Argandoña, V.H. Relationships between Salicylic Acid Content, Phenylalanine Ammonia-Lyase (PAL) Activity, and Resistance of Barley to Aphid Infestation. J. Agric. Food Chem. 2003, 51, 2227–2231. [Google Scholar] [CrossRef]
- Li, Q.; Xie, Q.-G.; Smith-Becker, J.; Navarre, D.A.; Kaloshian, I. Mi-1-Mediated Aphid Resistance Involves Salicylic Acid and Mitogen-Activated Protein Kinase Signaling Cascades. Mol. Plant Microbe Interact. 2006, 19, 655–664. [Google Scholar] [CrossRef]
- Coppola, M.; Manco, E.; Vitiello, A.; Di Lelio, I.; Giorgini, M.; Rao, R.; Pennacchio, F.; Digilio, M.C. Plant Response to Feeding Aphids Promotes Aphid Dispersal. Entomol. Exp. Appl. 2018, 166, 386–394. [Google Scholar] [CrossRef]
- Pant, S.; Huang, Y. Genome-Wide Studies of PAL Genes in Sorghum and Their Responses to Aphid Infestation. Sci. Rep. 2022, 12, 22537. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.-L.; Zhang, J.; Yang, J.; Zou, L.-P.; Fang, T.-T.; Xu, H.-L.; Cai, Q.-N. Exogenous Salicylic Acid Improves Resistance of Aphid-Susceptible Wheat to the Grain Aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Bull. Entomol. Res. 2021, 111, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Moran, P.J.; Thompson, G.A. Molecular Responses to Aphid Feeding in Arabidopsis in Relation to Plant Defense Pathways. Plant Physiol. 2001, 125, 1074–1085. [Google Scholar] [CrossRef] [PubMed]
- Thaler, J.S.; Agrawal, A.A.; Halitschke, R. Salicylate-mediated Interactions between Pathogens and Herbivores. Ecology 2010, 91, 1075–1082. [Google Scholar] [CrossRef]
- Mewis, I.; Appel, H.M.; Hom, A.; Raina, R.; Schultz, J.C. Major Signaling Pathways Modulate Arabidopsis Glucosinolate Accumulation and Response to Both Phloem-Feeding and Chewing Insects. Plant Physiol. 2005, 138, 1149–1162. [Google Scholar] [CrossRef]
- Ferry, N.; Stavroulakis, S.; Guan, W.; Davison, G.M.; Bell, H.A.; Weaver, R.J.; Down, R.E.; Gatehouse, J.A.; Gatehouse, A.M. Molecular Interactions between Wheat and Cereal Aphid (Sitobion avenae): Analysis of Changes to the Wheat Proteome. Proteomics 2011, 11, 1985–2002. [Google Scholar] [CrossRef]
- Grover, S.; Cardona, J.B.; Zogli, P.; Alvarez, S.; Naldrett, M.J.; Sattler, S.E.; Louis, J. Reprogramming of Sorghum Proteome in Response to Sugarcane Aphid Infestation. Plant Sci. 2022, 320, 111289. [Google Scholar] [CrossRef]
- Selig, P.; Keough, S.; Nalam, V.J.; Nachappa, P. Jasmonate-Dependent Plant Defenses Mediate Soybean Thrips and Soybean Aphid Performance on Soybean. Arthropod Plant Interact. 2016, 10, 273–282. [Google Scholar] [CrossRef]
- Ajlan, A.; Potter, D. Lack of Effect of Tobacco Mosaic Virus-Induced Systemic Acquired Resistance on Arthropod Herbivores in Tobacco. Phytopathology 1992, 82, 647–651. [Google Scholar] [CrossRef]
- van Butselaar, T.; Van den Ackerveken, G. Salicylic Acid Steers the Growth-Immunity Tradeoff. Trends Plant Sci. 2020, 25, 566–576. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Plant Responses to Insect Herbivory: The Emerging Molecular Analysis. Annu. Rev. Plant Biol. 2002, 53, 299–328. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Clement, S.L. Molecular Bases of Plant Resistance to Arthropods. Annu. Rev. Entomol. 2012, 57, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Mai, V.C.; Drzewiecka, K.; Jeleń, H.; Narożna, D.; Rucińska-Sobkowiak, R.; Kęsy, J.; Floryszak-Wieczorek, J.; Gabryś, B.; Morkunas, I. Differential Induction of Pisum sativum Defense Signaling Molecules in Response to Pea Aphid Infestation. Plant Sci. Int. J. Exp. Plant Biol. 2014, 221–222, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Arcos, C.; Reichelt, M.; Gershenzon, J.; Kunert, G. Modulation of Legume Defense Signaling Pathways by Native and Non-Native Pea Aphid Clones. Front. Plant Sci. 2016, 7, 1872. [Google Scholar] [CrossRef]
- Gao, L.-L.; Anderson, J.P.; Klingler, J.P.; Nair, R.M.; Edwards, O.R.; Singh, K.B. Involvement of the Octadecanoid Pathway in Bluegreen Aphid Resistance in Medicago truncatula. Mol. Plant Microbe Interact. 2007, 20, 82–93. [Google Scholar] [CrossRef]
- Ellis, C.; Karafyllidis, I.; Turner, J.G. Constitutive Activation of Jasmonate Signaling in an Arabidopsis Mutant Correlates with Enhanced Resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol. Plant Microbe Interact. 2002, 15, 1025–1030. [Google Scholar] [CrossRef]
- Cooper, W.; Jia, L.; Goggin, F. Acquired and R-Gene-Mediated Resistance against the Potato Aphid in Tomato. J. Chem. Ecol. 2004, 30, 2527–2542. [Google Scholar] [CrossRef]
- Agrawal, A.A. Induced Responses to Herbivory and Increased Plant Performance. Science 1998, 279, 1201–1202. [Google Scholar] [CrossRef]
- Ali, J.G.; Agrawal, A.A. Asymmetry of Plant-mediated Interactions between Specialist Aphids and Caterpillars on Two Milkweeds. Funct. Ecol. 2014, 28, 1404–1412. [Google Scholar] [CrossRef]
- Stout, M.J.; Workman, K.V.; Bostock, R.M.; Duffey, S.S. Specificity of Induced Resistance in the Tomato, Lycopersicon esculentum. Oecologia 1997, 113, 74–81. [Google Scholar] [CrossRef]
- Grover, S.; Puri, H.; Xin, Z.; Sattler, S.E.; Louis, J. Dichotomous Role of Jasmonic Acid in Modulating Sorghum Defense Against Aphids. Mol. Plant Microbe Interact. 2022, 35, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Shrestha, K.; Huang, Y. Revealing Differential Expression of Phytohormones in Sorghum in Response to Aphid Attack Using the Metabolomics Approach. Int. J. Mol. Sci. 2022, 23, 13782. [Google Scholar] [CrossRef] [PubMed]
- Puri, H.; Ikuze, E.; Ayala, J.; Rodriguez, I.; Kariyat, R.; Louis, J.; Grover, S. Greenbug Feeding-Induced Resistance to Sugarcane Aphids in Sorghum. Front. Ecol. Evol. 2023, 11, 1105725. [Google Scholar] [CrossRef]
- Li, Y.; Dicke, M.; Kroes, A.; Liu, W.; Gols, R. Interactive Effects of Cabbage Aphid and Caterpillar Herbivory on Transcription of Plant Genes Associated with Phytohormonal Signalling in Wild Cabbage. J. Chem. Ecol. 2016, 42, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Eisenring, M.; Glauser, G.; Meissle, M.; Romeis, J. Differential Impact of Herbivores from Three Feeding Guilds on Systemic Secondary Metabolite Induction, Phytohormone Levels and Plant-Mediated Herbivore Interactions. J. Chem. Ecol. 2018, 44, 1178–1189. [Google Scholar] [CrossRef]
- Stewart, S.A.; Hodge, S.; Bennett, M.; Mansfield, J.W.; Powell, G. Aphid Induction of Phytohormones in Medicago truncatula Is Dependent upon Time Post-Infestation, Aphid Density and the Genotypes of Both Plant and Insect. Arthropod Plant Interact. 2016, 10, 41–53. [Google Scholar] [CrossRef]
- Florencio-Ortiz, V.; Novák, O.; Casas, J.L. Phytohormone Responses in Pepper (Capsicum annuum L.) Leaves under a High Density of Aphid Infestation. Physiol. Plant. 2020, 170, 519–527. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Y.; Li, Y.; Liu, X.; Wang, P.; Zhu-Salzman, K.; Ge, F. Elevated CO2 Alters the Feeding Behaviour of the Pea Aphid by Modifying the Physical and Chemical Resistance of Medicago truncatula. Plant Cell Environ. 2014, 37, 2158–2168. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Y.; Ren, Q.; Zhu-Salzman, K.; Kang, L.; Wang, C.; Li, C.; Ge, F. Elevated CO2 Reduces the Resistance and Tolerance of Tomato Plants to Helicoverpa armigera by Suppressing the JA Signaling Pathway. PLoS ONE 2012, 7, e41426. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, H.; Zhu-Salzman, K.; Ge, F. Elevated CO2 Increases the Abundance of the Peach Aphid on Arabidopsis by Reducing Jasmonic Acid Defenses. Plant Sci. 2013, 210, 128–140. [Google Scholar] [CrossRef]
- Zavala, J.A.; Casteel, C.L.; Nabity, P.D.; Berenbaum, M.R.; DeLucia, E.H. Role of Cysteine Proteinase Inhibitors in Preference of Japanese Beetles (Popillia japonica) for Soybean (Glycine max) Leaves of Different Ages and Grown under Elevated CO2. Oecologia 2009, 161, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Casteel, C.L.; Segal, L.M.; Niziolek, O.K.; Berenbaum, M.R.; DeLucia, E.H. Elevated Carbon Dioxide Increases Salicylic Acid in Glycine max. Environ. Entomol. 2012, 41, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- DeLucia, E.H.; Nabity, P.D.; Zavala, J.A.; Berenbaum, M.R. Climate Change: Resetting Plant-Insect Interactions. Plant Physiol. 2012, 160, 1677–1685. [Google Scholar] [CrossRef] [PubMed]
- Zavala, J.A.; Nabity, P.D.; DeLucia, E.H. An Emerging Understanding of Mechanisms Governing Insect Herbivory under Elevated CO2. Annu. Rev. Entomol. 2013, 58, 79–97. [Google Scholar] [CrossRef]
- Spoel, S.H.; Loake, G.J. Redox-Based Protein Modifications: The Missing Link in Plant Immune Signalling. Curr. Opin. Plant Biol. 2011, 14, 358–364. [Google Scholar] [CrossRef]
- Thaler, J.S.; Humphrey, P.T.; Whiteman, N.K. Evolution of Jasmonate and Salicylate Signal Crosstalk. Trends Plant Sci. 2012, 17, 260–270. [Google Scholar] [CrossRef]
- Florencio-Ortiz, V.; Novák, O.; Casas, J.L. Local and Systemic Hormonal Responses in Pepper (Capsicum annuum L.) Leaves under Green Peach Aphid (Myzus persicae Sulzer) Infestation. J. Plant Physiol. 2018, 231, 356–363. [Google Scholar] [CrossRef]
- Shrestha, K.; Huang, Y. Genome-Wide Characterization of the Sorghum JAZ Gene Family and Their Responses to Phytohormone Treatments and Aphid Infestation. Sci. Rep. 2022, 12, 3238. [Google Scholar] [CrossRef]
- Gianoli, E. Competition in Cereal Aphids (Homoptera: Aphididae) on Wheat Plants. Environ. Entomol. 2000, 29, 213–219. [Google Scholar] [CrossRef]
- Mehrparvar, M.; Mansouri, S.M.; Weisser, W.W. Mechanisms of Species-sorting: Effect of Habitat Occupancy on Aphids’ Host Plant Selection. Ecol. Entomol. 2014, 39, 281–289. [Google Scholar] [CrossRef]
- Sandström, J.; Telang, A.; Moran, N. Nutritional Enhancement of Host Plants by Aphids—A Comparison of Three Aphid Species on Grasses. J. Insect Physiol. 2000, 46, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.C.; Sharma, K.K.; Seetharama, N.; Ortiz, R. Prospects for Using Transgenic Resistance to Insects in Crop Improvement. Electron. J. Biotechnol. 2000, 3, 21–22. [Google Scholar] [CrossRef]
- Urbanska, A.; Leszczynski, B.; Tjallingii, W.F.; Matok, H. Probing Behaviour and Enzymatic Defence of the Grain Aphid against Cereal Phenolics. Electron. J. Pol. Agric. Univ. 2002, 5. [Google Scholar]
- Goławska, S. Deterrence and Toxicity of Plant Saponins for the Pea Aphid Acyrthosiphon pisum Harris. J. Chem. Ecol. 2007, 33, 1598–1606. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, N.; Zhang, D.; Ni, C.; Liu, R.; Che, W.; Hidayat, U.; Tu, X. Aphid-Resistant Alfalfa Cultivar Minimizes the Survival of Spotted Alfalfa Aphid through Upregulating Plant Defense Compounds. Crop Prot. 2024, 187, 106662. [Google Scholar] [CrossRef]
- Yousaf, H.K.; Shan, T.; Chen, X.; Ma, K.; Shi, X.; Desneux, N.; Biondi, A.; Gao, X. Impact of the Secondary Plant Metabolite Cucurbitacin B on the Demographical Traits of the Melon Aphid, Aphis gossypii. Sci. Rep. 2018, 8, 16473. [Google Scholar] [CrossRef]
- Aznar-Fernández, T.; Cimmino, A.; Masi, M.; Rubiales, D.; Evidente, A. Antifeedant Activity of Long-Chain Alcohols, and Fungal and Plant Metabolites against Pea Aphid (Acyrthosiphon pisum) as Potential Biocontrol Strategy. Nat. Prod. Res. 2019, 33, 2471–2479. [Google Scholar] [CrossRef]
- Dixon, A. Aphid Ecology, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Smith, C.M.; Chuang, W. Plant Resistance to Aphid Feeding: Behavioral, Physiological, Genetic and Molecular Cues Regulate Aphid Host Selection and Feeding. Pest Manag. Sci. 2014, 70, 528–540. [Google Scholar] [CrossRef]
- Ahmad, S.; Veyrat, N.; Gordon-Weeks, R.; Zhang, Y.; Martin, J.; Smart, L.; Glauser, G.; Erb, M.; Flors, V.; Frey, M. Benzoxazinoid Metabolites Regulate Innate Immunity against Aphids and Fungi in Maize. Plant Physiol. 2011, 157, 317–327. [Google Scholar] [CrossRef]
- Meihls, L.N.; Handrick, V.; Glauser, G.; Barbier, H.; Kaur, H.; Haribal, M.M.; Lipka, A.E.; Gershenzon, J.; Buckler, E.S.; Erb, M. Natural Variation in Maize Aphid Resistance Is Associated with 2, 4-Dihydroxy-7-Methoxy-1, 4-Benzoxazin-3-One Glucoside Methyltransferase Activity. Plant Cell 2013, 25, 2341–2355. [Google Scholar] [CrossRef]
- Punnuri, S.M.; Ayele, A.G.; Harris-Shultz, K.R.; Knoll, J.E.; Coffin, A.W.; Tadesse, H.K.; Armstrong, J.S.; Wiggins, T.K.; Li, H.; Sattler, S.; et al. Genome-Wide Association Mapping of Resistance to the Sorghum Aphid in Sorghum bicolor. Genomics 2022, 114, 110408. [Google Scholar] [CrossRef] [PubMed]
- Cardona, J.B.; Grover, S.; Busta, L.; Sattler, S.E.; Louis, J. Sorghum Cuticular Waxes Influence Host Plant Selection by Aphids. Planta 2023, 257, 22. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Kang, Z.; Tan, X.; Fan, Y.; Tian, H.; Liu, T. Physiology and Defense Responses of Wheat to the Infestation of Different Cereal Aphids. J. Integr. Agric. 2020, 19, 1464–1474. [Google Scholar] [CrossRef]
- Adio, A.M.; Casteel, C.L.; De Vos, M.; Kim, J.H.; Joshi, V.; Li, B.; Juery, C.; Daron, J.; Kliebenstein, D.J.; Jander, G. Biosynthesis and Defensive Function of N δ-Acetylornithine, a Jasmonate-Induced Arabidopsis Metabolite. Plant Cell 2011, 23, 3303–3318. [Google Scholar] [CrossRef]
- Huang, T.; Jander, G.; de Vos, M. Non-Protein Amino Acids in Plant Defense against Insect Herbivores: Representative Cases and Opportunities for Further Functional Analysis. Phytochemistry 2011, 72, 1531–1537. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wang, X.; Cao, K.; Zhu, G.; Fang, W.; Chen, C.; Wu, J.; Guo, J.; Xu, Q.; et al. Betulin, Synthesized by PpCYP716A1, Is a Key Endogenous Defensive Metabolite of Peach against Aphids. J. Agric. Food Chem. 2022, 70, 12865–12877. [Google Scholar] [CrossRef]
- Tzin, V.; Fernandez-Pozo, N.; Richter, A.; Schmelz, E.A.; Schoettner, M.; Schäfer, M.; Ahern, K.R.; Meihls, L.N.; Kaur, H.; Huffaker, A.; et al. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays. Plant Physiol. 2015, 169, 1727–1743. [Google Scholar] [CrossRef]
- Morkunas, I.; Woźniak, A.; Formela, M.; Mai, V.C.; Marczak, Ł.; Narożna, D.; Borowiak-Sobkowiak, B.; Kühn, C.; Grimm, B. Pea Aphid Infestation Induces Changes in Flavonoids, Antioxidative Defence, Soluble Sugars and Sugar Transporter Expression in Leaves of Pea Seedlings. Protoplasma 2016, 253, 1063–1079. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Sun, X.-W.; Tian, P.-P.; Miao, N.-H.; Zhang, Y.-L.; Liu, X.-D. Plant Secondary Metabolite and Temperature Determine the Prevalence of Arsenophonus Endosymbionts in Aphid Populations. Environ. Microbiol. 2022, 24, 3764–3776. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.; Li, R.; Liang, P.; Gu, S.; Zhang, L.; Gao, X. Endosymbiosis Change Under the Stress of Omethoate and Four Plant Allelochemicals in Cotton Aphid, Aphis gossypii Glover (Hemiptera: Aphididae); Research Square: Durham, NC, USA, 2023. [Google Scholar] [CrossRef]
- Robinson, E.A.; Ryan, G.D.; Newman, J.A. A Meta-analytical Review of the Effects of Elevated CO2 on Plant–Arthropod Interactions Highlights the Importance of Interacting Environmental and Biological Variables. New Phytol. 2012, 194, 321–336. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Jones, T.H. Plant-Insect Herbivore Interactions in Elevated Atmospheric CO2: Quantitative Analyses and Guild Effects. Oikos 1998, 82, 212–222. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, G.; Liao, J.; Hou, Z.; Wang, G.; Wang, Y. Effects of Different Atmospheric CO2 Concentrations and Soil Moistures on the Populations of Bird Cherry-Oat Aphid (Rhopalosiphum padi) Feeding on Spring Wheat. Eur. J. Entomol. 2003, 100, 521–530. [Google Scholar] [CrossRef]
- Kaur, H.; Salh, P.K.; Singh, B. Role of Defense Enzymes and Phenolics in Resistance of Wheat Crop (Triticum aestivum L.) towards Aphid Complex. J. Plant Interact. 2017, 12, 304–311. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Bi, J.-L.; Yang, X.-Q.; Huang, Y.; Zhao, X.; Hu, Y.; Cai, Q.-N. Constitutive and Induced Activities of Defense-Related Enzymes in Aphid-Resistant and Aphid-Susceptible Cultivars of Wheat. J. Chem. Ecol. 2009, 35, 176–182. [Google Scholar] [CrossRef]
- Urbanska, A.; Tjallingii, W.F.; Dixon, A.F.; Leszczynski, B. Phenol Oxidising Enzymes in the Grain Aphid’s Saliva. Entomol. Exp. Appl. 1998, 86, 197–203. [Google Scholar] [CrossRef]
- Jiang, Y.; Miles, P. Responses of a Compatible Lucerne Variety to Attack by Spotted Alfalfa Aphid: Changes in the Redox Balance in Affected Tissues. Entomol. Exp. Appl. 1993, 67, 263–274. [Google Scholar] [CrossRef]
- Brunissen, L.; Cherqui, A.; Pelletier, Y.; Vincent, C.; Giordanengo, P. Host-plant Mediated Interactions between Two Aphid Species. Entomol. Exp. Appl. 2009, 132, 30–38. [Google Scholar] [CrossRef]
- Botha, C.; Malcolm, S.; Evert, R. An Investigation of Preferential Feeding Habit in Four Asclepiadaceae by the Aphid, Aphis nerii B. de F. Protoplasma 1977, 92, 1–19. [Google Scholar] [CrossRef]
- Agrawal, A.A. Plant Defense and Density Dependence in the Population Growth of Herbivores. Am. Nat. 2004, 164, 113–120. [Google Scholar] [CrossRef]
- Züst, T.; Agrawal, A.A. Population Growth and Sequestration of Plant Toxins along a Gradient of Specialization in Four Aphid Species on the Common Milkweed Asclepias syriaca. Funct. Ecol. 2016, 30, 547–556. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Petschenka, G.; Bingham, R.A.; Weber, M.G.; Rasmann, S. Toxic Cardenolides: Chemical Ecology and Coevolution of Specialized Plant–Herbivore Interactions. New Phytol. 2012, 194, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Kidd, N.; Lewis, G.; Howell, C. An Association between Two Species of Pine aphid, Schizolachnus pineti and Eulachnus agilis. Ecol. Entomol. 1985, 10, 427–432. [Google Scholar] [CrossRef]
- Desneux, N.; Barta, R.J.; Hoelmer, K.A.; Hopper, K.R.; Heimpel, G.E. Multifaceted Determinants of Host Specificity in an Aphid Parasitoid. Oecologia 2009, 160, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Wink, M.; Roberts, M.F. Alkaloids: Biochemistry, Ecology, and Medicinal Applications; Plenum Press: New York, NY, USA, 1998. [Google Scholar]
- Dreyer, D.L.; Jones, K.C.; Molyneux, R.J. Feeding Deterrency of Some Pyrrolizidine, Indolizidine, and Quinolizidine Alkaloids towards Pea Aphid (Acyrthosiphon pisum) and Evidence for Phloem Transport of Indolizidine Alkaloid Swainsonine. J. Chem. Ecol. 1985, 11, 1045–1051. [Google Scholar] [CrossRef]
- Güntner, C.; González, A.; Reis, R.D.; González, G.; Vázquez, A.; Ferreira, F.; Moyna, P. Effect of Solanum Glycoalkaloids on Potato Aphid, Macrosiphum euphorbiae. J. Chem. Ecol. 1997, 23, 1651–1659. [Google Scholar] [CrossRef]
- Quandahor, P.; Gou, Y.; Lin, C.; Mujitaba Dawuda, M.; Coulter, J.A.; Liu, C. Phytohormone Cross-Talk Synthesizes Glycoalkaloids in Potato (Solanum tuberosum L.) in Response to Aphid (Myzus persicae Sulzer) Infestation under Drought Stress. Insects 2020, 11, 724. [Google Scholar] [CrossRef]
- Römer, P. Acquired Toxicity—The Advantages of Specializing on Alkaloid-Rich Lupins to Macrosiphon albifrons (Aphidae); Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Wink, M.; Witte, L. Storage of Quinolizidine Alkaloids in Macrosiphum albifrons and Aphis genistae (Homoptera: Aphididae). Entomol. Gen. 1991, 15, 237–254. [Google Scholar] [CrossRef]
- Witte, L.; Ehmke, A.; Hartmann, T. Interspecific Flow of Pyrrolizidine Alkaloids. Naturwissenschaften 1990, 77, 540–543. [Google Scholar] [CrossRef]
- Wink, M.; Hartmann, T.; Witte, L.; Rheinheimer, J. Interrelationship between Quinolizidine Alkaloid Producing Legumes and Infesting Insects: Exploitation of the Alkaloid-Containing Phloem Sap of Cytisus scoparius by the Broom Aphid Aphis cytisorum. Z. Naturforschung C 1982, 37, 1081–1086. [Google Scholar] [CrossRef]
- Ramsey, J.S.; Elzinga, D.A.; Sarkar, P.; Xin, Y.-R.; Ghanim, M.; Jander, G. Adaptation to Nicotine Feeding in Myzus persicae. J. Chem. Ecol. 2014, 40, 869–877. [Google Scholar] [CrossRef]
- Zúñiga, G.E.; Argandoña, V.H.; Niemeyer, H.M.; Corcuera, L.J. Hydroxamic Acid Content in Wild and Cultivated Gramineae. Phytochemistry 1983, 22, 2665–2668. [Google Scholar] [CrossRef]
- Dixon, A. Stabilization of Aphid Populations by an Aphid Induced Plant Factor. Nature 1970, 227, 1368–1369. [Google Scholar] [CrossRef]
- Grambow, H.J.; Lückge, J.; Klausener, A.; Müller, E. Occurrence of 2-(2-Hydroxy-4, 7-Dimethoxy-2H-1, 4-Benzoxazin-3-One)-β-ᴅ-Glucopyranoside in Triticum Aestivum Leaves and Its Conversion into 6-Methoxy-Benzoxazolinone. Z. Naturforschung C 1986, 41, 684–690. [Google Scholar] [CrossRef]
- Ni, X.; Quisenberry, S.S. Diuraphis noxia and Rhopalosiphum padi (Hemiptera: Aphididae) Interactions and Their Injury on Resistant and Susceptible Cereal Seedlings. J. Econ. Entomol. 2006, 99, 551–558. [Google Scholar] [CrossRef]
- Petersen, M.; Sandström, J. Outcome of Indirect Competition between Two Aphid Species Mediated by Responses in Their Common Host Plant. Funct. Ecol. 2001, 15, 525–534. [Google Scholar] [CrossRef]
- Kim, J.H.; Jander, G. Myzus persicae (Green Peach Aphid) Feeding on Arabidopsis Induces the Formation of a Deterrent Indole Glucosinolate. Plant J. 2007, 49, 1008–1019. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, B.W.; Schroeder, F.C.; Jander, G. Identification of Indole Glucosinolate Breakdown Products with Antifeedant Effects on Myzus persicae (Green Peach Aphid). Plant J. 2008, 54, 1015–1026. [Google Scholar] [CrossRef]
- Ali, B. Salicylic Acid: An Efficient Elicitor of Secondary Metabolite Production in Plants. Biocatal. Agric. Biotechnol. 2021, 31, 101884. [Google Scholar] [CrossRef]
- Wasternack, C.; Strnad, M. Jasmonates Are Signals in the Biosynthesis of Secondary Metabolites—Pathways, Transcription Factors and Applied Aspects—A Brief Review. New Biotechnol. 2019, 48, 1–11. [Google Scholar] [CrossRef]
- Inbar, M.; Eshel, A.; Wool, D. Interspecific Competition among Phloem-feeding Insects Mediated by Induced Host-plant Sinks. Ecology 1995, 76, 1506–1515. [Google Scholar] [CrossRef]
- Kaplan, I.; Sardanelli, S.; Rehill, B.J.; Denno, R.F. Toward a Mechanistic Understanding of Competition in Vascular-Feeding Herbivores: An Empirical Test of the Sink Competition Hypothesis. Oecologia 2011, 166, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Girousse, C.; Moulia, B.; Silk, W.; Bonnemain, J.-L. Aphid Infestation Causes Different Changes in Carbon and Nitrogen Allocation in Alfalfa Stems as Well as Different Inhibitions of Longitudinal and Radial Expansion. Plant Physiol. 2005, 137, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.; Lognay, G.; Wathelet, J.-P.; Haubruge, E. Effects of Allelochemicals from First (Brassicaceae) and Second (Myzus persicae and Brevicoryne brassicae) Trophic Levels on Adalia Bipunctata. J. Chem. Ecol. 2001, 27, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Goodey, N.A.; Florance, H.V.; Smirnoff, N.; Hodgson, D.J. Aphids Pick Their Poison: Selective Sequestration of Plant Chemicals Affects Host Plant Use in a Specialist Herbivore. J. Chem. Ecol. 2015, 41, 956–964. [Google Scholar] [CrossRef]
- Cole, R. The Relative Importance of Glucosinolates and Amino Acids to the Development of Two Aphid Pests Brevicoryne brassicae and Myzus persicae on Wild and Cultivated Brassica Species. Entomol. Exp. Appl. 1997, 85, 121–133. [Google Scholar] [CrossRef]
- Kuśnierczyk, A.; Winge, P.; Jørstad, T.S.; Troczyńska, J.; Rossiter, J.T.; Bones, A.M. Towards Global Understanding of Plant Defence against Aphids–Timing and Dynamics of Early Arabidopsis Defence Responses to Cabbage Aphid (Brevicoryne brassicae) Attack. Plant Cell Environ. 2008, 31, 1097–1115. [Google Scholar] [CrossRef]
- Kloth, K.J.; Abreu, I.N.; Delhomme, N.; Petřík, I.; Villard, C.; Ström, C.; Amini, F.; Novák, O.; Moritz, T.; Albrectsen, B.R. PECTIN ACETYLESTERASE9 Affects the Transcriptome and Metabolome and Delays Aphid Feeding. Plant Physiol. 2019, 181, 1704–1720. [Google Scholar] [CrossRef]
- Pegadaraju, V.; Louis, J.; Singh, V.; Reese, J.C.; Bautor, J.; Feys, B.J.; Cook, G.; Parker, J.E.; Shah, J. Phloem-based Resistance to Green Peach Aphid Is Controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 Without Its Signaling Partner ENHANCED DISEASE SUSCEPTIBILITY1. Plant J. 2007, 52, 332–341. [Google Scholar] [CrossRef]
- Kettles, G.J.; Drurey, C.; Schoonbeek, H.; Maule, A.J.; Hogenhout, S.A. Resistance of Arabidopsis thaliana to the Green Peach Aphid, Myzus persicae, Involves Camalexin and Is Regulated by Micro RNA s. New Phytol. 2013, 198, 1178–1190. [Google Scholar] [CrossRef]
- Hodge, S.; Bennett, M.; Mansfield, J.W.; Powell, G. Aphid-Induction of Defence-Related Metabolites in Arabidopsis thaliana Is Dependent upon Density, Aphid Species and Duration of Infestation. Arthropod Plant Interact. 2019, 13, 387–399. [Google Scholar] [CrossRef]
- Carlini, C.R.; Grossi-de-Sá, M.F. Plant Toxic Proteins with Insecticidal Properties. A Review on Their Potentialities as Bioinsecticides. Toxicon 2002, 40, 1515–1539. [Google Scholar] [CrossRef] [PubMed]
- Chougule, N.P.; Bonning, B.C. Toxins for Transgenic Resistance to Hemipteran Pests. Toxins 2012, 4, 405–429. [Google Scholar] [CrossRef] [PubMed]
- Vandenborre, G.; Smagghe, G.; Van Damme, E.J. Plant Lectins as Defense Proteins against Phytophagous Insects. Phytochemistry 2011, 72, 1538–1550. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, I.M.; Oliveira, J.T.A. Antinutritional Properties of Plant Lectins. Toxicon 2004, 44, 385–403. [Google Scholar] [CrossRef]
- Beneteau, J.; Renard, D.; Marché, L.; Douville, E.; Lavenant, L.; Rahbé, Y.; Dupont, D.; Vilaine, F.; Dinant, S. Binding Properties of the N-Acetylglucosamine and High-Mannose N-Glycan PP2-A1 Phloem Lectin in Arabidopsis. Plant Physiol. 2010, 153, 1345–1361. [Google Scholar] [CrossRef]
- Fitches, E.; Wiles, D.; Douglas, A.E.; Hinchliffe, G.; Audsley, N.; Gatehouse, J.A. The Insecticidal Activity of Recombinant Garlic Lectins towards Aphids. Insect Biochem. Mol. Biol. 2008, 38, 905–915. [Google Scholar] [CrossRef]
- Sprawka, I.; Goławska, S.; Goławski, A.; Chrzanowski, G.; Czerniewicz, P.; Sytykiewicz, H. Entomotoxic Action of Jackbean Lectin (Con A) in Bird Cherry-Oat Aphid through the Effect on Insect Enzymes. J. Plant Interact. 2014, 9, 425–433. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, K.; Sun, X.; Tang, K.; Zhang, J. Enhancement of Resistance to Aphids by Introducing the Snowdrop Lectin Gene Gna into Maize Plants. J. Biosci. 2005, 30, 627–638. [Google Scholar] [CrossRef]
- Armijo, G.; Salinas, P.; Monteoliva, M.I.; Seguel, A.; García, C.; Villarroel-Candia, E.; Song, W.; van der Krol, A.R.; Álvarez, M.E.; Holuigue, L. A Salicylic Acid–Induced Lectin-Like Protein Plays a Positive Role in the Effector-Triggered Immunity Response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1. Mol. Plant Microbe Interact. 2013, 26, 1395–1406. [Google Scholar] [CrossRef]
- Lannoo, N.; Vandenborre, G.; Miersch, O.; Smagghe, G.; Wasternack, C.; Peumans, W.J.; Van Damme, E.J.M. The Jasmonate-Induced Expression of the Nicotiana tabacum Leaf Lectin. Plant Cell Physiol. 2007, 48, 1207–1218. [Google Scholar] [CrossRef]
- Pyati, P.; Bandani, A.R.; Fitches, E.; Gatehouse, J.A. Protein Digestion in Cereal Aphids (Sitobion avenae) as a Target for Plant Defence by Endogenous Proteinase Inhibitors. J. Insect Physiol. 2011, 57, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Rustgi, S.; Boex-Fontvieille, E.; Reinbothe, C.; von Wettstein, D.; Reinbothe, S. The Complex World of Plant Protease Inhibitors: Insights into a Kunitz-Type Cysteine Protease Inhibitor of Arabidopsis thaliana. Commun. Integr. Biol. 2018, 11, e1368599. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, L.; Martinez, M.; Alvarez-Alfageme, F.; Castanera, P.; Smagghe, G.; Diaz, I.; Ortego, F. A Barley Cysteine-Proteinase Inhibitor Reduces the Performance of Two Aphid Species in Artificial Diets and Transgenic Arabidopsis Plants. Transgenic Res. 2011, 20, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Rahbé, Y.; Deraison, C.; Bonadé-Bottino, M.; Girard, C.; Nardon, C.; Jouanin, L. Effects of the Cysteine Protease Inhibitor Oryzacystatin (OC-I) on Different Aphids and Reduced Performance of Myzus persicae on OC-I Expressing Transgenic Oilseed Rape. Plant Sci. 2003, 164, 441–450. [Google Scholar] [CrossRef]
- Azzouz, H.; Cherqui, A.; Campan, E.; Rahbé, Y.; Duport, G.; Jouanin, L.; Kaiser, L.; Giordanengo, P. Effects of Plant Protease Inhibitors, Oryzacystatin I and Soybean Bowman–Birk Inhibitor, on the Aphid Macrosiphum euphorbiae (Homoptera, Aphididae) and Its Parasitoid Aphelinus abdominalis (Hymenoptera, Aphelinidae). J. Insect Physiol. 2005, 51, 75–86. [Google Scholar] [CrossRef]
- Rahbé, Y.; Ferrasson, E.; Rabesona, H.; Quillien, L. Toxicity to the Pea Aphid Acyrthosiphon pisum of Anti-Chymotrypsin Isoforms and Fragments of Bowman–Birk Protease Inhibitors from Pea Seeds. Insect Biochem. Mol. Biol. 2003, 33, 299–306. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, Q.; Chen, J. Transgenic Expression of Pinellia Ternata Agglutinin (PTA) and Arisaema Heterophyllum Agglutinin (AHA) in Wheat Confers Resistance against the Grain Aphid, Sitobion miscanthi. J. Pest Sci. 2021, 94, 1439–1448. [Google Scholar] [CrossRef]
- Duan, X.; Hou, Q.; Liu, G.; Pang, X.; Niu, Z.; Wang, X.; Zhang, Y.; Li, B.; Liang, R. Expression of Pinellia Pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids. Molecules 2018, 23, 748. [Google Scholar] [CrossRef]
- Yang, D.-H.; Hettenhausen, C.; Baldwin, I.T.; Wu, J. BAK1 Regulates the Accumulation of Jasmonic Acid and the Levels of Trypsin Proteinase Inhibitors in Nicotiana attenuata’s Responses to Herbivory. J. Exp. Bot. 2011, 62, 641–652. [Google Scholar] [CrossRef]
- Feng, H.; Jander, G. Serine Proteinase Inhibitors from Nicotiana benthamiana, a Nonpreferred Host Plant, Inhibit the Growth of Myzus persicae (Green Peach Aphid). Pest Manag. Sci. 2024, 80, 4470–4481. [Google Scholar] [CrossRef]
- Losvik, A.; Beste, L.; Mehrabi, S.; Jonsson, L. The Protease Inhibitor CI2c Gene Induced by Bird Cherry-Oat Aphid in Barley Inhibits Green Peach Aphid Fecundity in Transgenic Arabidopsis. Int. J. Mol. Sci. 2017, 18, 1317. [Google Scholar] [CrossRef] [PubMed]
- Losvik, A.; Beste, L.; Stephens, J.; Jonsson, L. Overexpression of the Aphid-Induced Serine Protease Inhibitor CI2c Gene in Barley Affects the Generalist Green Peach Aphid, Not the Specialist Bird Cherry-Oat Aphid. PLoS ONE 2018, 13, e0193816. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.I.; Prince, D.; Pitino, M.; Maffei, M.E.; Win, J.; Hogenhout, S.A. A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species Myzus persicae (Green Peach Aphid). PLoS Genet. 2010, 6, e1001216. [Google Scholar] [CrossRef] [PubMed]
- Gimenez-Ibanez, S.; Boter, M.; Fernández-Barbero, G.; Chini, A.; Rathjen, J.P.; Solano, R. The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLoS Biol. 2014, 12, e1001792. [Google Scholar] [CrossRef]
- McLellan, H.; Boevink, P.C.; Armstrong, M.R.; Pritchard, L.; Gomez, S.; Morales, J.; Whisson, S.C.; Beynon, J.L.; Birch, P.R.J. An RxLR Effector from Phytophthora Infestans Prevents Re-Localisation of Two Plant NAC Transcription Factors from the Endoplasmic Reticulum to the Nucleus. PLoS Pathog. 2013, 9, e1003670. [Google Scholar] [CrossRef]
- Alvarez, A.E.; Tjallingii, W.F.; Garzo, E.; Vleeshouwers, V.; Dicke, M.; Vosman, B. Location of Resistance Factors in the Leaves of Potato and Wild Tuber-Bearing Solanum Species to the Aphid Myzus persicae. Entomol. Exp. Appl. 2006, 121, 145–157. [Google Scholar] [CrossRef]
- Flor, H. Host-Parasite Interaction in Flax Rust-Its Genetics and Other Implications. Phytopathology 1955, 45, 680–685. [Google Scholar]
- Jones, J.D.G.; Dangl, J.L. The Plant Immune System. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Acevedo, F.E.; Rivera-Vega, L.J.; Chung, S.H.; Ray, S.; Felton, G.W. Cues from Chewing Insects—The Intersection of DAMPs, HAMPs, MAMPs and Effectors. Curr. Opin. Plant Biol. 2015, 26, 80–86. [Google Scholar] [CrossRef]
- Basu, S.; Varsani, S.; Louis, J. Altering Plant Defenses: Herbivore-Associated Molecular Patterns and Effector Arsenal of Chewing Herbivores. Mol. Plant. Microbe Interact. 2018, 31, 13–21. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Bos, J.I.B. Effector Proteins That Modulate Plant—Insect Interactions. Curr. Opin. Plant Biol. 2011, 14, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Kaloshian, I.; Walling, L.L. Plant Immunity: Connecting the Dots between Microbial and Hemipteran Immune Responses. In Management of Insect Pests to Agriculture: Lessons Learned from Deciphering Their Genome, Transcriptome and Proteome; Springer: Berlin/Heidelberg, Germany, 2016; pp. 217–243. [Google Scholar]
- Thomas, S.; Chovelon, V.; Lecoq, H. NBS-LRR-Mediated Resistance Triggered by Aphids: Viruses Do Not Adapt; Aphids Adapt via Different Mechanisms. BMC Plant Biol. 2016, 25, 162016. [Google Scholar]
- Zhang, H.; Huang, J.; Huang, Y. Identification and Characterization of Plant Resistance Genes (R Genes) in Sorghum and Their Involvement in Plant Defense against Aphids. Plant Growth Regul. 2022, 96, 443–461. [Google Scholar] [CrossRef]
- Liu, X.; Smith, C.; Gill, B. Identification of Microsatellite Markers Linked to Russian Wheat Aphid Resistance Genes Dn4 and Dn6. Theor. Appl. Genet. 2002, 104, 1042–1048. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, S.; Han, Y.; Shao, Y.; Dong, Z.; Gao, Y.; Zhang, K.; Liu, X.; Li, D.; Chang, J. Efficient and Fine Mapping of RMES1 Conferring Resistance to Sorghum Aphid Melanaphis sacchari. Mol. Breed. 2013, 31, 777–784. [Google Scholar] [CrossRef]
- Tetreault, H.M.; Grover, S.; Scully, E.D.; Gries, T.; Palmer, N.A.; Sarath, G.; Louis, J.; Sattler, S.E. Global Responses of Resistant and Susceptible Sorghum (Sorghum bicolor) to Sugarcane Aphid (Melanaphis sacchari). Front. Plant Sci. 2019, 10, 426693. [Google Scholar] [CrossRef]
- Cardona, J.B.; Grover, S.; Bowman, M.J.; Busta, L.; Kundu, P.; Koch, K.G.; Sarath, G.; Sattler, S.E.; Louis, J. Sugars and Cuticular Waxes Impact Sugarcane Aphid (Melanaphis sacchari) Colonization on Different Developmental Stages of Sorghum. Plant Sci. 2023, 330, 111646. [Google Scholar] [CrossRef]
- Varsani, S.; Grover, S.; Zhou, S.; Koch, K.G.; Huang, P.-C.; Kolomiets, M.V.; Williams, W.P.; Heng-Moss, T.; Sarath, G.; Luthe, D.S. 12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid. Plant Physiol. 2019, 179, 1402–1415. [Google Scholar] [CrossRef]
- Zogli, P.; Pingault, L.; Grover, S.; Louis, J. Ento(o)Mics: The Intersection of ‘Omic’ Approaches to Decipher Plant Defense against Sap-Sucking Insect Pests. Curr. Opin. Plant Biol. 2020, 56, 153–161. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Yang, X.; Francis, F.; Qiu, D. Protein Elicitor PeaT1 Enhanced Resistance against Aphid (Sitobion avenae) in Wheat. Pest Manag. Sci. 2020, 76, 236–243. [Google Scholar] [CrossRef]
- Basit, A.; Farhan, M.; Abbas, M.; Wang, Y.; Zhao, D.-G.; Mridha, A.U.; Al-Tawaha, A.R.M.S.; Bashir, M.A.; Arif, M.; Ahmed, S. Do Microbial Protein Elicitors PeaT1 Obtained from Alternaria tenuissima and PeBL1 from Brevibacillus laterosporus Enhance Defense Response against Tomato Aphid (Myzus persicae)? Saudi J. Biol. Sci. 2021, 28, 3242–3248. [Google Scholar] [CrossRef] [PubMed]
- Javed, K.; Javed, H.; Qiu, D. Biocontrol Potential of Purified Elicitor Protein PeBL1 Extracted from Brevibacillus laterosporus Strain A60 and Its Capacity in the Induction of Defense Process against Cucumber Aphid (Myzus persicae) in Cucumber (Cucumis sativus). Biology 2020, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Mouden, S.; Bac-Molenaar, J.A.; Kappers, I.F.; Beerling, E.A.; Leiss, K.A. Elicitor Application in Strawberry Results in Long-Term Increase of Plant Resilience without Yield Loss. Front. Plant Sci. 2021, 12, 695908. [Google Scholar] [CrossRef] [PubMed]
- Miles, P.W. Aphid Saliva. Biol. Rev. 1999, 74, 41–85. [Google Scholar] [CrossRef]
- De Vos, M.; Jander, G. Myzus persicae (Green Peach Aphid) Salivary Components Induce Defence Responses in Arabidopsis thaliana. Plant Cell Environ. 2009, 32, 1548–1560. [Google Scholar] [CrossRef]
- Carolan, J.C.; Fitzroy, C.I.; Ashton, P.D.; Douglas, A.E.; Wilkinson, T.L. The Secreted Salivary Proteome of the Pea Aphid Acyrthosiphon pisum Characterised by Mass Spectrometry. Proteomics 2009, 9, 2457–2467. [Google Scholar] [CrossRef]
- Cooper, W.R.; Dillwith, J.W.; Puterka, G.J. Salivary Proteins of Russian Wheat Aphid (Hemiptera: Aphididae). Environ. Entomol. 2010, 39, 223–231. [Google Scholar] [CrossRef]
- Nicholson, S.J.; Puterka, G.J. Variation in the Salivary Proteomes of Differentially Virulent Greenbug (Schizaphis graminum Rondani) Biotypes. J. Proteom. 2014, 105, 186–203. [Google Scholar] [CrossRef]
- Vandermoten, S.; Harmel, N.; Mazzucchelli, G.; De Pauw, E.; Haubruge, E.; Francis, F. Comparative Analyses of Salivary Proteins from Three Aphid Species. Insect Mol. Biol. 2014, 23, 67–77. [Google Scholar] [CrossRef]
- Elzinga, D.A.; De Vos, M.; Jander, G. Suppression of Plant Defenses by a Myzus persicae (Green Peach Aphid) Salivary Effector Protein. Mol. Plant. Microbe Interact. 2014, 27, 747–756. [Google Scholar] [CrossRef]
- Kettles, G.J.; Kaloshian, I. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation. Front. Plant Sci. 2016, 7, 206425. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Atamian, H.S.; Shen, Z.; Briggs, S.P.; Kaloshian, I. GroEL from the Endosymbiont Buchnera aphidicola Betrays the Aphid by Triggering Plant Defense. Proc. Natl. Acad. Sci. USA 2014, 111, 8919–8924. [Google Scholar] [CrossRef] [PubMed]
- Sabri, A.; Vandermoten, S.; Leroy, P.D.; Haubruge, E.; Hance, T.; Thonart, P.; De Pauw, E.; Francis, F. Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins. PLoS ONE 2013, 8, e74656. [Google Scholar] [CrossRef] [PubMed]
- Giordanengo, P.; Brunissen, L.; Rusterucci, C.; Vincent, C.; van Bel, A.; Dinant, S.; Girousse, C.; Faucher, M.; Bonnemain, J.-L. Compatible Plant-Aphid Interactions: How Aphids Manipulate Plant Responses. C. R. Biol. 2010, 333, 516–523. [Google Scholar] [CrossRef]
- Lei, J.; Finlayson, S.A.; Salzman, R.A.; Shan, L.; Zhu-Salzman, K. BOTRYTIS-INDUCED KINASE1 Modulates Arabidopsis Resistance to Green Peach Aphids via PHYTOALEXIN DEFICIENT4. Plant Physiol. 2014, 165, 1657–1670. [Google Scholar] [CrossRef]
- Prince, D.C.; Drurey, C.; Zipfel, C.; Hogenhout, S.A. The Leucine-Rich Repeat Receptor-like Kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the Cytochrome P450 PHYTOALEXIN DEFICIENT3 Contribute to Innate Immunity to Aphids in Arabidopsis. Plant Physiol. 2014, 164, 2207–2219. [Google Scholar] [CrossRef]
- Hettenhausen, C.; Schuman, M.C.; Wu, J. MAPK Signaling: A Key Element in Plant Defense Response to Insects. Insect Sci. 2015, 22, 157–164. [Google Scholar] [CrossRef]
- Dogimont, C.; Chovelon, V.; Pauquet, J.; Boualem, A.; Bendahmane, A. The V at Locus Encodes for a CC-NBS-LRR Protein That Confers Resistance to Aphis gossypii Infestation and A. gossypii-mediated Virus Resistance. Plant J. 2014, 80, 993–1004. [Google Scholar] [CrossRef]
- Jesse, T.; Wijbrandi, J.; Heinen, L.; Hogers, R.; Frijters, A.; Groenendijk, J.; Diergaarde, P.; Reijans, M.; Fierens-Onstenk, J.; de Both, M. The Tomato Mi-1 Gene Confers Resistance to Both Root-Knot Nematodes and Potato Aphids. Nat. Biotechnol. 1998, 16, 1365–1369. [Google Scholar]
- Rossi, M.; Goggin, F.L.; Milligan, S.B.; Kaloshian, I.; Ullman, D.E.; Williamson, V.M. The Nematode Resistance Gene Mi of Tomato Confers Resistance against the Potato Aphid. Proc. Natl. Acad. Sci. USA 1998, 95, 9750–9754. [Google Scholar] [CrossRef]
- Boissot, N.; Schoeny, A.; Vanlerberghe-Masutti, F. Vat, an Amazing Gene Conferring Resistance to Aphids and Viruses They Carry: From Molecular Structure to Field Effects. Front. Plant Sci. 2016, 7, 210516. [Google Scholar] [CrossRef]
- Peng, L.; Zhao, Y.; Wang, H.; Zhang, J.; Song, C.; Shangguan, X.; Zhu, L.; He, G. Comparative Metabolomics of the Interaction between Rice and the Brown Planthopper. Metabolomics 2016, 12, 132. [Google Scholar] [CrossRef]
- Kamphuis, L.G.; Guo, S.-M.; Gao, L.-L.; Singh, K.B. Genetic Mapping of a Major Resistance Gene to Pea Aphid (Acyrthosipon pisum) in the Model Legume Medicago truncatula. Int. J. Mol. Sci. 2016, 17, 1224. [Google Scholar] [CrossRef]
- Klingler, J.; Creasy, R.; Gao, L.; Nair, R.M.; Calix, A.S.; Jacob, H.S.; Edwards, O.R.; Singh, K.B. Aphid Resistance in Medicago truncatula Involves Antixenosis and Phloem-Specific, Inducible Antibiosis, and Maps to a Single Locus Flanked by NBS-LRR Resistance Gene Analogs. Plant Physiol. 2005, 137, 1445–1455. [Google Scholar] [CrossRef]
- Hill, C.B.; Li, Y.; Hartman, G.L. A Single Dominant Gene for Resistance to the Soybean Aphid in the Soybean Cultivar Dowling. Crop Sci. 2006, 46, 1601–1605. [Google Scholar] [CrossRef]
- Hill, C.B.; Li, Y.; Hartman, G.L. Soybean Aphid Resistance in Soybean Jackson Is Controlled by a Single Dominant Gene. Crop Sci. 2006, 46, 1606–1608. [Google Scholar] [CrossRef]
- Jun, T.-H.; Rouf Mian, M.; Michel, A.P. Genetic Mapping Revealed Two Loci for Soybean Aphid Resistance in PI 567301B. Theor. Appl. Genet. 2012, 124, 13–22. [Google Scholar] [CrossRef]
- Kang, S.; Rouf Mian, M.; Hammond, R.B. Soybean Aphid Resistance in PI 243540 Is Controlled by a Single Dominant Gene. Crop Sci. 2008, 48, 1744–1748. [Google Scholar] [CrossRef]
- Mensah, C.; DiFonzo, C.; Wang, D. Inheritance of Soybean Aphid Resistance in PI 567541B and PI 567598B. Crop Sci. 2008, 48, 1759–1763. [Google Scholar] [CrossRef]
- Mian, M.A.R.; Hammond, R.B.; Martin, S.K.S. New Plant Introductions with Resistance to the Soybean Aphid. Crop Sci. 2008, 48, 1055–1061. [Google Scholar] [CrossRef]
- Zhang, G.; Gu, C.; Wang, D. A Novel Locus for Soybean Aphid Resistance. Theor. Appl. Genet. 2010, 120, 1183–1191. [Google Scholar] [CrossRef]
- Shrestha, K.; Huang, J.; Yan, L.; Doust, A.N.; Huang, Y. Integrated Transcriptomic and Pathway Analyses of Sorghum Plants Revealed the Molecular Mechanisms of Host Defense against Aphids. Front. Plant Sci. 2024, 15, 1324085. [Google Scholar] [CrossRef]
- Liang, D.; Liu, M.; Hu, Q.; He, M.; Qi, X.; Xu, Q.; Zhou, F.; Chen, X. Identification of Differentially Expressed Genes Related to Aphid Resistance in Cucumber (Cucumis sativus L.). Sci. Rep. 2015, 5, 9645. [Google Scholar] [CrossRef]
- Niu, L.; Pan, L.; Zeng, W.; Lu, Z.; Cui, G.; Fan, M.; Xu, Q.; Wang, Z.; Li, G. Dynamic Transcriptomes of Resistant and Susceptible Peach Lines after Infestation by Green Peach Aphids (Myzus persicae Sülzer) Reveal Defence Responses Controlled by the Rm3 Locus. BMC Genom. 2018, 19, 846. [Google Scholar] [CrossRef]
- Lee, S.; Cassone, B.J.; Wijeratne, A.; Jun, T.-H.; Michel, A.P.; Mian, M.A.R. Transcriptomic Dynamics in Soybean Near-Isogenic Lines Differing in Alleles for an Aphid Resistance Gene, Following Infestation by Soybean Aphid Biotype 2. BMC Genom. 2017, 18, 472. [Google Scholar] [CrossRef]
- Zytynska, S.E.; Jourdie, V.; Naseeb, S.; Delneri, D.; Preziosi, R.F. Induced Expression of Defence-Related Genes in Barley Is Specific to Aphid Genotype. Biol. J. Linn. Soc. 2016, 117, 672–685. [Google Scholar] [CrossRef]
- Prochaska, T.J.; Donze-Reiner, T.; Marchi-Werle, L.; Palmer, N.A.; Hunt, T.E.; Sarath, G.; Heng-Moss, T. Transcriptional Responses of Tolerant and Susceptible Soybeans to Soybean Aphid (Aphis glycines Matsumura) Herbivory. Arthropod-Plant Interact. 2015, 9, 347–359. [Google Scholar] [CrossRef]
- Zhu, L.; Guo, J.; Ma, Z.; Wang, J.; Zhou, C. Arabidopsis Transcription Factor MYB102 Increases Plant Susceptibility to Aphids by Substantial Activation of Ethylene Biosynthesis. Biomolecules 2018, 8, 39. [Google Scholar] [CrossRef]
- Åhman, I.; Kim, S.-Y.; Zhu, L.-H. Plant Genes Benefitting Aphids—Potential for Exploitation in Resistance Breeding. Front. Plant Sci. 2019, 10, 1452. [Google Scholar] [CrossRef]
- Kloth, K.J.; Wiegers, G.L.; Busscher-Lange, J.; van Haarst, J.C.; Kruijer, W.; Bouwmeester, H.J.; Dicke, M.; Jongsma, M.A. AtWRKY22 Promotes Susceptibility to Aphids and Modulates Salicylic Acid and Jasmonic Acid Signalling. J. Exp. Bot. 2016, 67, 3383–3396. [Google Scholar] [CrossRef]
- Zebelo, S.A.; Maffei, M.E. Role of Early Signalling Events in Plant–Insect Interactions. J. Exp. Bot. 2015, 66, 435–448. [Google Scholar] [CrossRef]
- Levy, M.; Wang, Q.; Kaspi, R.; Parrella, M.P.; Abel, S. Arabidopsis IQD1, a Novel Calmodulin-binding Nuclear Protein, Stimulates Glucosinolate Accumulation and Plant Defense. Plant J. 2005, 43, 79–96. [Google Scholar] [CrossRef]
- Vincent, T.R.; Avramova, M.; Canham, J.; Higgins, P.; Bilkey, N.; Mugford, S.T.; Pitino, M.; Toyota, M.; Gilroy, S.; Miller, A.J. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding. Plant Cell 2017, 29, 1460–1479. [Google Scholar] [CrossRef]
- Wang, F.; Park, Y.L.; Gutensohn, M. Glandular Trichome-Derived Mono- and Sesquiterpenes of Tomato Have Contrasting Roles in the Interaction with the Potato Aphid Macrosiphum euphorbiae. J. Chem. Ecol. 2021, 47, 204–214. [Google Scholar] [CrossRef]
- Pant, S.; Huang, Y. Elevated Production of Reactive Oxygen Species Is Related to Host Plant Resistance to Sugarcane Aphid in Sorghum. Plant Signal. Behav. 2021, 16, 1849523. [Google Scholar] [CrossRef]
- Nicolis, V.; Venter, E. Silencing of a Unique Integrated Domain Nucleotide-Binding Leucine-Rich Repeat Gene in Wheat Abolishes Diuraphis noxia Resistance. Mol. Plant. Microbe Interact. 2018, 31, 940–950. [Google Scholar] [CrossRef]
- Poosapati, S.; Poretsky, E.; Dressano, K.; Ruiz, M.; Vazquez, A.; Sandoval, E.; Estrada-Cardenas, A.; Duggal, S.; Lim, J.-H.; Morris, G. A Sorghum Genome-Wide Association Study (GWAS) Identifies a WRKY Transcription Factor as a Candidate Gene Underlying Sugarcane Aphid (Melanaphis sacchari) Resistance. Planta 2022, 255, 37. [Google Scholar] [CrossRef]
- Batyrshina, Z.S.; Shavit, R.; Yaakov, B.; Bocobza, S.; Tzin, V. The Transcription Factor TaMYB31 Regulates the Benzoxazinoid Biosynthetic Pathway in Wheat. J. Exp. Bot. 2022, 73, 5634–5649. [Google Scholar] [CrossRef]
- Bhattarai, K.K.; Li, Q.; Liu, Y.; Dinesh-Kumar, S.P.; Kaloshian, I. The Mi-1-Mediated Pest Resistance Requires Hsp90 and Sgt1. Plant Physiol. 2007, 144, 312–323. [Google Scholar] [CrossRef]
- Atamian, H.S.; Eulgem, T.; Kaloshian, I. SlWRKY70 Is Required for Mi-1-Mediated Resistance to Aphids and Nematodes in Tomato. Planta 2012, 235, 299–309. [Google Scholar] [CrossRef]
- Bhattarai, K.K.; Atamian, H.S.; Kaloshian, I.; Eulgem, T. WRKY72-Type Transcription Factors Contribute to Basal Immunity in Tomato and Arabidopsis as Well as Gene-for-Gene Resistance Mediated by the Tomato R Gene Mi-1. Plant J. 2010, 63, 229–240. [Google Scholar] [CrossRef]
- Mantelin, S.; Peng, H.-C.; Li, B.; Atamian, H.S.; Takken, F.L.W.; Kaloshian, I. The Receptor-like Kinase SlSERK1 Is Required for Mi-1-Mediated Resistance to Potato Aphids in Tomato. Plant J. 2011, 67, 459–471. [Google Scholar] [CrossRef]
- Aidemark, M.; Andersson, C.-J.; Rasmusson, A.G.; Widell, S. Regulation of Callose Synthase Activity in Situ in Alamethicin-Permeabilized Arabidopsis and Tobacco Suspension Cells. BMC Plant Biol. 2009, 9, 27. [Google Scholar] [CrossRef]
- Furch, A.C.U.; van Bel, A.J.E.; Fricker, M.D.; Felle, H.H.; Fuchs, M.; Hafke, J.B. Sieve Element Ca2+ Channels as Relay Stations between Remote Stimuli and Sieve Tube Occlusion in Vicia faba. Plant Cell 2009, 21, 2118–2132. [Google Scholar] [CrossRef]
- Knoblauch, M.; Peters, W.S.; Ehlers, K.; van Bel, A.J.E. Reversible Calcium-Regulated Stopcocks in Legume Sieve Tubes. Plant Cell 2001, 13, 1221–1230. [Google Scholar] [CrossRef]
- Foyer, C.H.; Verrall, S.R.; Hancock, R.D. Systematic Analysis of Phloem-Feeding Insect-Induced Transcriptional Reprogramming in Arabidopsis Highlights Common Features and Reveals Distinct Responses to Specialist and Generalist Insects. J. Exp. Bot. 2015, 66, 495–512. [Google Scholar] [CrossRef]
- Lu, D.; Wu, S.; Gao, X.; Zhang, Y.; Shan, L.; He, P. A Receptor-like Cytoplasmic Kinase, BIK1, Associates with a Flagellin Receptor Complex to Initiate Plant Innate Immunity. Proc. Natl. Acad. Sci. USA 2010, 107, 496–501. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Xiang, T.; Liu, Z.; Laluk, K.; Ding, X.; Zou, Y.; Gao, M.; Zhang, X.; Chen, S.; et al. Receptor-like Cytoplasmic Kinases Integrate Signaling from Multiple Plant Immune Receptors and Are Targeted by a Pseudomonas syringae Effector. Cell Host Microbe 2010, 7, 290–301. [Google Scholar] [CrossRef]
- Louis, J.; Leung, Q.; Pegadaraju, V.; Reese, J.; Shah, J. PAD4-Dependent Antibiosis Contributes to the Ssi2-Conferred Hyper-Resistance to the Green Peach Aphid. Mol. Plant Microbe Interact. 2010, 23, 618–627. [Google Scholar] [CrossRef]
- Louis, J.; Gobbato, E.; Mondal, H.A.; Feys, B.J.; Parker, J.E.; Shah, J. Discrimination of Arabidopsis PAD4 Activities in Defense against Green Peach Aphid and Pathogens. Plant Physiol. 2012, 158, 1860–1872. [Google Scholar] [CrossRef]
- Mondal, H.A.; Louis, J.; Archer, L.; Patel, M.; Nalam, V.J.; Sarowar, S.; Sivapalan, V.; Root, D.D.; Shah, J. Arabidopsis ACTIN-DEPOLYMERIZING FACTOR3 Is Required for Controlling Aphid Feeding from the Phloem. Plant Physiol. 2018, 176, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Pegadaraju, V.; Knepper, C.; Reese, J.; Shah, J. Premature Leaf Senescence Modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 Gene Is Associated with Defense against the Phloem-Feeding Green Peach Aphid. Plant Physiol. 2005, 139, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Louis, J.; Shah, J. Plant Defence against Aphids: The PAD4 Signalling Nexus. J. Exp. Bot. 2015, 66, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Louis, J.; Ayre, B.G.; Reese, J.C.; Pegadaraju, V.; Shah, J. TREHALOSE PHOSPHATE SYNTHASE11-Dependent Trehalose Metabolism Promotes Arabidopsis thaliana Defense against the Phloem-Feeding Insect Myzus persicae. Plant J. Cell Mol. Biol. 2011, 67, 94–104. [Google Scholar] [CrossRef]
- Fernandez, O.; Béthencourt, L.; Quero, A.; Sangwan, R.S.; Clément, C. Trehalose and Plant Stress Responses: Friend or Foe? Trends Plant Sci. 2010, 15, 409–417. [Google Scholar] [CrossRef]
- Paul, A.V.N.; Srivastava, M.; Dureja, P.; Singh, A.K. Semiochemicals Produced by Tomato Varieties and Their Role in Parasitism of Corcyra cephalonica (Lepidoptera: Pyralidae) by the Egg Parasitoid Trichogramma chilonis (Hymenoptera: Trichogrammatidae). Int. J. Trop. Insect Sci. 2008, 28, 108–116. [Google Scholar] [CrossRef]
- Mutti, N.S.; Park, Y.; Reese, J.C.; Reeck, G.R. RNAi Knockdown of a Salivary Transcript Leading to Lethality in the Pea Aphid, Acyrthosiphon pisum. J. Insect Sci. 2006, 6, 38. [Google Scholar] [CrossRef]
- Mutti, N.S.; Louis, J.; Pappan, L.K.; Pappan, K.; Begum, K.; Chen, M.-S.; Park, Y.; Dittmer, N.; Marshall, J.; Reese, J.C.; et al. A Protein from the Salivary Glands of the Pea Aphid, Acyrthosiphon pisum, Is Essential in Feeding on a Host Plant. Proc. Natl. Acad. Sci. USA 2008, 105, 9965–9969. [Google Scholar] [CrossRef]
- Rodriguez, P.A.; Bos, J.I.B. Toward Understanding the Role of Aphid Effectors in Plant Infestation. Mol. Plant Microbe Interact. 2013, 26, 25–30. [Google Scholar] [CrossRef]
- Pitino, M.; Hogenhout, S.A. Aphid Protein Effectors Promote Aphid Colonization in a Plant Species-Specific Manner. Mol. Plant-Microbe Interact. 2013, 26, 130–139. [Google Scholar] [CrossRef]
- Naessens, E.; Dubreuil, G.; Giordanengo, P.; Baron, O.L.; Minet-Kebdani, N.; Keller, H.; Coustau, C. A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses. Curr. Biol. 2015, 25, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, Y.; Tong, J.; Ge, P.; Wang, Q.; Zhao, Z.; Zhu-Salzman, K.; Hogenhout, S.A.; Ge, F.; Sun, Y. An Aphid-Secreted Salivary Protease Activates Plant Defense in Phloem. Curr. Biol. 2020, 30, 4826–4836.e7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Fu, Y.; Crespo-Herrera, L.; Liu, H.; Wang, Q.; Zhang, Y.; Chen, J. Salivary Effector Sm9723 of Grain Aphid Sitobion miscanthi Suppresses Plant Defense and Is Essential for Aphid Survival on Wheat. Int. J. Mol. Sci. 2022, 23, 6909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Francis, F.; Xie, H.; Fan, J.; Wang, Q.; Liu, H.; Sun, Y.; Chen, J. The Salivary Effector Protein Sg2204 in the Greenbug Schizaphis graminum Suppresses Wheat Defence and Is Essential for Enabling Aphid Feeding on Host Plants. Plant Biotechnol. J. 2022, 20, 2187–2201. [Google Scholar] [CrossRef]
- Wang, W.; Dai, H.; Zhang, Y.; Chandrasekar, R.; Luo, L.; Hiromasa, Y.; Sheng, C.; Peng, G.; Chen, S.; Tomich, J.M.; et al. Armet Is an Effector Protein Mediating Aphid-Plant Interactions. FASEB J. 2015, 29, 2032–2045. [Google Scholar] [CrossRef]
- Wang, W.; Luo, L.; Lu, H.; Chen, S.; Kang, L.; Cui, F. Angiotensin-Converting Enzymes Modulate Aphid–Plant Interactions. Sci. Rep. 2015, 5, 8885. [Google Scholar] [CrossRef]
- Rodriguez, P.A.; Escudero-Martinez, C.; Bos, J.I.B. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence. Plant Physiol. 2017, 173, 1892–1903. [Google Scholar] [CrossRef]
- Schwartzberg, E.G.; Tumlinson, J.H. Aphid Honeydew Alters Plant Defence Responses. Funct. Ecol. 2014, 28, 386–394. [Google Scholar] [CrossRef]
- Kroes, A.; van Loon, J.J.A.; Dicke, M. Density-Dependent Interference of Aphids with Caterpillar-Induced Defenses in Arabidopsis: Involvement of Phytohormones and Transcription Factors. Plant Cell Physiol. 2015, 56, 98–106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumaraswamy, S.; Huang, Y. Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. Insects 2024, 15, 935. https://doi.org/10.3390/insects15120935
Kumaraswamy S, Huang Y. Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. Insects. 2024; 15(12):935. https://doi.org/10.3390/insects15120935
Chicago/Turabian StyleKumaraswamy, Sunil, and Yinghua Huang. 2024. "Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives" Insects 15, no. 12: 935. https://doi.org/10.3390/insects15120935
APA StyleKumaraswamy, S., & Huang, Y. (2024). Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. Insects, 15(12), 935. https://doi.org/10.3390/insects15120935