Ant-Plant Mutualism in Mauritia flexuosa Palm Peat Swamp Forests: A Study of Host and Epiphyte Diversity in Ant Gardens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
- (i)
- Photographic documentation of both the phorophytes and epiphytes;
- (ii)
- Triplicate sampling of phorophytes and epiphytes;
- (iii)
- Recording of dasometric variables for the phorophytes;
- (iv)
- Measuring the length, width, and height of the AGs from the ground;
- (v)
- Collecting samples of the associated ant species.
2.3. Data Analysis
3. Results
3.1. Characterization of Phorophytes
3.2. Characterization of Epiphytic Species
3.3. Characteristics of AGs
3.4. Ants Diversity and Interactions
3.5. Conservation Status
4. Discussion
4.1. Phorophytes
4.2. Epiphytic Flora
4.3. Ants and Mutualism
4.4. Ecological Importance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Phorophytes | Ant Gardens | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Family | Scientific Name | Height (m) | DBH (cm) | # AG | Ant Species | Epiphyte Species | Epiphyte Family | Height (cm) | Length (cm) | Width (cm) | |
Melastomataceae | Miconia sp. | 2 | 5 | 1 | Azteca instabilis | 1 | a | 80 | 12 | 10 | |
Clusiaceae | Symphonia globulifera L.f. | 7 | 30 | 1 | Camponotus femoratus | - | - | 550 | 15 | 20 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 9 | 43 | 1 | Azteca instabilis | 3 | b | 800 | 60 | 28 | |
Phyllanthaceae | Hieronyma alchorneoides Allemão | 5 | 20.5 | 1 | Azteca instabilis | 2, 8, 9 | a, d, f | 200 | 29 | 22 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 5.5 | 21 | 1 | Azteca instabilis | 10 | d | 350 | 50 | 40 | |
Melastomataceae | Miconia affinis DC. | 3.5 | 9.5 | 2 | Camponotus femoratus | Crematogaster levior | 1, 2 | a | 200 | 12 | 8 |
Camponotus femoratus | Crematogaster levior | 1 | a | 100 | 7 | 8 | |||||
Clusiaceae | Symphonia globulifera L.f. | 4 | 13.7 | 1 | Camponotus femoratus | 5 | d | 200 | 7 | 8 | |
Clusiaceae | Symphonia globulifera L.f. | 6 | 15.5 | 1 | Camponotus femoratus | 5, 7 | d, e | 300 | 60 | 60 | |
Melastomataceae | Miconia affinis DC. | 2 | 5.5 | 1 | Azteca instabilis | 1, 2, 5 | a, d | 150 | 13 | 12 | |
Fabaceae | Hymenaea oblongifolia Huber | 8.5 | 24 | 1 | Azteca instabilis | 7, 12 | a, e | 350 | 35 | 98 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 9.5 | 23.5 | 1 | Crematogaster levior | 10 | d | 850 | 16 | 15 | |
Melastomataceae | Miconia affinis DC. | 4.5 | 12.5 | 1 | Azteca instabilis | 1, 2, 11 | a, d | 100 | 15 | 12 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 11 | 37.5 | 1 | Azteca instabilis | 10 | d | 1000 | 30 | 25 | |
Fabaceae | Hymenaea oblongifolia Huber | 10 | 30.5 | 1 | Azteca instabilis | 3, 11 | b, d | 700 | 30 | 22 | |
Malvaceae | Pachira insignis (Sw.) Sw. exSavigny | 8.5 | 31 | 1 | Camponotus femoratus | 3, 7, 16 | b, d, e | 700 | 60 | 55 | |
Fabaceae | Hymenaea oblongifolia Huber | 8 | 19.5 | 1 | Azteca instabilis | 7 | e | 600 | 11 | 10 | |
Malvaceae | Theobroma obovatum Klotzsch ex Bernoulli | 9 | 24.5 | 1 | Azteca instabilis | 1, 5 | a, d | 250 | 21 | 20 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 8 | 21 | 1 | Azteca instabilis | 11 | d | 700 | 12 | 11 | |
Fabaceae | Hymenaea oblongifolia Huber | 18 | 60.5 | 1 | Azteca instabilis | 7 | e | 1300 | 40 | 35 | |
Lauraceae | Nectandra sp. | 3 | 9.8 | 1 | Crematogaster levior | 1, 7 | a, e | 200 | 25 | 20 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 1.5 | 6.5 | 1 | Crematogaster levior | - | - | 200 | 7 | 8 | |
Malvaceae | Theobroma obovatum Klotzsch ex Bernoulli | 3.5 | 11 | 1 | Azteca instabilis | 5 | d | 250 | 11 | 7 | |
Malvaceae | Theobroma obovatum Klotzsch ex Bernoulli | 13 | 46.4 | 4 | Azteca instabilis | 3, 4, 5 | b, c, d | 250 | 25 | 18 | |
Azteca instabilis | 7 | e | 400 | 5 | 7 | ||||||
Azteca instabilis | 1 | a | 700 | 12 | 10 | ||||||
Azteca instabilis | 1 | a | 1100 | 25 | 20 | ||||||
Malvaceae | Theobroma obovatum Klotzsch ex Bernoulli | 8 | 22.6 | 1 | Camponotus femoratus | 3, 5 | b, d | 700 | 35 | 30 | |
Malvaceae | Theobroma obovatum Klotzsch ex Bernoulli | 9 | 22.4 | 2 | Camponotus femoratus | 7, 11 | d, e | 300 | 20 | 15 | |
Camponotus femoratus | 6 | a | 400 | 21 | 18 | ||||||
Moraceae | Ficus pertusa L. f. | 2.5 | 7 | 1 | Camponotus femoratus | Azteca instabilis | 7, 13 | e, g | 100 | 20 | 17 |
Fabaceae | Hymenaea oblongifolia Huber | 12 | 46.7 | 1 | Azteca instabilis | 7 | e | 1100 | 45 | 32 | |
Fabaceae | Hymenaea oblongifolia Huber | 11 | 25 | 1 | Azteca instabilis | 1, 7, 11 | a, d, e | 650 | 30 | 23 | |
Fabaceae | Hymenaea oblongifolia Huber | 11 | 16 | 1 | Azteca instabilis | 7 | e | 1000 | 8 | 8 | |
Fabaceae | Hymenaea oblongifolia Huber | 14 | 35.2 | 1 | Azteca instabilis | 7, 13 | e, g | 400 | 65 | 50 | |
Fabaceae | Hymenaea oblongifolia Huber | 11 | 29.5 | 3 | Azteca instabilis | 1, 6, 7 | a, e | 700 | 40 | 32 | |
Azteca instabilis | 1 | a | 600 | 12 | 17 | ||||||
Azteca instabilis | 6 | e | 900 | 15 | 15 | ||||||
Burseraceae | Protium paniculatum Engl. | 9 | 29 | 1 | Camponotus femoratus | 5, 7 | d, e | 700 | 25 | 14 | |
Rubiaceae | Psychotria villosa Ruiz & Pav. | 2.5 | 5.8 | 1 | Azteca instabilis | 7 | e | 200 | 9 | 4 | |
Burseraceae | Protium paniculatum Engl. | 8 | 19 | 1 | Camponotus femoratus | 1, 4, 7 | a, c, e | 300 | 60 | 50 | |
Arecaceae | Oenocarpus bataua Mart. | 8 | 16.3 | 1 | Camponotus femoratus | 1, 4, 7 | a, c, e | 300 | 50 | 50 | |
Melastomataceae | Tococa guianensis Aubl. | 3.5 | 8 | 4 | Azteca instabilis | 1, 6 | a, e | 100 | 9 | 7 | |
Azteca instabilis | 6 | e | 100 | 12 | 11 | ||||||
Azteca instabilis | 6 | e | 200 | 4 | 4 | ||||||
Azteca instabilis | 1 | a | 250 | 30 | 70 | ||||||
Meliaceae | Trichilia micrantha Benth. | 9 | 18 | 2 | Abandoned | 5, 7, 13 | d, e, g | 200 | 18 | 12 | |
Abandoned | 1 | a | 500 | 15 | 11 | ||||||
Fabaceae | Inga sp. | 10 | 25.2 | 1 | Azteca instabilis | 1, 4, 7, 12, 13 | a, c, e, g | 700 | 80 | 37 | |
Melastomataceae | Tococa guianensis Aubl. | 3.5 | 9.4 | 1 | Azteca instabilis | 3, 9 | b, f | 200 | 18 | 17 | |
Clusiaceae | Clusia hammeliana Pipoly | 18 | 34 | 1 | Crematogaster levior | 3, 5 | b, d | 600 | 80 | 70 | |
Fabaceae | Hymenaea oblongifolia Huber | 4 | 12.8 | 2 | Azteca instabilis | 1, 14, 15 | a, d, g | 200 | 8 | 6 | |
Azteca instabilis | 1 | a | 300 | 18 | 14 | ||||||
Melastomataceae | Tococa guianensis Aubl. | 2 | 4.6 | 1 | Azteca instabilis | 4, 6 | c, e | 150 | 7 | 7 | |
Fabaceae | Hymenaea oblongifolia Huber | 12 | 35.2 | 1 | Abandoned | 4, 5, 7, 13 | c, d, e, g | 400 | 113 | 97 | |
Fabaceae | Hymenaea oblongifolia Huber | 4 | 8.6 | 1 | Azteca instabilis | 4, 5, 7 | c, d, e | 200 | 14 | 7 | |
Fabaceae | Hymenaea oblongifolia Huber | 16 | 44.5 | 1 | Camponotus femoratus | 1, 7 | a, e | 1000 | 60 | 43 | |
Fabaceae | Hymenaea oblongifolia Huber | 3 | 9.5 | 1 | Azteca instabilis | 4, 7, 13 | c, e, g | 300 | 18 | 15 | |
Fabaceae | Inga sp. | 4 | 10.5 | 2 | Azteca instabilis | 1, 4, 6, 7 | a, c, e | 200 | 13 | 9 | |
Azteca instabilis | 1, 16 | a, d | 300 | 6 | 6 | ||||||
Hydrangeaceae | Hydrangea tarapotensis Briq. | 3 | 14 | 1 | Crematogaster levior | 6, 13 | e, g | 300 | 40 | 37 | |
Fabaceae | Hymenaea oblongifolia Huber | 4 | 4.8 | 1 | Azteca instabilis | 7 | e | 300 | 26 | 23 | |
Fabaceae | Hymenaea oblongifolia Huber | 3 | 27.9 | 2 | Crematogaster levior | 1, 7, 19 | a, e, g | 250 | 12 | 9 | |
Crematogaster levior | 1 | a | 300 | 10 | 8 | ||||||
Fabaceae | Hymenaea oblongifolia Huber | 21 | 66.9 | 2 | Crematogaster levior | 5, 6 | d, e | 1400 | 21 | 18 | |
Crematogaster levior | 6 | e | 1100 | 40 | 32 | ||||||
Hydrangeaceae | Hydrangea tarapotensis Briq. | 10 | 19.8 | 2 | Crematogaster levior | 3, 4, 7 | b, c, e | 400 | 100 | 80 | |
Crematogaster levior | 7 | e | 600 | 16 | 14 | ||||||
Myristicaceae | Virola elongata (Benth.) Warb. | 9 | 24.6 | 2 | Azteca instabilis | 3, 4, 7 | b, c, e | 400 | 40 | 28 | |
Azteca instabilis | 7, 17, 19 | d, e, g | 800 | 23 | 20 | ||||||
Fabaceae | Hymenaea oblongifolia Huber | 20 | 72 | 1 | Crematogaster levior | 3, 6 | b, e | 1500 | 135 | 118 | |
Fabaceae | Hymenaea oblongifolia Huber | 10 | 53 | 1 | Crematogaster levior | 1, 4, 6 | a, c, e | 800 | 45 | 30 | |
Fabaceae | Hymenaea oblongifolia Huber | 13 | 30.7 | 2 | Azteca instabilis | 3, 7, 13 | b, e, g | 800 | 12 | 14 | |
Azteca instabilis | 4, 7 | c, e | 700 | 25 | 19 | ||||||
Clusiaceae | Clusia hammeliana Pipoly | 24 | 69.7 | 1 | Crematogaster levior | 3, 5, 13 | b, d, g | 2200 | 18 | 12 | |
Clusiaceae | Clusia hammeliana Pipoly | 4.5 | 69.7 | 1 | Crematogaster levior | 4, 5, 7 | c, d, e | 150 | 12 | 8.5 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 12 | 25.5 | 2 | Azteca instabilis | 5, 7, 16 | d, e | 600 | 25 | 18 | |
Azteca instabilis | 1 | a | 700 | 20 | 13 | ||||||
Myristicaceae | Virola elongata (Benth.) Warb. | 6 | 11.5 | 1 | Azteca instabilis | 1, 7 | a, e | 400 | 28 | 14 | |
Fabaceae | Hymenaea oblongifolia Huber | 18 | 14.4 | 1 | Azteca instabilis | 7 | e | 400 | 45 | 33 | |
Fabaceae | Hymenaea oblongifolia Huber | 18 | 56.8 | 1 | Azteca instabilis | 3, 7, 18 | b, e | 1200 | 60 | 52 | |
Clusiaceae | Clusia hammeliana Pipoly | 18 | 61.8 | 1 | Crematogaster levior | 1, 5, 7 | a, d, e | 300 | 65 | 52 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 6 | 17.5 | 1 | Azteca instabilis | 1, 2 | a | 200 | 10 | 8 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 4 | 18.5 | 1 | Azteca instabilis | 7 | e | 250 | 15 | 11 | |
Fabaceae | Inga sp. | 4 | 16 | 2 | Azteca instabilis | 1, 4, 7, 18 | a, c, e | 200 | 16 | 13 | |
Azteca instabilis | 6, 7, 17 | d, e | 300 | 14 | 11 | ||||||
Myristicaceae | Virola elongata (Benth.) Warb. | 5 | 14 | 1 | Azteca instabilis | 1, 7, 16 | a, d, e | 400 | 10 | 7 | |
Myristicaceae | Virola elongata (Benth.) Warb. | 2.5 | 12.5 | 1 | Azteca instabilis | 1, 4, 6, 7 | a, c, e | 200 | 18 | 16 | |
Moraceae | Ficus pertusa L. f. | 20 | 49 | 1 | Camponotus femoratus | 4, 6, 7 | c, e | 100 | 20 | 20 |
References
- Armenteras, D.; González, T.M.; Vergara, L.K.; Luque, F.J.; Rodríguez, N.; Bonilla, M.A. Revisión del concepto de ecosistema como “unidad de la naturaleza” 80 años después de su formulación. Ecosistemas 2016, 25, 83–89. [Google Scholar] [CrossRef]
- Johnson, C.A.; Smith, G.P.; Yule, K.; Davidowitz, G.; Bronstein, J.L.; Ferrière, R. Coevolutionary transitions from antagonism to mutualism explained by the co-opted antagonist hypothesis. Nat. Commun. 2021, 12, 2867. [Google Scholar] [CrossRef] [PubMed]
- Chomicki, G.; Janda, M.; Renner, S.S. The assembly of ant-farmed gardens: Mutualism specialization following host broadening. Proc. Biol. Sci. 2017, 284, 20161759. [Google Scholar] [CrossRef]
- Corbara, B.; Leroy, C.; Orivel, J.; Dejean, A.; Delsinne, T. Relaciones entre las hormigas y las plantas en los trópicos del Nuevo Mundo (Hormigas de Colombia). In Hormigas de Colombia; Fernández, F., Guerrero, R.J., Delsinne, T., Eds.; Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 203–253. [Google Scholar]
- Del Toro, I.; Ribbons, R.; Pelini, S. The little things that run the world revisited: A review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 2012, 17, 133–146. [Google Scholar] [CrossRef]
- Blüthgen, N.; Feldhaar, H. 2009: Chapter 7 Food and shelter: How resources influence ant ecology. In Ant Ecology; Lach, L., Parr, C., Abbott, K., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 115–136. [Google Scholar]
- Chanam, J.; Sheshshayee, M.S.; Kasinathan, S.; Jagdeesh, A.; Joshi, K.A.; Borges, R.M. Nutritional benefits from domatia inhabitants in an ant–plant interaction: Interlopers do pay the rent. Funct. Ecol. 2014, 28, 1107–1116. [Google Scholar] [CrossRef]
- Delabie, J.; Ospina, M.; Zabala, G. Relaciones entre hormigas y plantas: Una introducción. In Introducción a Las Hormigas de la Región Neotropical; Fernández, F., Ed.; Biota Colomb.: Bogotá, Colombia, 2003; pp. 167–180. [Google Scholar] [CrossRef]
- Carvajal, V.d.l.A.; Ospina, F.; Estévez, J.; Llano, C.A. Invertebrados Asociados a Bromelias: Una Diversidad Escondida; Editorial Universidad de Caldas: Caldas, Colombia, 2008; p. 35. [Google Scholar]
- Ojembarrena, J.A.; Chanampa, M.; Vidal, P.; Guerra, R.; Olivieri, F.; Neila, F.J.; Bedoya, C. Sistemas vegetales que mejoran la calidad ambiental de las ciudades. Boletín CF+S 2010, 42/43, 211–223. [Google Scholar]
- Hernández, S.A. Distribución altitudinal de hormigas en una vertiente de la Sierra Montenegro, Morelos, México. Thesis, Universidad Autónoma del Estado de Morelos, Morelos, Mexico, 2020. [Google Scholar]
- Areche, J.C.; Mallma, B.M. Sistema de control de temperatura y humedad para prevenir el ataque de hongos y bacterias en los cultivos de orquídeas en el Instituto Nacional de Investigación Agraría Junín. Thesis, Universidad Nacional de Huancavelica, Pampas, Peru, 2014. Available online: http://repositorio.unh.edu.pe/handle/UNH/782 (accessed on 11 August 2024).
- Urcuqui, A.M. Caracterización de los hábitos alimentarios de las hormigas arrieras en el bosque seco tropical del Jardín Botánico de la ciudad de Santiago de Cali. Thesis, Universidad Autónoma de Occidente, Santiago de Cali, Colombia, 2005. [Google Scholar] [CrossRef]
- Gallego-Ropero, M.C.; Salguero, B. Ensamblaje de hormigas del bosque seco tropical, jardín botánico de Cali. Coulomb Force 2015, 18, 139–150. [Google Scholar] [CrossRef]
- Guzmán-Mendoza, R.; Castaño-Meneses, G.; Herrera-Fuentes, M.D.C. Variación espacial y temporal de la diversidad de hormigas en el Jardín Botánico del valle de Zapotitlán de las Salinas, Puebla. Rev. Mex. Biodivers. 2010, 81, 427–435. [Google Scholar] [CrossRef]
- Martínez, C.L.; Riquelme, M.B.; Santadino, M.V.; de Haro, A.M.; Barañao, J.J. Estudios sobre el comportamiento de forrajeo de Acromyrmex lundi Guering (Himenoptera, Formicidae) y su efecto sobre el crecimiento de procedencias de Eucalyptus globulus Labill. (Myrtaceae). Rev. Árvore 2015, 39, 189–198. [Google Scholar] [CrossRef]
- Carvajal, S.; Peña-Pinela, C. Familia Cecropiaceae. Flora del Bajío y de Regiones Adyacentes; Instituto de Ecología A.C.: Michoacán, Mexico, 1997; Fascículo 53; pp. 1–10. [Google Scholar] [CrossRef]
- Mora-Pineda, G. Interaccione de los nematodos Sclerorhabditis (Rhabditidae) encontrados en troncos de Cecropia (Urticaceae) junto a las hormigas Azteca (Formicidae: Dolichoderinae). Thesis, Universidad de Costa Rica, San Pedro, Costa Rica, 2014. Available online: http://biologia.ucr.ac.cr/TesisLic/GeovannyMoraPineda.pdf (accessed on 10 September 2024).
- Barrera-Bello, Á.M.; Torres-González, A.M. Basic ecology of ant gardens in a dry-premontane transitional forest. Rev. Biol. Trop. 2022, 70, 526–540. [Google Scholar] [CrossRef]
- Morales-Linares, J.; Flores-Palacios, A.; Ramos-Robles, M.I.; Vásquez-Bolaños, M. Listado de angiospermas epífitas que conforman jardines de hormigas de Azteca gnava (Formicidae) en el sureste de México. Acta Bot. Mex. 2023, 130, e2129. [Google Scholar] [CrossRef]
- Longino, J.T. A taxonomic review of the genus Azteca (Hymenoptera: Formicidae) in Costa Rica and a global revision of the aurita group. Zootaxa 2007, 1491, 1–63. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.O. The Ants; Springer: Berlin/Heidelberg, Germany, 1990; p. 752. [Google Scholar]
- Edwards, D.; Hassall, M.; Sutherland, W.J.; Yu, D.W. Selection for protection in an ant–plant mutualism: Host sanctions, host modularity, and the principal–agent game. Proc. Biol. Sci. 2006, 273, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Morales-Linares, J.; Corona-López, A.M.; Toledo-Hernández, V.H.; Flores-Palacios, A. Ant-gardens: A specialized ant-epiphyte mutualism capable of facing the effects of climate change. Biodivers. Conserv. 2021, 30, 1165–1187. [Google Scholar] [CrossRef]
- Morales-Linares, J.; García-Franco, J.G.; Flores-Palacios, A.; Valenzuela-González, J.E.; Mata-Rosas, M.; Díaz-Castelazo, C. Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico. Sci. Nat. 2016, 103, 96. [Google Scholar] [CrossRef]
- Orivel, J.; Dejan, A. Selection of epiphyte seeds by ant-garden ants. Ecoscience 1999, 6, 51–55. [Google Scholar] [CrossRef]
- Quinteros-Gómez, Y.; Millán, B.; Gómez-Ticerán, D.; Angeles-Alvarez, F.; Salinas-Inga, A.; Macedo-Bedoya, J.; Olórtegui, S.; Balbuena-Serrano, Á. Diversity and species of vascular epiphytes in Tingana, the highest flooded forest in Peru. Mires Peat 2024, 31, 1–22. [Google Scholar] [CrossRef]
- Quinteros-Gómez, Y.; Monroy-Vilchis, O.; Zarco-González, M.M.; Endara-Agramont, Á.R.; Pacheco, X.P. Composición florística, estructura y estatus de conservación de los aguajales de la palma Mauritia flexuosa en el piedemonte amazónico en el departamento de San Martín, Perú. Rev. Mex. Biodivers. 2021, 92, e923186. [Google Scholar] [CrossRef]
- PEAM. Boletín Meteorológico e Hidrológico del Alto Mayo, 1996–2004. El Proyecto Especial Alto Mayo (PEAM); Departamento de San Martín, SENAMHI: Moyobamba, Peru, 2004; p. 57. [Google Scholar]
- Alva, J.E.; Meneses, J.; Chang, L.A.; Lara, J.L.; Nishimura, T. Efectos en el Terreno Ocasionados Por Los Sismos de Alto Mayo en Perú; IX Congreso Nacional de Ingeniería Civil: Ica, Peru, 1992. [Google Scholar]
- Quinteros-Gómez, Y.M.; Cabrera, D.; Macedo-Bedoya, J.; Santos-Linares, V.; Salinas-Inga, A. Propagación vegetativa de Vanilla pompona subsp. grandiflora (Orchidaceae) en territorios inundables del Valle del Alto Mayo, Perú. Acta Bot. Mex. 2024, 131, e2309. [Google Scholar] [CrossRef]
- Quinteros-Gómez, Y.; Zarco-González, M.; Ticerán, D.; Agramont, A.; Monroy-Vilchis, O. Effects of human disturbance on above-ground carbon stocks in north-west Amazonian Mauritia flexuosa peat swamp forests. Mires Peat 2023, 29, 1–19. [Google Scholar] [CrossRef]
- Longino, J.T. The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 2003, 151, 1–150. [Google Scholar] [CrossRef]
- Mackay, W. New world carpenter ants of the hyperdiverse genus Camponotus. In Volume 1 Introduction, Keys to the Sub-Genera and Species Complexes and the Subgenus Camponotus; Lambert Academic Publishing: Saarbrücken, Germany, 2019; p. 420. [Google Scholar]
- Feitosa, R.M.; Dias, A.M. An illustrated guide for the identification of ant subfamilies and genera in Brazil. Insect Syst. Evol. 2024, 55, 451–571. [Google Scholar] [CrossRef]
- Sjoberg, D. ggsankey: Sankey. Alluvial and Sankey Bump Plots, 564. 2022. Stockholm, Sweden. Available online: https://github.com/davidsjoberg/ggsankey (accessed on 25 August 2024).
- Oksanen, F.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.; O’Hara, R.; Simpson, G.; Solymos, P. vegan: Community Ecology Package, R package version 2.4-4; Helsinki, Finland, 2024. Available online: https://cran.r-project.org/package=vegan (accessed on 15 September 2024).
- Davidson, D.W. Ecological studies of neotropical ant gardens. Ecology 1988, 69, 1138–1152. [Google Scholar] [CrossRef]
- Dubuisson, J.Y.; Bary, S.; Ebihara, A.; Carnero-Diaz, E.; Boucheron-Dubuisson, E.; Hennequin, S. Epiphytism, anatomy and regressive evolution in trichomanoid filmy ferns (Hymenophyllaceae). Bot. J. Linn. Soc. 2013, 173, 573–593. [Google Scholar] [CrossRef]
- Blüthgen, N.; Schmit-Neuerburg, V.; Engwald, S.; Barthlott, W. Ants as epiphyte gardeners: Comparing the nutrient quality of ant and termite canopy substrates in a Venezuelan lowland rain forest. J. Trop. Ecol. 2001, 17, 887–894. [Google Scholar] [CrossRef]
- Laviski, B.F.d.S.; Mahyé-Nunes, A.J.; Nunes-Freitas, A.F. Structure of ant-diaspore networks and their functional outcomes in a Brazilian Atlantic Forest. Sociobiology 2021, 68, e7104. [Google Scholar] [CrossRef]
- Goodale, U.M.; Ashton, M.S.; Berlyn, G.P.; Gregoire, T.G.; Singhakumara, B.M.P.; Tennakoon, K.U. Disturbance and tropical pioneer species: Patterns of association across life history stages. For. Ecol. Manag. 2012, 277, 54–66. [Google Scholar] [CrossRef]
- Campos, R.I.; Soares, J.P.; Martins, R.P.; Ribeiro, S.P. Effect of habitat structure on ant assemblages (Hymenoptera: Formicidae) associated to two pioneer tree species. Sociobiology 2006, 47, 721–737. [Google Scholar]
- Stokes, K.E.; Ward, K.A.; Colloff, M.J. Alterations in flood frequency increase exotic and native species richness of understory vegetation in a temperate floodplain eucalypt forest. Plant Ecol. 2010, 211, 219–233. [Google Scholar] [CrossRef]
- López-Acosta, J.C.; Dirzo, R. Aspectos relevantes sobre la historia natural de las plantas hemiepífitas estranguladoras. Interciencia 2015, 40, 190–197. [Google Scholar]
- Dejean, A.; Orivel, J.; Rossi, V.; Roux, O.; Lauth, J.; Malé, P.J.G.; Céréghino, R.; Leroy, C. Predation success by a plant-ant indirectly favours the growth and fitness of its host Myrmecophyte. PLoS ONE 2013, 8, e59405. [Google Scholar] [CrossRef] [PubMed]
- González-Teuber, M.; Heil, M. Comparative anatomy and physiology of myrmecophytes: Ecological and evolutionary perspectives. Res. Rep. Biodivers. Stud. 2015, 4, 21–32. [Google Scholar] [CrossRef]
- Orivel, J.; Lambs, L.; Malé, P.J.G.; Leroy, C.; Grangier, J.; Otto, T.; Quilichini, A.; Dejean, A. Dynamics of the association between a long-lived understory myrmecophyte and its specific associated ants. Oecologia 2011, 165, 369–376. [Google Scholar] [CrossRef]
- Tie, S.; Wang, J.; He, N.; Zhao, Z.; Liu, Y. Biodiversity and ecological network of epiphytic bryophytes and their host trees in the forests of the southeastern Qinghai-Tibet Plateau. Ecol. Indic. 2023, 146, 109781. [Google Scholar] [CrossRef]
- Vital, M.; Castro, M.M.; Zeringóta, V.; Prezoto, F. Myrmecofauna of urban gardens in southeast region of Brazil = Mirmecofauna de jardins urbanos na região sudeste do Brasil. Biosci. J. 2015, 31, 1205–1212. [Google Scholar] [CrossRef]
- Bizerril, M.; Vieira, E. Azteca ants as antiherbivore agents of Tococa formicaria (Melastomataceae) in Brazilian cerrado. Stud. Neotrop. Fauna Environ. 2002, 37, 145–149. [Google Scholar] [CrossRef]
- Michelangeli, F.A. Ant Protection against herbivory in three species of Tococa (Melastomataceae) occupying different environments. Biotropica 2003, 35, 181–188. [Google Scholar] [CrossRef]
- Silva, B.M.d.S.; Lima, J.D.; Dantas, V.A.V.; Moraes, W.d.S.; Sabonaro, D.Z. Efeito da luz no crescimento de mudas de Hymenaea parvifolia Huber. Rev. Árvore 2007, 31, 1019–1026. [Google Scholar] [CrossRef]
- Cipriano, J.; Martins, L.; Deus, M.d.S.M.d.; Peron, A.P. O gênero Hymenaea e Euas espécies mais importantes do. Cad. Pesqui 2014, 26, 41–51. [Google Scholar] [CrossRef]
- Ribeiro, R.D.; Cardoso, D.B.O.S.; Cardoso, D.; de Lima, H.C. A new species of Hymenaea (Leguminosae: Caesalpinioideae) with a revised identification key to the genus in the Brazilian Atlantic forest. Syst. Bot. 2015, 40, 151–156. [Google Scholar] [CrossRef]
- Raine, C.A.; Farrar, D.R.; Sheffield, E. A new Hymenophyllum species in the Appalachians represented by independent gametophyte colonies. Am. Fern J. 1991, 81, 109–118. [Google Scholar] [CrossRef]
- Torres-Torres, J.J.; Medina-Arroyo, H.H.; Martinez-Guardia, M. Germinación y crecimiento inicial de Hymenaea oblongifolia Huber en el municipio de Istmina, Chocó, Colombia. Entramado 2018, 14, 230–242. [Google Scholar] [CrossRef]
- Corbara, B.; Dejean, A.; Orivel, J. Les « jardins de fourmis, une association plantes-fourmis originale. Année Biol. 1999, 38, 73–89. [Google Scholar] [CrossRef]
- Dejean, A.; Corbara, B.; Orivel, J.; Snelling, R.R.; Delabie, J.; Belin-Depoux, M. The importance of ant gardens in the pioneer vegetal formations of French Guiana (Hymenoptera: Formicidae). Sociobiology 2000, 35, 425–439. [Google Scholar]
- Cedeño, A.; Mérida, T.; Zegarra, J. Ant Gardens of Surumoni, Venezuela. Selbyana 1999, 20, 125–132. Available online: https://www.jstor.org/stable/41760015 (accessed on 25 August 2024).
- Leal, L.C.; Jacovak, C.C.; Bobrowiec, P.E.D.; Camargo, J.L.C.; Peixoto, P.E.C. The role of parabiotic ants and environment on epiphyte composition and protection in ant gardens. Sociobiology 2017, 64, 276–283. [Google Scholar] [CrossRef]
- Jiménez, I.V.; Miranda, A.F. Epiphyte orchid diversity in a Yungas montane forest in the Cotapata National Park and Integrated Management Natural Area, La Paz—Bolivia. Lankesteriana 2007, 7, 49–52. [Google Scholar] [CrossRef]
- Bianchi, J.S.; Kersten, R.d.A. Edge effect on vascular epiphytes in a subtropical Atlantic Forest. Acta Bot. Bras. 2014, 28, 120–126. [Google Scholar] [CrossRef]
- Farrell, A.D.; Evelyn, S.; Lennon, A.M.; Umaharan, P. Genotypic variation in senescence and water relations in cut flowers of Anthurium andraeanum (Hort.). Hortscience 2012, 47, 133–1337. [Google Scholar] [CrossRef]
- Rajeevan, P.K.; Kumari, P.K.V.; Prasada Rao, G.S.L.H.V.; Liji, P.V.; Mohan, S. Performance evaluation of cut flower varieties of anthurium under two agroclimatic conditions. J. Ornam. Hortic. 2007, 10, 177–180. [Google Scholar]
- Sonnleitner, M.; Dullinger, S.; Wanek, W.; Zechmeister, H.G. Microclimatic patterns correlate with the distribution of epiphyllous bryophytes in a tropical lowland rain forest in Costa Rica. J. Trop. Ecol. 2009, 25, 321–330. [Google Scholar] [CrossRef]
- Kleinfeldt, S.E. Ant-Gardens: The interaction of Codonanthe crassifolia (Gesneriaceae) and Crematogaster longispina (Formicidae). Ecology 1978, 59, 449–456. [Google Scholar] [CrossRef]
- Beattie, A.J. The Evolutionary Ecology of Ant–Plant Mutualisms; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar] [CrossRef]
- Said, C. Les nectaires floraux des Crassulacées Etude morphologique, histologique et anatomique. Lett. Bot. 1982, 129, 231–240. [Google Scholar] [CrossRef]
- Gontcharova, S.B.; Gontcharov, A.A. Molecular phylogeny and systematics of flowering plants of the family Crassulaceae DC. Mol. Biol. 2009, 43, 794–803. [Google Scholar] [CrossRef]
- Symmank, L.; Samain, M.-S.; Smith, J.F.; Pino, G.; Stoll, A.; Goetghebeur, P.; Neinhuis, C.; Wanke, S. The extraordinary journey of Peperomia subgenus Tildenia (Piperaceae): Insights into diversification and colonization patterns from its cradle in Peru to the Trans-Mexican Volcanic Belt. J. Biogeogr. 2011, 38, 2337–2349. [Google Scholar] [CrossRef]
- Mathieu, G.; Symmank, L.; Callejas, R.; Wanke, S.; Neinhuis, C.; Goetghebeur, P.; Samain, M.-S. New geophytic Peperomia (Piperaceae) species from Mexico, Belize and Costa Rica. Rev. Mex. Biodivers. 2011, 82, 357–382. [Google Scholar] [CrossRef]
- Takemori, N.K.; Bona, C.; Alquini, Y. Anatomia comparada das folhas de espécies de Peperomia (Piperaceae): I. Ontogênese do tecido aqüífero e dos estômatos. Acta Bot. Bras. 2003, 17, 387–394. [Google Scholar] [CrossRef]
- Horner, H.T. Peperomia leaf cell wall interface between the multiple hypodermis and crystal-containing photosynthetic layer displays unusual pit fields. AoB Plants 2012, 109, 1307–1316. [Google Scholar] [CrossRef]
- Pinheiro, F.; Cozzolino, S. Epidendrum (Orchidaceae) as a model system for ecological and evolutionary studies in the Neotropics. Taxon 2013, 62, 77–88. [Google Scholar] [CrossRef]
- Rocha, C.F.D.; Bergallo, H.G. Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant-plant: Azteca muelleri vs. Coelomera ruficornis on Cecropia pachystachya. Oecologia 1992, 91, 249–252. [Google Scholar] [CrossRef]
- Dejean, A.; Grangier, J.; Leroy, C.; Orivel, J. Predation and aggressiveness in host plant protection: A generalization using ants from the genus Azteca. Sci. Nat. 2009, 96, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Quinteros-Gómez, Y.M.; Macedo-Bedoya, J. Primer reporte de jardines de hormigas en renacales de Piedemonte Andino-Amazónico en Perú. Lilloa 2024, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Grasso, D.A.; Pandolfi, C.; Bazihizina, N.; Nocentini, D.; Nepi, M.; Mancuso, S. Extrafloral-nectar-based partner manipulation in plant–ant relationships. AoB Plants 2015, 7, lv002. [Google Scholar] [CrossRef] [PubMed]
- Alencar, C.; Nogueira, A.; Vicente, R.; Coutinho, Í. Plant species with larger extrafloral nectaries produce better quality nectar when needed and interact with the best ant partners. J. Exp. Bot. 2023, 74, 4613–4627. [Google Scholar] [CrossRef]
- Oliveira, P.S.; Freitas, A.V. Ant-plant-herbivore interactions in the neotropical cerrado savanna. Sci. Nat. 2004, 91, 557–570. [Google Scholar] [CrossRef]
- Cupul-Magaña, F.G. Hymenoptera: Mirmecofauna (Hymenoptera: Formicidae) común del estero “El Salado” y Puerto Vallarta, Jalisco, México. Dugesiana 2004, 11, 13–20. [Google Scholar] [CrossRef]
- Czaczkes, T.J.; Heinze, J.; Ruther, J. Nest Etiquette—Where ants go when nature calls. PLoS ONE 2015, 10, e0118376. [Google Scholar] [CrossRef]
- Morrone, O.; Vega, A.S.; Maier, M. Elaiosomes in Urochloa paucispicata (Poaceae: Panicoideae: Paniceae): Anatomy and chemical composition. Flora 2000, 195, 303–310. [Google Scholar] [CrossRef]
- Sheridan, S.L.; Iversen, K.A.; Itagaki, H. The role of chemical senses in seed-carrying behavior by ants: A behavioral, physiological, and morphological study. J. Insect Physiol. 1996, 42, 149–159. [Google Scholar] [CrossRef]
- Youngsteadt, E.; Nojima, S.; Häberlein, C.; Schulz, S.; Schal, C. Seed odor mediates an obligate ant–plant mutualism in Amazonian rainforests. Proc. Natl. Acad. Sci. USA 2008, 105, 4571–4575. [Google Scholar] [CrossRef]
- Kattan, G.H.; Murcia, C.; Aldana, R.C.; Usma, S. Relaciones entre hormigas y Melastomataceas en un bosque lluvioso del Pacífico colombiano. BMEUV 2011, 9, 1–10. Available online: https://hdl.handle.net/10893/765 (accessed on 10 June 2024).
- Orivel, J.; Dejean, A.; Errard, C. Active role of two Ponerine ants in the elaboration of ant gardens. Biotropica 1998, 30, 487–491. Available online: http://www.jstor.org/stable/2389135 (accessed on 5 May 2024). [CrossRef]
- Céréghino, R.; Leroy, C.; Dejean, A.; Corbara, B. Ants mediate the structure of phytotelm communities in an ant-garden bromeliad. Ecology 2010, 91, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Benzing, D.H. Bromeliaceae: Profile of an Adaptive Radiation; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Dejean, A.; Azémar, F.; Naskrecki, P.; Tindo, M.; Rossi, V.; Faucher, C.; Gryta, H. Mutualistic interactions between ants and fungi: A review. Ecol. Evol. 2023, 13, e10386. [Google Scholar] [CrossRef]
- Farji-Brener, A.G.F. Modificaciones al suelo realizadas por hormigas cortadoras de hojas (Formicidae, Attini): Una revisión de sus efectos sobre la vegetación. Ecol. Austral. 1992, 2, 87–94. [Google Scholar]
- Risch, S.J.; Carroll, C.R. The ecological role of ants in two Mexican agroecosystems. Oecologia 1982, 55, 114–119. [Google Scholar] [CrossRef]
- Weissflog, A.; Kaufmann, E.; Maschwitz, U. Ant gardens of Camponotus (Myrmotarsus) irritabilis (Hymenoptera: Formicidae: Formicinae) and Hoya elliptica (Apocynaceae) in Southeast Asia. Asian Myrmecol. 2017, 9, e009001. [Google Scholar] [CrossRef]
- Montoya-Lerma, J.; Giraldo-Echeverri, C.; Armbrecht, I.; Farji-Brener, A.G.; Calle, Z. Leaf-cutting ants revisited: Towards rational management and control. Int. J. Pest Manag. 2012, 58, 225–247. [Google Scholar] [CrossRef]
- Souza, A.F.; Martins, F.R. Spatial variation and dynamics of flooding, canopy openness, and structure in a neotropical swamp forest. Plant Ecol. 2005, 180, 161–173. [Google Scholar] [CrossRef]
- Queiroz, A.C.M.; Ribas, C.R. Canopy cover negatively affects arboreal ant species richness in a tropical open habitat. Braz. J. Biol. 2016, 76, 864–870. [Google Scholar] [CrossRef]
- Mera, Y.A.; Gallego, M.C.; Armbrecht, I. Interacciónes entre hormigas e insectos en follaje de cafetales de sol y sombra, Cauca-Colombia. Rev. Col. Entomol. 2010, 36, 116–126. [Google Scholar] [CrossRef]
- Gutiérrez-Martínez, P.R.; Acuña-Sánchez, D. Patrones diarios de actividad de la hormiga Azteca constructor (Hymenoptera: Formicidae) y su relación con la presencia de alimento. UNED Res. J. 2013, 5, 219–225. [Google Scholar] [CrossRef]
- Mueller, U.G.; Scott, J.J.; Ishak, H.D.; Cooper, M.; Rodrigues, A. Monoculture of leafcutter ant gardens. PLoS ONE 2010, 5, e12668. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.; Jiménez-Ríos, L.; Iniesta-Pallarés, M.; Jurado-Flores, A.; Molina-Heredia, F.; Ng, C.K.Y.; Mariscal, V. Symbiosis between cyanobacteria and plants: From molecular studies to agronomic applications. J. Exp. Bot. 2023, 74, 6145–6157. [Google Scholar] [CrossRef] [PubMed]
- Lobry de Bruyn, L.A. Ants as bioindicators of soil function in rural environments. Agric. Ecosyst. Environ. 1999, 74, 425–441. [Google Scholar] [CrossRef]
- Sanabria, C.; Lavelle, P.; Fonte, S.J. Ants as indicators of soil-based ecosystem services in agroecosystems of the Colombian Llanos. Appl. Soil Ecol. 2014, 84, 24–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quinteros-Gómez, Y.; Macedo-Bedoya, J.; Salinas-Inga, A.; Anlas-Rosado, F.; Santos-Linares, V.; Alarcon-Iman, G.; Gómez-Ticerán, D.; Angeles-Alvarez, F.; Olórtegui-Chamolí, S.; Solis-Sarmiento, J.; et al. Ant-Plant Mutualism in Mauritia flexuosa Palm Peat Swamp Forests: A Study of Host and Epiphyte Diversity in Ant Gardens. Insects 2024, 15, 1011. https://doi.org/10.3390/insects15121011
Quinteros-Gómez Y, Macedo-Bedoya J, Salinas-Inga A, Anlas-Rosado F, Santos-Linares V, Alarcon-Iman G, Gómez-Ticerán D, Angeles-Alvarez F, Olórtegui-Chamolí S, Solis-Sarmiento J, et al. Ant-Plant Mutualism in Mauritia flexuosa Palm Peat Swamp Forests: A Study of Host and Epiphyte Diversity in Ant Gardens. Insects. 2024; 15(12):1011. https://doi.org/10.3390/insects15121011
Chicago/Turabian StyleQuinteros-Gómez, Yakov, Jehoshua Macedo-Bedoya, Abel Salinas-Inga, Flavia Anlas-Rosado, Victor Santos-Linares, Geancarlo Alarcon-Iman, Doris Gómez-Ticerán, Franco Angeles-Alvarez, Sergio Olórtegui-Chamolí, Julio Solis-Sarmiento, and et al. 2024. "Ant-Plant Mutualism in Mauritia flexuosa Palm Peat Swamp Forests: A Study of Host and Epiphyte Diversity in Ant Gardens" Insects 15, no. 12: 1011. https://doi.org/10.3390/insects15121011
APA StyleQuinteros-Gómez, Y., Macedo-Bedoya, J., Salinas-Inga, A., Anlas-Rosado, F., Santos-Linares, V., Alarcon-Iman, G., Gómez-Ticerán, D., Angeles-Alvarez, F., Olórtegui-Chamolí, S., Solis-Sarmiento, J., Jara-Peña, E., & Monroy-Vilchis, O. (2024). Ant-Plant Mutualism in Mauritia flexuosa Palm Peat Swamp Forests: A Study of Host and Epiphyte Diversity in Ant Gardens. Insects, 15(12), 1011. https://doi.org/10.3390/insects15121011