Mathematical Model for the Biological Control of the Coffee Berry Borer Hypothenemus hampei through Ant Predation
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- The generations of the population overlapped, that is, in the population it was possible to find individuals of different ages.
- The population was homogeneously distributed, which is why position was irrelevant.
- No migration phenomena were considered.
3. Results
3.1. Region of Invariance
3.2. Equilibrium Points and Stability
- 1.
- Equilibrium point is unstable.
- 2.
- Equilibrium point has no biological sense if , collides with if , and is unstable if .
- 3.
- Equilibrium point is local and asymptotically stable if and is unstable if .
- 4.
- Equilibrium point has no biological sense if , collides with if , and is local and asymptotically stable if .
- The Jacobian matrix (10) evaluated in equilibrium point has the following eigenvalues:By the form of the radicand, it was concluded that the three eigenvalues were real. All the more, the signs of some of the eigenvalues were evident, particularly and . However, the sign of could not be determined immediately, which is why the radicands were expressed in terms of threshold to establish conditions, that is:Note that if , then ; if , then ; but, as y , it was concluded that in any case, is an unstable hyperbolic equilibrium point of the saddle type. However, for the case , is a nonhyperbolic equilibrium point, since . In effect, the eigenvalues are now:Bearing in mind the stability results obtained above, it was plausible to think that if , equilibrium point would be unstable, but the classical qualitative theory was insufficient to verify this idea due to the loss of hyperbolicity; hence, the instability of equilibrium point was shown using the direct method of Liapunov [28], whose conclusion was valid independently of threshold .Let U be a open set given byfor which belongs to the closure of U. Let S be a neighborhood of given bywhereand is the distance from the origin to the line of equation , shown in Figure 2. And let V be the scalar fieldwhich satisfies
- (a)
- en ;
- (b)
- en ;
- (c)
- ;
- (d)
- on that part of the boundary of U inside S.
- From (6), it is evident that equilibrium point loses its biological sense in the first and second component if . To analyze the other two cases, the Jacobian matrix (10) was evaluated in equilibrium , whose eigenvalues were used to obtain the real value, as observed in the following:Now, in all cases, and condition is sufficient for and implies , which allowed us to conclude that is unstable and, specifically, a saddle. In addition, if , we could determine from (6) that , i.e., the equilibriums collide. Further, the prior expressions were simplified in the following manner:which coincides with the results from the previous case that have already been discussed.
- The Jacobian matrix (10) evaluated in equilibrium has the following eigenvalues:where , and it is clear from (16) and (17) that the eigenvalues are real. It is observed that and in all cases, and in (18) it is noted that the condition implies that ; then, equilibrium is local and asymptotically stable. Furthermore, note from (18) that if , then , and since and , it was concluded that equilibrium is unstable and, specifically, a saddle.
- It is immediately obvious from (7) that equilibrium point loses its biological sense in the first and second component if . To study the two other cases, the Jacobian matrix (10) was evaluated in equilibrium , obtaining, as in previous cases, a matrix whose eigenvalues arewhere and, equivalently,From (19) and (20), it was deducted that the eigenvalues are real. Note in (7) that if , then , that is, collides with . Finally, if in (21), it is easy to see that , but since and , it was concluded that equilibrium point is local and asymptotically stable.
- 1.
- If or, equivalently, , then equilibrium points , , and are unstable, and equilibrium point is local and asymptotically stable.
- 2.
- If or, equivalently, , then equilibrium points and are unstable, and equilibrium point collides with .
- 3.
- If or, equivalently, , then equilibrium points and are unstable, equilibrium point is local and asymptotically stable, and equilibrium point lacks biological sense.
- 4.
- If or, equivalently, , then equilibrium point is unstable, equilibrium point collides with , equilibrium point is local and asymptotically stable, and equilibrium point lacks biological sense.
- 5.
- If or, equivalently, , then equilibrium point is unstable, equilibrium point lacks biological sense, equilibrium point is local and asymptotically stable, and equilibrium point lacks biological sense.
- If
- −
- and ; hence, equilibrium point is unstable.
- −
- and ; hence, equilibrium point is local and asymptotically stable.
- If
- −
- and ; hence, equilibrium point is local and asymptotically stable.
- −
- and ; hence, equilibrium point is unstable, although without biological sense.
3.3. Numerical Simulations
| Parameter | Description | Value | Ref. |
|---|---|---|---|
| q | Carrying capacity of the immature CBBs | 700 | |
| k | Carrying capacity of the predatory ants | ||
| r | Intrinsic growth rate of predatory ants | ||
| Predation rate of ants on adult CBBs | [30] | ||
| Predation rate of ants on immature CBBs | [30] | ||
| Biomass conversion rate through predation | |||
| Natural death rate of immature CBBs | [31] | ||
| Death rate of adult CBBs due to factors other than predation | Variable | ||
| Oviposition rate of adult CBB females | 2 | [5] | |
| Development rate from immature stage to adult stage | [31] |


4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CBB | Coffee berry borer |
| IBM | Integrated borer management |
References
- Infante, F.; Pérez, J.; Vega, F.E. The coffee berry borer: The centenary of a biological invasion in Brazil. Braz. J. Biol. 2014, 74, S125–S126. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.R.; Jimenez-Soto, E.; Philpott, S.M.; Perfecto, I. Ant-mediated (Hymenoptera: Formicidae) biological control of the coffee berry borer: Diversity, ecological complexity, and conservation biocontrol. Myrmecol. News 2018, 26, 1–17. [Google Scholar]
- Johnson, M.A.; Ruiz-Diaz, C.P.; Manoukis, N.C.; Verle Rodrigues, J.C. Coffee berry borer (Hypothenemus hampei), a global pest of coffee: Perspectives from historical and recent invasions, and future priorities. Insects 2020, 11, 882. [Google Scholar] [CrossRef]
- Vega, F.E.; Infante, F.; Johnson, A.J. The genus Hypothenemus, with emphasis on H. hampei, the coffee berry borer. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 427–494. [Google Scholar]
- Bustillo, A.E. Una revisión sobre la broca del café, Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae), en Colombia. Rev. Colomb. Entomol. 2006, 32, 101–116. [Google Scholar] [CrossRef]
- Barrera, J.F. Broca y roya del café. Viejos problemas, nuevos enfoques. Cienc. Desarro. 2016, 42, 32–37. [Google Scholar]
- Tabares, J.; Villalba, D.; Bustillo, A.; Vallejo, L. Eficacia de insecticidas para el control de la broca del café usando diferentes equipos de aspersión. Cenicafé 2008, 59, 227–237. [Google Scholar]
- Bustillo, A.E. El papel del control biológico en el manejo integrado de la broca del café, Hypothenemus hampei (Ferrari)(Coleoptera: Curculionidae: Scolytinae). Rev. Acad. Colomb. Cienc. 2005, 29, 55–68. [Google Scholar]
- Gallego, R.; Armbrecht, I. Depredación por hormigas sobre la broca del café Hypothenemus hampei (Curculionidae: Scolytinae) en cafetales cultivados bajo dos niveles de sombra en Colombia. Manejo Integr. Plagas Agroecol. 2005, 76, 32–40. [Google Scholar]
- Larsen, A.; Philpott, S.M. Twig-nesting ants: The hidden predators of the coffee berry borer in Chiapas, Mexico. Biotropica 2010, 42, 342–347. [Google Scholar] [CrossRef]
- Vera, L.; Gil, Z.N.; Benavides, P. Identificación de enemigos naturales de Hypothenemus hampei en la zona cafetera central colombiana. Cenicafé 2008, 58, 185–195. [Google Scholar]
- Newson, J.; Vandermeer, J.; Perfecto, I. Differential effects of ants as biological control of the coffee berry borer in Puerto Rico. Biol. Control 2021, 160, 104666. [Google Scholar] [CrossRef]
- Posada, F.J.; Vélez, M.; Zenner de Polanía, I. Hormigas: Enemigos Naturales de la Broca del Café; Universidad de Ciencias Aplicadas y Ambientales U.D.C.A: Bogotá, Colombia, 2009. [Google Scholar]
- Morris, J.R.; Perfecto, I. Testing the potential for ant predation of immature coffee berry borer (Hypothenemus hampei) life stages. Agric. Ecosyst. Environ. 2016, 233, 224–228. [Google Scholar] [CrossRef]
- Fotso, Y.; Touzeau, S.; Tsanou, B.; Bowong, S.; Grognard, F. Modelling and optimal strategy to control coffee berry borer. Math. Methods Appl. Sci. 2021, 44, 14569–14592. [Google Scholar] [CrossRef]
- Fotso, Y.; Touzeau, S.; Grognard, F.; Tsanou, B.; Bowong, S. Optimal Control of Coffee Berry Borers: Synergy between Bio-insecticide and Traps. J. Optim. Theory Appl. 2023, 196, 882–899. [Google Scholar] [CrossRef]
- Yang, H. Assessing the influence of quiescence eggs on the dynamics of mosquito Aedes aegypti. Appl. Math. 2014, 5, 2696–2711. [Google Scholar] [CrossRef][Green Version]
- Arias, J.; Martinez, H.; Sepulveda, L.; Vasilieva, O. Predator-prey model for analysis of Aedes aegypty population dynamics in Cali, Colombia. Int. J. Pure Appl. Math. 2015, 105, 561–597. [Google Scholar] [CrossRef]
- Duarte, I.; Chaib de Mares, M.; Luna, D.; Aguirre-Obando, O.; Mendez, R. Estudio demográfico de Emilia sonchifolia (Asteraceae) en una finca cafetera de Armenia, Quindio, Colombia. Acta Biol. Colomb. 2015, 20, 101–110. [Google Scholar]
- Arias, J.; Martinez, H.; Sepulveda, L.; Vasilieva, O. Estimación de los parámetros de dos modelos para la dinámica del dengue y su vector en Cali. Ingeniería y Ciencia 2018, 14, 69–92. [Google Scholar] [CrossRef]
- Lavanya, R.; Shyni, U. Differential Transform and Butcher’s fifth order Runge-Kutta Methods for solving the Aedes-Aegypti model. Int. J. Appl. Eng. Res. 2018, 13, 13849–13858. [Google Scholar]
- Arias, J.; Martinez, H.; Vasilieva, O. Biological and Chemical Control of Mosquito Population by Optimal Control Approach. Games 2020, 11, 62. [Google Scholar] [CrossRef]
- Vargas, R.; Rodríguez, S. Dinámica de poblaciones. In Manejo de Plagas en Paltos y Cítricos; Ripa, R., Larral, P., Eds.; Instituto de Investigaciones Agropecuarias del Ministerio de Agricultura de Chile: La Cruz, Chile, 2008; Volume 23, pp. 99–105. [Google Scholar]
- Romero, J.; Cortina, H. Tablas de vida de Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) sobre tres introducciones de café. Rev. Colomb. Entomol. 2007, 33, 10–16. [Google Scholar] [CrossRef]
- Ruiz-Cárdenas, R.; Baker, P. Life table of Hypothenemus hampei (Ferrari) in relation to coffee berry phenology under Colombian field conditions. Sci. Agric. 2010, 67, 658–668. [Google Scholar] [CrossRef]
- Castillo-Chavez, C.; Song, B. Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 2004, 1, 361–404. [Google Scholar] [CrossRef] [PubMed]
- Perko, L. Differential Equations and Dynamical Systems, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Hale, J. Ordinary Differential Equations, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1980; pp. 311–315. [Google Scholar]
- Kalula, A.; Nyabadza, F. A theoretical model for substance abuse in the presence of treatment. S. Afr. J. Sci. 2012, 108, 1–12. [Google Scholar]
- Varón, E.; Hanson, P.; Borbón, O.; Carballo, M.; Hilje, L. Potencial de hormigas como depredadoras de la broca del café (Hypothenemus hampei). Manejo Integr. Plagas Agroecol. 2004, 73, 42–50. [Google Scholar]
- Fernández, S.; Cordero, J. Biología de la broca del café Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae) en condiciones de laboratorio. Bioagro 2007, 19, 35–40. [Google Scholar]
- Hastings, A. Population Biology: Concepts and Models; Springer: New York, NY, USA, 1997. [Google Scholar]
- Constantino-Chuaire, L.M.; Benavides-Machado, P.; Escobar-Ramirez, S.; Montoya-Lerma, J.; Armbrecht, I. Capacidad depredadora de las hormigas Solenopsis picea y Crematogaster crinosa sobre la broca del café Hypothenemus hampei en campo con una solución atrayente. Rev. Colomb. Entomol. 2022, 48, 1–9. [Google Scholar] [CrossRef]
- Escobar-Ramírez, S.; Grass, I.; Armbrecht, I.; Tscharntke, T. Biological control of the coffee berry borer: Main natural enemies, control success, and landscape influence. Biol. Control 2019, 136, 103992. [Google Scholar] [CrossRef]
- Coffler, J.; Fialho, E.; Loss, M.; Venzon, M. Predation of coffee berry borer by a green lacewing. Neotrop. Entomol. 2021, 51, 160–163. [Google Scholar]


| Number of Adult CBB Deaths Due to Factors Other than Predation | |||
|---|---|---|---|
| 410 | |||
| 330 | |||
| 271 | |||
| 191 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo-Salazar, C.A.; Olivar-Tost, G.; Sotelo-Castelblanco, D.M. Mathematical Model for the Biological Control of the Coffee Berry Borer Hypothenemus hampei through Ant Predation. Insects 2023, 14, 675. https://doi.org/10.3390/insects14080675
Trujillo-Salazar CA, Olivar-Tost G, Sotelo-Castelblanco DM. Mathematical Model for the Biological Control of the Coffee Berry Borer Hypothenemus hampei through Ant Predation. Insects. 2023; 14(8):675. https://doi.org/10.3390/insects14080675
Chicago/Turabian StyleTrujillo-Salazar, Carlos Andrés, Gerard Olivar-Tost, and Deissy Milena Sotelo-Castelblanco. 2023. "Mathematical Model for the Biological Control of the Coffee Berry Borer Hypothenemus hampei through Ant Predation" Insects 14, no. 8: 675. https://doi.org/10.3390/insects14080675
APA StyleTrujillo-Salazar, C. A., Olivar-Tost, G., & Sotelo-Castelblanco, D. M. (2023). Mathematical Model for the Biological Control of the Coffee Berry Borer Hypothenemus hampei through Ant Predation. Insects, 14(8), 675. https://doi.org/10.3390/insects14080675

